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Every electrical network experience various power quality disturbance that 
necessitates meticulous planning, preparation, measurement, and, most crucially, the 
ability to promptly identify issues as they arise. Currently, the system faces limitations 
in remote data access and experiences delays in identifying disturbances due to the 
manual analysis required once disturbances are detected. The objective of this 
research is to integrate IoT technology to enhance the system by enabling real-time 
remote data access and automated classification of disturbances. The methodology of 
this project involves three main stages: first, generating power quality disturbance 
signals using Simulink software; second, developing a disturbance classification system 
on Arduino; and finally, designing and implementing a monitoring system on Arduino 
using ThingSpeak as the IoT component. The results demonstrate the successful 
detection and classification of the tested power quality disturbances by the developed 
monitoring system. 
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1. Introduction 
 

Power quality (PQ) refers to the measurement of electrical power signals produced, typically 
assessed using a PQ analyzer to evaluate the quality of supplied power and detect any disturbances 
[1]. In recent times, the nature of electrical loads has become more complex due to increased use of 
power electronic equipment, leading to deviations from typical sinusoidal voltage waveforms [2]. 
Power quality disturbances are defined as any alterations in the power waveform (voltage and 
current) that disrupt the smooth operation of electrical equipment [3]. Industries, heavily reliant on 
electrical machinery, frequently encounter such issues, which can have significant economic 
implications.  

Some types of power quality disturbances include voltage sag, voltage swell, interruption, 
harmonic, spike and many others [4,5]. This paper will only focus on four common types of 
disturbances which are voltage sag, voltage swell, transient and interruption which have been 
monitored by the proposed project. Voltage sag is a decrease in RMS voltage magnitude and normally 
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lasts between 0.5 and ten cycles within the customers' premises; it is the most prevalent type of 
power quality disturbance [6]. It is typically caused by factors such as sudden load increases, faults, 
or starting large equipment [7]. 

Next is the voltage swell, which is an increase in RMS voltage magnitude over a short duration 
cycle. It may occur because of energizing a large capacitor bank or de-energizing a large load [8]. 
Mitigation strategies include using voltage regulators, surge protectors, and proper system design to 
minimize their occurrence and impact [9].  

A transient is a disturbance that involves a sudden, large change in either current or voltage. It can 
even reach thousands of volts and amperes, even in a low voltage system [10]. This disturbance 
occurs only for a short period but can still cause significant damage to the equipment or system 
involved. This disturbance is often caused by external factors such as lightning strikes, power surges, 
electromagnetic interference, or switching events [11].  

Lastly is the interruption. An interruption refers to a sudden and temporary loss of electrical power 
supply to a system or equipment [12]. Interruptions can occur due to various factors such as faults in 
the power grid, equipment failures, or planned maintenance activities [13]. These disruptions can 
lead to downtime, data loss, or damage to sensitive equipment.  

Ensuring good power quality is essential for the reliable operation and longevity of connected 
electrical loads [14]. Poor power quality can lead to failures or reduced efficiency, necessitating 
higher maintenance costs associated with installation and operation [15]. Therefore, prioritizing 
power quality management is crucial for maintaining efficient industrial operations and minimizing 
associated expenses.  

By using the correct power quality monitoring device, various problems can be analyzed and 
solved without excessive spending on troubleshooting power quality disturbances [16]. Despite 
advancements in power system technology, the devices available in the market lack the 
implementation of Internet of Things (IoT) technology. Integrating IoT into power quality monitoring 
systems can provide real-time data that is accessible remotely by users [17]. When disturbances 
occur and data are not classified promptly by the system, it can lead to delays in resolving the 
disturbance. 

Rahul and Bharat Choudhary developed a hybrid approach that combines machine learning and 
deep learning, utilizing regression models like Extreme Gradient Boosting, CatBoost, Light Gradient 
Boosting, and LSTM neural networks [18]. This method achieves an impressive average accuracy of 
approximately 99.51% across six power quality event classes. However, the use of boosting models 
and convolutional neural networks can introduce complexity in terms of implementation and 
understanding. 

Rahul, M. Gangadharappa, and Ashwani Kharola employed a deep learning approach using 
transfer learning with seven pre-trained CNN architectures [19]. Their method utilizes regularization 
techniques to achieve superior accuracy and faster training/testing times compared to existing CNN 
models. Validated through laboratory experiments, the approach demonstrates high accuracy in 
classifying various power disturbances. While leveraging transfer learning for improved performance 
and real-world applicability, the method's complexity and resource-intensive nature pose challenges 
in terms of implementation. 

Mohamed Ali et al., [20] combined wavelet scattering feature extraction with LSTM techniques to 
effectively identify and classify power quality issues using synthetic disturbance signals in MATLAB 
simulations. This approach enables efficient feature extraction for time series analysis and achieves 
automatic identification and categorization of power quality problems. Despite its versatility, the 
method's effectiveness depends on the quality and quantity of training data, and its implementation 
is technically complex. 
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Vishakha Pandya et al. proposed an innovative algorithm combining the Stockwell Transform, 
Hilbert Transform, and PQ-index for detecting and classifying power quality disturbances, achieving 
over 99% efficiency. This method outperforms previous studies based on the Stockwell Transform 
and rule-based decision trees. While the approach is highly effective, its implementation is complex 
due to the multiple steps involved and the need for appropriate threshold selection for PQ-index, H-
index, and ST-index. 

This paper presents the development of an IoT-based power quality monitoring system to address 
the challenges of real-time data access and automated disturbance classification in electrical 
networks. Current systems face limitations due to manual data analysis, causing delays in identifying 
power quality issues. The proposed solution integrates IoT technology to facilitate real-time remote 
monitoring and automatic classification of disturbances. The methodology involves generating power 
quality disturbance signals using Simulink, developing a disturbance classification system on Arduino, 
and implementing a monitoring system using ThingSpeak for cloud-based data management. 
Simulations in Simulink produce various disturbance signals, which are transmitted to the ThingSpeak 
cloud and processed by Arduino. The monitoring system, incorporating ESP32, LEDs, buzzer, and an 
LCD, successfully detected and classified selected power disturbances such as transients, voltage 
sags, voltage swells, and interruptions. The results indicate high accuracy in disturbance detection 
and classification demonstrating the system's effectiveness in real-time power quality monitoring. 
 
2. Methodology  
 

In this section, the workflow of the project is described in a more comprehensive way to help with 
understanding of the project. Figure 1 shows the flowchart of the project. The project started with 
designing the circuit model for each disturbance using Simulink. There are three circuit models that 
were constructed to simulate the disturbance signals. Firstly, a model of energization of capacitor 
bank to simulate the transient signal was created. Next, the model of three-phase load switching 
simulated the voltage swell signal meanwhile; to simulate the voltage sag, a model of energization of 
three phase heavy load was constructed.  

For simulation of interruption, a permanent three-phase fault was modelled. After that, the 
constructed models were integrated with ThingSpeak. A block function of ThingSpeak output was 
added to send the data from Simulink to ThingSpeak cloud. After the integration of the two 
components was successful, the project continued with building the classification system for 
disturbance signals in Arduino. The system created was then evaluated whether the results obtained 
were correct or not. 

After the classification system worked well for all four disturbances, the hardware configuration 
was installed on a breadboard. The hardware used are ESP32, LCD I2C, LED and Buzzer. Once the 
hardware monitoring system ran as expected, all the system was integrated. The inputs from Simulink 
were simulated and the values were sent to ThingSpeak cloud. Then, the ESP32 read the value. If 
there is a disturbance presented in the system, the monitoring system in ESP32 will send the signal 
to LED and Buzzer module to alert the user. After that, the LCD will display the per-unit value and 
also the type of disturbance that occurred. Finally, the data was gathered, and analysis was 
performed.  
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Fig. 1. Overall project flowchart 

 
2.1 Designing Circuit Models for Generating Disturbance Signals 
 

Matlab Simulink had been used to construct the circuit to generate the disturbance signals. Figure 
2 shows the flowchart of generation of the power quality disturbances. Some of the components 
used to generate the disturbance signals are such as three-phase source, three-phase circuit breaker, 
RL load, capacitor, universal bridge, three-phase fault, and three-phase transformer. The model 
needs to be constructed based on the desired type of disturbance signals. The capacitor bank model 
(Figure 3) was used to simulate transient, three-phase large load model was used to simulate voltage 
sag and swell (Figure 4). Lastly, the permanent three-phase fault was used to simulate interruption 
(Figure 5). After constructing the circuit model, the parameters for each component need to be 

A 
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initialized together with the duration of the disturbance. The parameters for all the circuit models 
together with the durations are listed in Table 1, Table 2 and Table 3.  

After setting up the parameters, the simulation of the circuit models was run. The checking was 
made whether the simulated signals met the expectation according to the correct disturbance 
signals. Then, the signals were ready to be used as the input data for Arduino. 

 

 
Fig. 2. Flowchart of designing circuit models for generating disturbance signals  
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Fig. 3. Circuit model of capacitor bank to simulate transient 

 

 
Fig. 4. Circuit model of three-phase large load to simulate voltage sag and voltage swell 

 

 
Fig. 5. Circuit model of permanent three-phase fault to simulation interruption 
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       Table 1 
       Parameters for circuit model of capacitor bank 

Component  Value  
Three-phase Voltage Source  132 kV  
Frequency  50 Hz  
Load Active Power 10 MW 
Load Reactive Power 5 MVar 
Capacitor Bank 30 MVar 

 
    Table 2 
    Parameters for circuit model of three-phase large  
    load 

Component  Value  
Three-phase Voltage Source  132 kV  
Frequency  50 Hz  
Delta-Wye Transformer  132 kV / 220 kV  
1st Load Active Power 10 MW 
1st Load Reactive Power 5 MVar 
2nd Load Active Power 40 MW 
2nd Load Reactive Power 10 MVar 

    
    Table 3 
    Parameters for circuit model of three-phase fault 

Component  Value  
Three-phase Voltage Source  132 kV  
Frequency  50 Hz  
Delta-Wye Transformer  132 kV / 220 kV  
Load Active Power 10 MW 
Load Reactive Power 5 MVar 

 
2.2 Classifying the Disturbance Signals 
 

After creating the disturbance signal circuit models, the next step was to develop the disturbance 
classification system using per-unit values. First, the ThingSpeak output block was included in every 
Simulink circuit model to integrate the model with the ThingSpeak cloud. After ThingSpeak was 
successfully integrated with Simulink, the classification system was developed in Arduino. Before 
building the classification system, the per-unit values for the disturbance limits were configured to 
be used in the system. Table 4 shows the per-unit values for each disturbance. 

 
Table 4 
Per-unit value for each disturbance 

Type of Disturbance  RMS Value (pu)  
Voltage Sag  0.1 to 0.9 pu 
Voltage Swell  > 1.1 pu  
Interruption  0 pu  
Transient  > 2 pu  

 
Further, the Wi-Fi connection between the Arduino IDE and the ESP32 board was set up and tested 

to ensure stability and usability. A read function from ThingSpeak was incorporated to fetch data 
from the ThingSpeak cloud, written in Simulink. The output value was then compared to the value in 
Simulink to ensure proper communication between Simulink, ThingSpeak, and Arduino. After the 
data from ThingSpeak has been verified, the classification system was built. The system includes an 
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"if-else" conditional statement in Arduino, with conditions based on the per-unit values. After several 
runs of test, and the system produced the expected output, it proceeded with the development of 
the monitoring system. Figure 6 illustrates the workflow for classifying the disturbance signals. 

 

 
Fig. 6. Flowchart of disturbance signals classification 

 
2.3 Building the Monitoring System in Arduino Hardware 
 

The final step involves building the hardware component of the monitoring system and the 
flowchart is shown in Figure 7. This system was developed in the Arduino IDE, continuing from the 
classification system. Initially, the hardware components, including the LED, a buzzer module, and an 
I2C LCD, were connected to the ESP32 on a breadboard for testing. The monitoring system in Arduino 
employed the same "if-else" statements as the classification system. The conditions are set such that 
when a disturbance is detected, the LED and buzzer activate to alert the user, and the LCD will display 
the type of disturbance identified by the system. After the coding was completed, it was uploaded 
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and run on the ESP32 microcontroller. Figure 8 shows the overall connection of the IoT based power 
quality monitoring system. 

 

 
Fig. 7. Flowchart of building monitoring system in Arduino hardware 

 

 
Fig. 8. Overall hardware connection of the IoT monitoring system 
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Figure 9 shows the flowchart for the data collection process for the overall power quality 
disturbance monitoring system. First, the circuit model is simulated to obtain the per-unit value at 
the output, which is then will be written to the ThingSpeak cloud for storage. Each new simulation 
updates this value in the cloud. Once the ThingSpeak cloud stores the updated value, Arduino reads 
it to classify the type of disturbance detected. The monitoring system in Arduino then uses this value 
to display the disturbance type and alert the user if a disturbance occurs, activating the hardware 
components such as LEDs and buzzers accordingly. 

 

 
Fig. 9. Flowchart of data collection process for overall power quality disturbance monitoring 
system 

 
3. Results and Discussion 
 

In this section, the results from all methods executed are discussed and analyzed.  
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3.1 Simulation Results from Generated Disturbance Waveforms  
 

There are several constructed circuit models which represent the selected disturbances for this 
research. The disturbances are transient, voltage swell, voltage sag and interruption. The analysis 
made for this method was based on observing the voltage value during disturbance and the duration 
of the disturbance. From these two magnitudes, it can help to detect and classify the type of 
disturbance that occurred. 

The transient voltage disturbance signal was simulated from a circuit model of energization of 
capacitor bank. Figure 10 shows the simulated transient voltage disturbance signal. From the figure, 
there are 3 parts of the signal. The first part is the normal condition which is before energization of 
the capacitor bank. The second part is during the energization of capacitor bank which caused the 
transient to occur (sudden increase of voltage for a certain period). Lastly, the third part is the part 
where the disturbance stopped and decreased in voltage. The disturbance occurred for about 0.05 
seconds which is the duration of a transient signal (momentary disturbance).  

 

 
Fig. 10. Generated transient voltage disturbance 

 
The voltage sag disturbance was simulated from the model of large load switching. Figure 11 

shows the generated voltage sag signal. The voltage sag occurred due to the energization of a very 
large load. From the figure, the voltage magnitude decreased when the large load was energized. The 
duration of the sag is 0.05 seconds which is momentary. The voltage dropped to almost 0 V during 
the disturbance. 

 

 
Fig. 11. Generated voltage sag disturbance 

 

 

2 V 

0.05 s 
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The voltage swell disturbance also was simulated from the model of large load switching. Figure 
12 shows the generated voltage swell signal. The voltage swell occurred because of the de-
energization of a very large load. From the figure, the swell of voltage is clearly formed. The duration 
of swell is 0.08 seconds which is momentary. The voltage value increased to 25 kV during the 
disturbances. 

 

 
Fig. 12. Generated voltage swell disturbance 

 
The interruption disturbance was simulated from the model of permanent three-phase fault. 

Figure 13 shows the generated interruption signal. The three-phase fault was the cause for the 
interruption. The disturbance occurred for 0.05 seconds, and the voltage value is completely 0 V 
during the disturbance.  

 

 
Fig. 13. Generated interruption disturbance 

 
3.2 Results from ThingSpeak 
 

ThingSpeak acts as the bridge for the whole system as it connects Simulink model and Arduino 
hardware through its cloud. All the output values from disturbance models can be found in 
ThingSpeak. Figure 14 shows the output values from the running of all four disturbance models which 
were simulated separately. The value was checked after every simulation whether it tally with the 
simulation in Simulink. 

 

 

0.08 s 

25 kV 
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Fig. 14. ThingSpeak Outputs for the Simulation of the Different Disturbance 
Models;(a)Transient, (b) Voltage Sag, (c) Voltage Swell and (d) Interruption 

 
Table 5 compared the output value displayed in Simulink and ThingSpeak cloud to see the accuracy 

of value transferred to the cloud. The accuracies for all types of disturbances are 100%, which means 
the value from Simulink successfully written in ThingSpeak cloud without error.  
 

Table 5 
Comparison of output between Simulink models and ThingSpeak 

Type of 
Disturbance 

Output from 
Simulink (pu) 

Output from 
ThingSpeak (pu) Accuracy (%) 

Transient 2.15 2.150 100 

Voltage Sag 0.1198 0.1198 100 

Voltage Swell 1.387 1.387 100 

Interruption 0.01724 0.0172 100 
 

3.3 Results from Hardware 
 

Hardware components that were observed and analysed are LCD, LED, and buzzer. When any 
disturbance detected, LED and buzzer are expected to turn ON and LCD will display the per unit 
value of the disturbance and will display the type of disturbance occurred. Table 6 shows the 
comparison between the output from ThingSpeak with the output from hardware. For transient, 
the value obtained at ThingSpeak is slightly different compared to LCD value in terms of rounding 
off the numbers. For voltage sag and voltage swell, both have the same values between 
ThingSpeak and LCD. But for interruption, the LCD display the value as 0.0000 while the value 
from ThingSpeak display 0.0172. This happened because the value is too small for Arduino and 
be rounded up as 0. Overall, all the output values achieved 100% of accuracy. This shows that the 
integration of IoT and the whole system is well synchronized. 
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Table 6 
Comparison between output from ThingSpeak with output from Hardware 

Type of 
Disturbance 

Output from 
ThingSpeak (pu) 

Output from 
LCD (pu) Accuracy (%) LCD Display 

Transient 2.150 2.1579 100 

 

Voltage Sag 0.1198 0.1198 100 

 

Voltage Swell 1.387 1.3871 100 

 

Interruption 0.0172 0.0000 100 

 

 
4. Conclusion 
 

This paper details the development of an IoT-based power quality monitoring system aimed at 
enhancing real-time data access and automatic classification of power systems disturbances. 
Traditional methods often suffer from delays in identifying and addressing power quality issues due 
to manual analysis, underscoring the need for automated systems. By integrating Simulink for 
disturbance signal generation, ThingSpeak for cloud-based data management, and Arduino for real-
time classification and alerting, the study successfully demonstrated high accuracy in detecting and 
classifying various disturbances such as transient, voltage sag, voltage swell, and interruption. The 
system effectively utilized per-unit values to categorize disturbances. This approach not only 
streamlines monitoring processes but also lays groundwork for future advancements in IoT-driven 
power quality management systems. 
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