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Marine corrosion significantly undermines the structural integrity of maritime 
infrastructure, necessitating the development of sophisticated techniques for its early 
detection and classification. This paper offers an exhaustive critical review of 
Convolutional Neural Networks (CNNs) applied in marine corrosion detection and 
classification, covering research from 2018 to 2023. It compiles insights from various 
scholarly articles, elucidating the progression of CNN methodologies in tackling the 
intricate challenges associated with corrosion in marine, offshore and oil & gas sectors. 
This review meticulously examines the deployment of CNN technologies in evaluating 
corrosion across a myriad of maritime assets, including ships, marine structures, 
offshore platforms and oil & gas pipelines, also construction materials. It explores a 
broad spectrum of methodologies, underscoring the advancements in CNN-based 
strategies for corrosion monitoring. Importantly, the review pinpoints key obstacles, 
innovative strategies and forthcoming trends in the field, offering a comprehensive 
summary of current research on marine corrosion detection and classification through 
CNNs. The insights gained from this thorough analysis are instrumental in deepening 
the understanding of technological and methodological progress, serving as a guide for 
future research endeavours in the crucial field of maritime asset integrity 
management. 
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1. Introduction 
 

Corrosion, a fascinating chemical dance between metals and their environment, unfolds as these 
sturdy materials transform stable compounds like oxides, hydroxides and sulphides. Picture this: 
metals exposed to the whims of humidity and pollution, engaging in a silent but impactful tango. In 
the vast realm of the maritime industry, corrosion emerges as a silent foe capable of wreaking havoc 
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on metals [1-3]. The secret ingredients of this metal metamorphosis include the tag team of water 
and electrochemistry, the creation of protective scales, the gentle caress of low velocity, the unique 
composition of steel and the unexpected attacks by localized bacteria. It's like a symphony of 
elements conspiring to gradually age the materials designed to withstand the test of time [4-6]. The 
consequences of corrosion are evident in various sectors, such as ship structures and offshore and 
oil and gas pipelines, resulting in substantial financial losses, environmental pollution and, 
unfortunately, significant casualties. The impact of corrosion goes beyond material damage, 
encompassing broader implications for the economy and the environment [7-9]. 

The global economy has experienced a substantial estimated loss of around 2.5 trillion US dollars, 
equivalent to 3.4% of the world's GDP, attributed to corrosion [10]. In Figure 1(a) and 1(b), the direct 
cost of corrosion across various sectors in China is depicted, providing valuable insights [11]. Notably, 
a report singles out the Arab world as the region most severely impacted by corrosion, accounting 
for 16% of their total GDP, as indicated in Figure 1(c) [9]. Significantly, a considerable portion of these 
expenditures, ranging from 15% to 35% of the GDP share, can be mitigated, with inspection costs 
pivotal in these efforts [12-16]. This underscores the potential for proactive measures, including 
effective inspection strategies, to reduce the economic impact of corrosion. 

 

 
Fig. 1. Corrosion cost statistics (a) Corrosion cost percentage across different domains (b) Direct corrosion cost 
amount (in RMB) (c) Corrosion cost as a percentage of countries' GDP [9,11] 

 
Furthermore, corrosion poses a significant threat to marine structures, reducing mechanical 

efficiency and compromising structural integrity. This, in turn, can result in critical issues such as hull 
failure, breakdown of docks or offshore structures, pipeline leaks and, most importantly, potential 
threats to human lives [17-20]. Corrosion accounts for approximately 90% of the expenses associated 
with failures in maritime structures [21-23]. An alarming statistic underscores the pervasive impact 
of corrosion, revealing that roughly 25-30% of the steel produced annually succumbs to corrosion, 
incurring substantial direct costs of a staggering $276 billion. This amount corresponds to an 
estimated 3.1% of the Gross Domestic Product (GDP) of the United States [24,25]. These costs 
encompass repairing and inspecting corroded surfaces and structures and disposing hazardous 
corrosion waste materials. Additionally, they include expenses related to applying protective coatings 
like paintings and surface treatments [26].  

Another report by the British Hoar Committee emphasizes that corrosion costs account for 3% of 
the British Gross National Product (GNP), with the potential to reduce these costs by 23%. In 
industrialized nations, an estimated 3.5-5% of their income or GNP is allocated to corrosion-related 
expenses, covering losses, replacements, maintenance and prevention measures. Beyond direct 
financial impacts, corrosion also incurs various other costs, such as production losses due to 
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shutdowns and leakages, product contamination and maintenance expenditures [27-29]. To 
overcome these limitations, long-term corrosion monitoring strategies are essential. Long-term 
corrosion detection and prevention are crucial for avoiding catastrophic marine structural incidents 
[30-32]. Beyond the financial advantages, early identification of structural deterioration significantly 
reduces risks to human safety and environmental harm while preventing potential structural 
breakdowns [33-36]. 

The objectives of this review paper are multifaceted, aiming to provide a critical review of the 
application of Convolutional Neural Networks (CNN) in the context of corrosion detection and 
classification related to marine, offshore and oil and gas infrastructure. Additionally, we aspire to 
pinpoint potential areas for future research and advancements by understanding the strengths and 
limitations inherent in existing methods. Through this comprehensive review, we aim to contribute 
to the ongoing discourse in corrosion studies and foster a deeper exploration of CNN's potential in 
addressing challenges within marine and offshore environments. The overall research design is 
shown in Figure 2. 

 

 
Fig. 2. Overall research methodology flowchart 

 
This review paper comprises five chapters; Chapter One serves as the introduction, laying the 

foundation for the review. Chapter Two, titled 'Findings,' encompasses an in-depth exploration of 
CNN fundamentals and their applications in marine corrosion detection, encompassing ship 
structures, offshore environments, oil and gas pipelines and ship construction materials, focusing on 
steel. Chapter Three, 'Discussion,' synthesizes the key insights and trends identified in chapter two 
while addressing potential limitations and biases in the literature. Chapter Four, 'Recommendations,' 
offers practical recommendations to enhance CNN-based corrosion detection in marine settings 
alongside considerations for policy and industry. The final chapter, 'Conclusion and Future Research,' 
provides a conclusive summary of the paper's contributions and outlines promising avenues for 
future research in this vital field. 

 
2. Findings  
2.1 Fundamentals of Convolutional Neural Network 

 
In the late 1980s, the inception of CNNs marked a promising development in visual tasks. 

However, their full potential remained largely untapped, lying dormant in the realm of possibilities 
until the mid-2000s [37]. During this period, advancements in computing power, the availability of 
large labelled datasets and improved algorithms collectively contributed to their resurgence [38,39]. 
A turning point was reached in 2009 with the establishment of ImageNet, an extensive database 



Journal of Advanced Research Design 

Volume 142 Issue 1 (2026) 89-107  

92 

consisting of many object categories and more than ten million images. To evaluate and contrast 
classification and detection techniques, the ImageNet Challenge was created with a dataset including 
one thousand classes extracted from the ImageNet database [40,41]. The advent of potent graphical 
processing units (GPUs), alongside the establishment of ImageNet and the triumph of CNNs in the 
ImageNet Challenge, sparked a notable surge of research interest in CNNs. This period marked the 
beginning of a neural network renaissance and CNNs emerged at the forefront of this resurgence, 
experiencing rapid progression since 2012. Subsequently, CNNs have been extensively employed for 
a range of applications, including object classification [42], object detection [43,44], object 
segmentation [45,46], action recognition [47-49], medical applications [50,51] and more. Across 
various domains, CNNs have consistently demonstrated superior performance compared to 
prevailing classification algorithms. Typical CNN algorithm structures are shown in Figure 3. 

In corrosion research, CNN is used to identify and classify corrosion patterns on metal surfaces 
[52]. High-resolution photos of metal surfaces are transmitted into the network via this application. 
Using filters, the convolutional layers retrieve pertinent information, such as textures and edges 
linked with corrosion. Activation layers introduce non-linearities, whereas pooling layers reduce the 
spatial dimensions of the sample. Once global patterns have been captured, the data is flattened and 
processed using fully connected layers, following the application of many convolutional and pooling 
layers. In addition to classifying corrosion levels and recognizing specific types of corrosion, the 
output layer generates forecasts. To decrease prediction errors, the network is trained on labelled 
datasets while its parameters are adjusted. Furthermore, CNNs are valuable instruments for 
automated corrosion analysis in various metal structures, as their capacity to generalize to novel, 
unforeseen corrosion patterns is confirmed through subsequent evaluation on a test dataset 
[42,47,53]. 

 

 
Fig. 3. CNN model structure 

 
2.2 CNN Application in Ship Structures 

 
Corrosion is a pervasive and persistent challenge that the maritime industry faces, particularly 

concerning ship structures [3]. Ships, whether cargo vessels, naval warships or offshore platforms, 
operate in harsh and corrosive environments, such as saltwater and humid atmospheres. These 
conditions subject ship structures, including the hull, superstructure and various components, to the 
relentless threat of corrosion. Corrosion in ship structures primarily occurs due to electrochemical 
reactions between the metal surfaces and the corrosive agents in their environment [54]. Figure 4 
illustrates some ship structures affected by corrosion.  
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Fig. 4. Ship structures affected by corrosion 

 
Furthermore, as shown in Figure 5, the corrosion rate can vary significantly in different regions, 

highlighting the diverse characteristics of corrosion challenges faced by ships operating in distinct 
geographical areas. These variations in corrosion rates necessitate tailored corrosion mitigation 
strategies and maintenance practices to ensure the longevity and safety of maritime assets. 

The application of CNNs in combating corrosion in ship structures is a promising and innovative 
approach applied to corrosion detection and prediction that can significantly enhance maintenance 
and safety measures in the maritime industry. Yao et al., [54] applied CNN to detect and identify 
corrosion damage to ship hull structural plates. The CNN model was constructed using the AlexNet 
model as its foundation. In the results, CNN can effectively detect a range of superficial structural 
damages, encompassing delamination, voids, spalling and corrosion damage. Simultaneously, 
establishing a detection pattern for corrosion damage significantly enhances the efficiency of the 
corrosion detection classifier. Training a CNN typically necessitates a vast dataset encompassing 
various categories and conditions. However, in this research, the dataset was limited, especially 
regarding images captured under conditions of weak light intensity, blurriness and shade. As a result, 
it was determined that the generalization ability of the AlexNet for the HCDR network model (HCDR 
refers to the English initials of the four words “hull structural plate”, “corrosion”, “damage” and 
“recognition”) fell short when applied to such images. 

Shirsath et al., [55] applied a hybrid automated corrosion detection of different compartments of 
vessels. The investigation delves into exploring and experimenting with automated corrosion 
detection methods focusing on the visual features of corrosion. The author employed artificial 
intelligence techniques to extract relevant information from images, particularly emphasizing colour 
and texture as critical attributes for identifying corrosion on surfaces. A specialized colour-tracking 
algorithm was developed and evaluated utilizing images acquired from different compartments of 
vessels to identify corrosion based on colour. 
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Fig. 5. Corrosion rate (mm/year) in different regions 

 
Deep learning algorithms were employed for texture-based corrosion detection and this study 

investigated two unique methodologies. The initial methodology entails employing transfer learning 
to train a binary classification model within a CNN framework. In addition, a sliding algorithm was 
applied to this model to enable the detection and localization of corrosion on plates that have been 
severely damaged. Corrosion detection is conceptualized as an object detection problem in the 
second approach. Transfer learning was utilized to train a Single Shot Detector (SSD) to identify rust 
in images of the actual environment. Two datasets were produced to streamline the training process 
and evaluate all models. The first dataset consists of photos depicting corroded metals in a controlled 
laboratory setting. On the other hand, the second dataset comprises real-world images of corroded 
compartments obtained during bulk carrier inspections. The study's findings indicate that the 
proposed approaches exhibit efficacy in detecting corrosion (94% on test data). Moreover, Matthaiou 
et al., [56] applied a hybrid model including CNN-Transfer learning for corrosion detection in different 
vessel compartments from digital images. The methodology considered the visual attributes of 
corrosion, explicitly focusing on colour and texture. Texture-based approaches outperformed colour-
based ones. However, this method encountered challenges when applied to real-world vessel images 
due to a noisy background in the corrosion images. 

Liu et al., [57] pioneered the development of a faster region-based CNN (faster R-CNN) specifically 
tailored for the analysis of coating breakdown and corrosion (CBC) in ship structures. For feature 
learning, the methodology employed a collection of 1,900 photos capturing marine and offshore 
structures with CBC. 12,184 features were collected from these photos and classified into the 
following five categories: surface-based CBC, CBC on edges, CBC on welding joints and non-coating 
failure (including hard rust and pitting). For the purpose of validation, a subset of 2,437 features (20 
percent of the total 12,184 features) was selected at random. The observed overall rate of 
recognition was 81.4%. Another application of faster region-based CNN was applied by Xu et al., [58] 
to detect corrosion in coated metal plates. The dataset employed in this study comprised images of 
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metal plates with coatings exposed to corrosive environments and systematically monitored and 
photographed. The experimental results showcased an impressive Average Precision (AP) value 
exceeding 94 on the testing set. Moreover, the prediction error for the proportion of the corrosion 
area was meticulously maintained within a commendable 10%. Capitalizing on these promising 
detection outcomes for the corrosion area, the study further facilitated maintenance decision-
making by assigning a standardized protection rating to the metal surface. Nevertheless, the 
detection results need further categorization and refinement for more direct guidance during manual 
maintenance processes to optimize worker operations. 

Furthermore Andersen et al., [59] applied Faster-RCNN and YOLO to detect corrosion in marine 
vessels. They developed and assessed a pipeline that employs a compact deep-learning model to 
activate a larger one upon detecting corrosion. The resulting segmentation is subsequently utilized 
to assess the vessel conditions. A total of ten architectures and combinations were experimented 
with, ranging from traditional classification to object detection and instance segmentation. Each of 
these architectures underwent rigorous training on a diverse dataset featuring images from ballast 
tanks that showcased varying degrees of corrosion. The outcomes reveal that standard object 
localization architectures like YOLO and Faster-RCNN tend to overestimate the extent of the corroded 
area. Bahrami et al., [60] implemented Faster R-CNN to detect corrosion in ship containers, initially 
exploring models like SSD Mobile Net and SSD Inception V2. They utilized fixed-size anchor boxes, 
which proved limiting due to corrosion defects' diverse sizes and shapes. An enhanced architecture 
was introduced to address this, integrating cutting-edge models with anchor box optimization. This 
improvement allows the models, especially Faster R-CNN, to excel in detecting corrosion across 
various defect sizes. Faster R-CNN operates in two stages: feature extraction using techniques like 
VGG or ResNet and a Region Proposal Network (RPN) for bounding box proposals. In the subsequent 
stage, these proposals guide feature extraction, optimizing class label prediction and bounding box 
refinement. Notably, Faster R-CNN's approach minimizes redundant computations, enhancing 
performance efficiency compared to direct cropping methods [53].  

An additional study on corrosion detection in containers was conducted by Bahrami et al., [61]. 
High-resolution and temporal context region-based CNN (HRTC R-CNN) was utilized. To extract 
semantic information across a variety of fault scales, HRTC R-CNN employs a multi-depth, multi-
stream backbone and multiscale super-resolved feature creation. For the purpose of semantic 
extraction, the deep network processed low-resolution images, whereas the shallow network 
received high-resolution images to preserve positional information. To bolster the framework's 
performance, an attention mechanism and two memory banks were integrated to harness context 
information from unlabelled images. Within the corrosion defect detection (CDC) process, a novel 
optical flow-based image stitching method was introduced to compute the percentage of corrosion 
across the entire container surface. Through extensive experiments conducted on the corrosion 
defect dataset, the proposed approach exhibited exceptional accuracy and robustness. 

CNN architecture was used by Soares et al., [62] for corrosion detection in marine vessel 
structures and the research demonstrated satisfactory results, achieving an accuracy of 92% for 
synthetic underwater images within the test dataset. Recently, Siswantoro et al., [63] applied CNN 
for corrosion detection in ship structures; the results demonstrate that, among 127 images, the 
predominant labels were pitting corrosion, followed by general corrosion, with edge corrosion being 
the least prevalent. Despite the program's capacity to identify corrosion across three distinct 
categories during the preliminary study, it exhibited suboptimal accuracy. The test evaluation yielded 
mean recall and accuracy values of 0.5 and 0.3, respectively. The reduced efficiency might be due to 
the inadequate amount of data utilized during the training and testing phases. 
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2.3 CNN Application in Offshore and Oil & Gas Pipelines 
 
In the context of offshore and oil and gas pipelines, corrosion stands as a pervasive and 

formidable challenge. Corrosion, the gradual degradation of pipeline materials due to environmental 
factors, has been a persistent concern for these industries. Its effects extend beyond mere material 
deterioration, often leading to catastrophic consequences such as accidents and structural failures. 
Corroded pipelines can develop weaknesses and vulnerabilities, increasing the risk of leaks, spills and 
environmental damage. Moreover, the financial toll of pipeline failures, coupled with the potential 
for reputational damage, underscores the critical need for effective corrosion management 
strategies. Figure 6 provides a visual representation of the percentage of pipeline failures attributed 
to corrosion. It highlights the significant role that corrosion plays in pipeline integrity and emphasizes 
the need for effective corrosion management strategies within the industry.  

 

 
Fig. 6. Ratio of pipeline failure causes 

 
Furthermore, Figure 7 shows the cause of corrosion in pipelines. In this subsection of our review 

paper, we delve into the pivotal role that CNNs play in addressing the complex issue of corrosion in 
offshore and oil and gas pipelines. 

In 2019, Bastian et al., [64] employed a custom-designed CNN to detect corrosion in water, oil 
and gas pipelines effectively. The author utilized an extensive dataset comprising over one million 
images, each categorized into four corrosion levels. A custom CNN architecture was developed, 
carefully designed to have fewer trainable parameters compared to the fine-tuned CNN architecture 
used in previous studies [65-67], which often involves managing a substantial number of trainable 
parameters. Notably, the proposed method showcased its ability to examine corrosion from standard 
RGB images, unlike the utilization of MFL images [68]. In terms of classification, the classifier was 
trained to assess the corrosion level within an image in a single pass, eliminating the need for sliding 
window approaches applied in prior works [65,67]. Furthermore, an unsupervised recursive region-
based approach was employed for corrosion localization, deviating from supervised methods such as 
the FasterRCNN detection and segmentation approach found in previous research [69,70]. 

The proposed network in this research [64] excels at classifying images into four categories based 
on the level of corrosion: no corrosion, low, medium and high levels of corrosion. A comprehensive 
database comprising over 100 thousand images depicting pipelines with varying levels of corrosion 
was meticulously curated and categorized into these classes. Comparative evaluations demonstrated 
the superior performance of the proposed model over ZFNet [71] and VGGNet [72] across various 
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evaluation metrics. Notably, CNN surpassed these models and their fine-tuned versions regarding 
trainable parameters and evaluation metrics. In addition to classification, the proposed method 
incorporates the localization of corroded regions within the image, achieved through a recursive 
region-based method. This integrated approach enables the efficient identification of corroded 
regions. One noteworthy advantage of this approach is its ability to seamlessly integrate with aerial 
robots, enabling accurate detection of exterior corrosion in pipelines in various environments and 
real-time non-destructive inspection. 

In their study, Vriesman et al., [73] proposed representation learning via deep neural networks 
as a substitute for manually constructed features in the automated visual assessment of corroded 
metallic pipes. A texture CNN (TCNN) was utilized instead of manually constructed features such as 
Haralick descriptors (HD) and Local Phase Quantization (LPQ). One notable benefit of TCNN is its 
capacity to acquire a suitable textural representation and establish decision bounds using a solitary 
optimization procedure. The experimental results demonstrated that it is possible to achieve a 99.20 
percent accuracy rate when discerning various levels of corrosion on the inner surface of pipe walls. 

Bastian et al., [74] assembled a dataset of more than 140,000 pipeline images showcasing diverse 
degrees of corrosion. They employed a CNN that was explicitly created to classify these pipeline 
images according to the level of corrosion. Notably, their in-house CNN design featured a minimal 
number of parameters compared to existing CNN classifiers. Despite its simplicity, this custom CNN 
achieved a remarkable classification accuracy of 98.8%. The system exhibited a remarkable capacity 
to distinguish between images depicting corroded pipelines and those featuring patterns mimicking 
corroded pipelines but lacking corrosion. The proposed network exhibited superior performance 
when compared to other state-of-the-art classifiers. 

In 2021, Bhowmik [75] presented a CNN integrated with a computer vision-based digital twin 
concept for Offshore Pipeline Corrosion Monitoring. The CNN algorithm was employed to automate 
the identification and classification of corrosion from Remote Operated Vehicle (ROV) images and In-
Line Inspection data. The Deep Learning algorithm, specifically CNN, exhibited an accuracy of 
approximately 81% in correctly identifying and classifying corrosion. Significantly, the deep-learning 
approach showed a considerably reduced processing time, while utilizing the digital twin facilitated 
the instantaneous formulation of prescriptive or predictive tactics predicated on inspection 
outcomes. Parjane et al., [76] applied Deep CNN (DCNN) for corrosion detection in underwater 
pipeline structures. The Deep CNN demonstrated superior detection accuracy (0.997) compared to 
the Naïve Bayes machine learning algorithm. The CNN utilized multiple convolutional layers and 
collaborated with activation functions to achieve its detection performance. 
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Fig. 7. Pipeline corrosion causes 

 
Sasilatha et al., [77] applied for autonomous corrosion maintenance in underwater structures. 

The CNN is employed to classify images, facilitating the detection of objects within submerged 
corroded structures. His proposed model attained an impressive classification accuracy of 98.83%. 
However, it's noteworthy that this method's effectiveness is particularly suitable for our underwater 
robot to detect objects, yet it may not outperform typical methods when applied to other datasets. 
Additionally, including dropout layers and other technologies did not significantly impact this model. 
It is suggested that reconstructing the network using a more intricate algorithm could potentially 
enhance its effectiveness. Yu et al., [78] used CNN to classify corrosion in oil and gas pipelines. Their 
proposed approach can provide essential information, including the corrosion area's location, type, 
boundary and extent. This comprehensive information facilitates intelligent decision-making in 
pipeline maintenance. Furthermore, the method is versatile and can be extended to evaluate 
corrosion cracks in other metal components with complex geometries.  

Ferreira et al., [79] introduced a CNN architecture inspired by LeNet-5 for estimating the 
harshness of corrosion defects in pipelines. The architecture underwent training and testing through 
a Monte Carlo Cross-Validation procedure, repeated 100 times. The results indicate that the 
proposed architecture demonstrated strong performance, with a mean Root Mean Square Error 
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(RMSE) of 0.4448 and a mean R-squared (R2) value of 0.9637. Huang et al., [80] utilized a CNN-LSTM 
approach for corrosion detection in pipelines. The experimental findings revealed impressive 
detection accuracy, with rates of 99.9% for 0.5 mm deep crack damage, penetrating crack damage 
and corrosion damage and 99.8% for inside crack damage. The proposed method demonstrated the 
ability to accurately detect the location and size of the damage in the pipelines. 

Recently, Yang et al., [81] applied a combination of CNN and wavelet packet energy (WPE) for 
monitoring internal corrosion in pipelines. The accuracy of classification achieved surpassed 99.01 
percent. Consequently, this methodology presents a quantitative strategy for overseeing the 
corrosion condition of pipelines, enabling timely and precise evaluation of the extent of internal 
corrosion. The WPE-CNN model exhibits considerable promise in efficiently overseeing pipe interior 
corrosion when coupled with the proposed time reversal strategy. Furthermore, Saragih et al., [82] 
utilized YOLO, an image-processing algorithm based on CNN, to automate corrosion inspection in 
pipelines. The results suggest that the proposed method is capable of achieving detection with an 
accuracy rate of 64%. 

 
2.4 CNN Application in Ship Construction Material (Steel)  

 
In 2018, Ma et al., [65] utilized CNN for corrosion segmentation in ship steel structures. They 

developed a segmentation model by fine-tuning an existing CNN architecture and training it on 
datasets created from numerous images. By integrating the trained CNN classifier with a sliding 
window technique, they were able to recognize the corrosion zone within an image. One year later, 
Ahuja et al., [83] implemented CNN to classify steel surface corrosion grade. The results showcased 
that the proposed approach achieved an impressive accuracy exceeding 93.4% for identifying 
corrosion grades. Notably, the actual corrosion results and those predicted by the model exceeded 
expectations, especially considering the constraints of a limited training dataset. The author suggests 
that an even more robust model could be developed through training on a larger dataset, 
incorporating varying Intersection over Union (IoU) thresholds. This approach has the potential to 
enhance the model's accuracy and performance significantly. 

In 2021, Barile et al., [84] conducted an analysis of corrosion behaviour in steel plates using 
Acousto-Ultrasonics with the assistance of a D-CNN. The CNN exhibited more than 99% efficiency, 
demonstrating its effectiveness in classifying signals. Furthermore, Pirie et al., [85] used CNN to 
recognize corrosion grades in steel structures. Using salt spray tests, they initially established an 
image dataset of corroded steel plates. Subsequently, they developed a CNN model named VGG-
Corrosion that was explicitly designed to assess the corrosion grade of the affected steel plates. Their 
study further investigated the impact of transfer learning, learning rate and batch size, aiming to 
pinpoint the optimal hyperparameter formations for training an effective corrosion classification 
model. In the best combination of these hyperparameters, the mean average accuracy for assessing 
corrosion grades in the test results reached an impressive 90.96%. 

In another study by Idusuyi et al., [86], two CNN models were developed and trained utilizing 
images captured with a mobile phone camera and a digital microscope. These CNN models were 
designed to categorize corroded images into three distinct classes, depending on the surface area of 
the sample covered by corrosion products. The study's results demonstrate that CNN corrosion 
classifiers for steel exhibit strong performance, achieving accuracy above 80% for both models. The 
effectiveness of CNNs was particularly notable in handling multiclass corrosion scenarios. Recently, 
Jiang et al., [87] applied CNN to investigate random pitting corrosion damage in marine steel columns. 
This network was designed to assess damage by taking the vibration mode of the steel column as 
input. The results demonstrated a notably high detection accuracy of the network, meeting the 
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practical engineering standards. This outcome underscores the substantial theoretical significance 
and practical applicability of using this approach to assess damage in steel components. 

 
3. Discussion  

 
Within the CNN domain utilized for corrosion detection and classification, numerous scholarly 

investigations have yielded significant findings, each showcasing unique efficacy and constraints. The 
Faster R-CNN [57] for Coating Breakdown and Corrosion (CBC) assessment achieved a notable 
identification rate of 81.4 percent and effectively classified the data into five unique groups. 
Nevertheless, utilizing a sizable dataset consisting of 1,900 images to train features presents 
pragmatic obstacles for hull structural plate corrosion damage detection by Yao et al., [54], who 
successfully identified a variety of superficial structural damages. However, the researchers 
encountered difficulties generalizing their findings due to a restricted dataset and suboptimal 
performance under specific environmental conditions. Corrosion detection in marine vessel 
structures by Soares et al., [62] achieved a notable level of precision (92 %) when applied to synthetic 
underwater photos. However, the study's emphasis on synthetic images has prompted 
apprehensions regarding its practicality.  

Bahrami et al., [60] used Faster R-CNN to detect ship container corrosion. Although the initial 
performance of the model was subpar in terms of accuracy and recall, it surpassed alternative 
approaches once the anchor box was optimized. In their recent publication [61], HRTC R-CNN utilizes 
temporal context and high resolution to identify corrosion defects in ship containers. However, this 
approach provides computational intensity issues. Another Faster R-CNN by Xu et al., [58] 
encountered difficulties in forecasting the proportion of corrosion area and recommended additional 
categorization. Andersen et al., [59] utilized Faster-RCNN and YOLO to detect corrosion in marine 
vessels. While the authors demonstrated competence in detecting the presence of corrosion, they 
encountered issues related to the specificity of the dataset and an overestimation of the corroded 
region. 

CNN for Automated Corrosion Detection was shown to have a high capability by Shirsath et al., 
[55], who utilized colour and texture information; nonetheless, the authors stated that performance 
depends on a solid dataset. Siswantoro et al., [63] successfully diagnosed corrosion in multiple 
categories; nevertheless, the inadequate amount of data analysed was cited as the reason for 
unsatisfactory accuracy and recall. In their study, Matthaiou et al., [56] proposed a Hybrid CNN-
Transfer Learning Model that prioritized texture and colour. The authors found that texture-based 
techniques exhibited superior performance despite the difficulties posed by noisy backgrounds in 
real-world photos. Although CNN-based approaches demonstrate encouraging outcomes in the 
realm of corrosion detection and classification, their efficacy is frequently tested on vast and varied 
training datasets. Furthermore, they confront difficulties when confronted with real-world 
circumstances, such as inadequate performance in demanding environments and computational 
intricacies for real-time implementations. 

When considering the detection of corrosion in offshore, oil and gas pipelines, examining 
different CNN applications in this field unveils their respective merits and weaknesses. The bespoke 
CNN developed by Bastian et al., [64] demonstrates commendable accuracy while requiring fewer 
trainable parameters. However, its vulnerability to various situations is attributed to its unique 
architecture. The classification accuracy of the method proposed by Rajendran et al., [77] is an 
impressive 98.83 percent, making it applicable to autonomous underwater robots; however, its 
effectiveness influenced by the particular training dataset utilized. Yu et al., [78] exhibit adaptability 
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by furnishing comprehensive corrosion data to aid maintenance decision-making; however, the 
efficacy of the approach in practical situations is not explicitly mentioned.  

The CNN developed by Ferreira et al., [79] with LeNet-5 has robust performance, as evidenced by 
its low RMSE and high R² values. However, the paper does not explicitly address scalability or practical 
applicability. CNN with a digital twin for monitoring, developed by Bhowmik in [75], incorporates 
real-time capabilities but has comparatively diminished accuracy (81%). The second custom CNN 
developed by Bastian et al., [74] achieves good accuracy in picture classification, but its simplicity 
present difficulties in complex circumstances. The DCNN proposed by Parjane et al., [76] exhibits 
exceptional accuracy in detecting underwater pipeline structures; nevertheless, its applicability to 
different settings is restricted.  

CNN with wavelet packet energy developed by Yang et al., [81] provides good classification 
accuracy; however, optimal performance contingent on particular situations. The YOLO program 
developed by Saragih et al., [82] automates the corrosion inspection procedure; nonetheless, it 
demonstrates a reduced accuracy rate (64 %). TCNN for automatic visual inspection by Vriesman et 
al., [73] excels at recognizing corrosion levels; nevertheless, additional validation is required to 
ensure real-time viability. The CNN-LSTM method proposed by Huang et al., [80] exhibits 
exceptionally high rates of accurate detection, albeit potentially requiring significant processing 
resources. Although these CNN applications demonstrate exceptional performance in pipeline 
corrosion detection (frequently attaining accuracy rates exceeding 98 %), they encounter obstacles 
regarding the specificity of the dataset, adaptability to diverse environments, computational 
complexity and practical applicability. Specific monitoring requirements should inform the technique 
selection, considering the compromises between precision and practical implementation.  

The application of CNNs for the identification and examination of steel corrosion has been the 
subject of investigation in several studies, each of which utilized unique approaches with varying 
degrees of success. In their study, Ma et al., [65] optimized a pre-existing CNN architecture and 
applied a sliding window method to segment corrosion in ship steel structures. While the results 
were favourable, the authors acknowledged the computational burdens associated with the method. 
Idusuyi et al., [86] effectively handled multiclass corrosion scenarios utilizing mobile and microscope 
pictures with two CNN models that achieved an accuracy of over 80%. However, the performance of 
these models influenced by factors such as image quality and variety. 

Barile et al., [84] utilized acoustic ultrasonic analysis with CNN to classify corrosion-related signals 
with an efficiency greater than 99%. This accomplishment demonstrates the researchers' high 
capability; however, it raises concerns regarding the method's effectiveness under varying 
environmental conditions and with steel compositions that differ from the one described. Ahuja et 
al., [83] successfully categorized corrosion grades with an accuracy surpassing 93.4%, suggesting that 
a more extensive dataset might enhance the model's robustness. Jiang et al., [87] utilized numerical 
simulation and CNN to analyse pitting corrosion in maritime steel columns with excellent detection 
accuracy; however, the complexity of the methodology, including numerical simulations and finite 
element software, is acknowledged [88-90]. Furthermore, Pirie et al., [85] developed the VGG-
Corrosion CNN architecture, which demonstrated dataset-specific efficacy by attaining an accuracy 
of 90.96 percent via salt spray test dataset construction.  

Therefore, CNNs demonstrate considerable efficacy in detecting steel corrosion, achieving 
encouraging levels of accuracy. However, these networks are constrained in terms of dataset 
diversity and size, computational efficiency and the possibility of improved performance with larger 
training datasets. The investigations demonstrate the multifunctionality of CNNs in detecting 
corrosion through various methodologies, including signal analysis, picture classification and 
numerical simulations. As methodologies progress and more extensive datasets become accessible, 
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the dynamic environment suggests that CNNs possess considerable promise for applied corrosion 
detection and classification. 

 
4. Recommendations  

 
In the domain of CNN-based corrosion detection and classification for synchronized marine 

structures, pipelines and steel applications, recommendations and future research Centre on 
fundamental concepts. Primarily, it is critical to confront the obstacle posed by the diversity and 
magnitude of the dataset. Researchers must prioritize the development of all-encompassing datasets 
that include a wide range of environmental variables and corrosion scenarios. The expansion and 
variety of datasets are of the utmost importance in improving the resilience and precision of CNN 
models in these many contexts. Additionally, it is crucial to prioritize the enhancement of computing 
efficiency. Ongoing research endeavours ought to investigate techniques for optimizing algorithms, 
integrating hardware developments and parallel processing to enhance the practicality and 
scalability of corrosion detection approaches based on CNN. Incorporating CNNs with advanced 
imaging techniques and supplementary sensing technologies, such as acousto-ultrasonics, can 
further enhance the understanding of corrosion conditions. Moreover, in order to guarantee the 
feasibility of CNN-based approaches in practical settings, forthcoming investigations ought to 
prioritize thorough validation and testing under real-world conditions. This should involve evaluating 
the models' ability to adjust to the intricate circumstances of marine structures, pipelines and steel 
corrosion. The combined objective of these suggestions is to enhance the efficiency and versatility of 
CNNs in detecting and classifying corrosion in various environments. 

 
5. Conclusion  

 
In conclusion, regarding CNNs applied to corrosion detection and classification, our extensive 

discussion has unveiled a landscape of diverse methodologies with distinctive strengths and 
limitations. Each scholarly investigation, from Faster R-CNN applications to specialized CNNs for 
offshore structures, oil and gas pipelines and steel corrosion, has contributed valuable insights into 
the efficacy and challenges of these techniques. Our comprehensive analysis underscores the need 
for future research to address critical challenges. Priority should be given to developing 
comprehensive datasets encompassing diverse environmental variables and corrosion scenarios. 
Enhancing computing efficiency is crucial and ongoing efforts should explore algorithm optimization, 
hardware integration and parallel processing.  

Thorough validation under real-world conditions is paramount to ensuring the practicality of 
CNN-based approaches. This involves evaluating the adaptability of models to the intricate 
circumstances of marine structures, pipelines and steel corrosion. In light of these considerations, 
our recommendations emphasize the importance of advancing fundamental concepts, encompassing 
dataset expansion, computing efficiency optimization and comprehensive validation, to enhance the 
efficiency and versatility of CNNs in corrosion detection across diverse environments. As 
methodologies evolve and datasets become more extensive, the dynamic environment suggests that 
CNNs indeed hold considerable promise for applied corrosion detection and classification. Future 
research efforts, guided by these recommendations, can contribute to the continuous advancement 
of CNN-based techniques in safeguarding the structural integrity of underwater assets. 
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