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This paper addresses the critical challenge of comprehensively assessing infectious 
disease risks, particularly within non-healthcare premises. The existing approaches for 
infectious disease risk analysis may lack the precision needed to thoroughly 
understand the complexities of disease transmission. The absence of a unified model 
that integrates Failure Mode and Effects Analysis (FMEA) with Fuzzy Adaptive 
Resonance Theory (Fuzzy ART) hinders our ability to adaptively analyse and prioritise 
risks associated with infectious diseases. To bridge this gap, our research introduces 
the Clustering-Transmission Causes and Effects Analysis (c-TCEA) model, designed to 
enhance the precision of risk analysis and provide a deeper understanding of the 
factors contributing to disease spread and its effects. By focusing on the infectious 
disease COVID-19, we demonstrate the adaptability of c-TCEA to dynamic disease 
dynamics and highlight its potential as a robust tool for comprehensive risk 
assessment. The clustered data output from c-TCEA offers a valuable foundation for 
prioritising and guiding the implementation of preventive and mitigation strategies. 
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1. Introduction 
 

Infectious diseases such as COVID-19, mpox, MERS, SARS, and XDR TB, along with other prevalent 
conditions like diarrheal diseases and HIV/AIDS, will continue to exert a substantial impact on global 
mortality. This underscores the persistent threat of both established and emerging infectious 
diseases, emphasizing the critical need for a comprehensive understanding of transmission factors, 
including agents, hosts, and environmental determinants, to guide effective prevention and control 
efforts. 

There are still threats to one's life associated with infectious diseases like COVID-19. Globally, 
there were more than 771 million COVID-19 instances as of October 2023 [1]. Developing measures 
to eliminate and prevent the spread of a pandemic strain among people is highly beneficial. However, 
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because of the disease's rapid spread, it becomes extremely difficult to create and develop realistic 
risk assessments to contain the emergence of the disease. In human history, risk analysis and 
management have been crucial in the fight against long-lasting endemic or pandemic diseases, as 
stated in [2]. It was also indicated in [2] that for centuries, experts in the field of infectious disease 
control had implemented interventions and strategies. One example is the creation of laws and 
regulations pertaining to quarantine and isolation during emergencies. These have been pointed out 
as one of the key elements of societal risk management strategies and as a means of decreasing and 
preventing infectious diseases [3,4]. 

In practical terms, modern risk management is the identification, evaluation, and prioritization of 
risks, followed by the efficient and well-coordinated use of resources to minimize, control, and 
manage the likelihood or impact of unfavourable events. The Failure Modes and Effect Analysis 
(FMEA) method has been introduced as a comprehensive tool for risk analysis and management 
across various industries such as transport, automotive, agriculture, and medical and healthcare. The 
overall FMEA methodology considers factors such as failure modes, effect analysis, root causes, and 
relationships, along with corrective measures, during its implementation. A simple scoring approach, 
utilizing three indices—Severity (S), Occurrence (O), and Detection (D)—as inputs and generating a 
Risk Priority Number (RPN) as an output, is employed for prioritization and risk analysis. 

The emphasis in [5] has centered on non-healthcare settings for COVID-19 risk management, with 
the implementation of Failure Modes and Effect Analysis (FMEA) expanding to healthcare during the 
pandemic. An instance of this is when COVID-19 protocols are evaluated in cases of obstetric 
emergencies. [6]. Despite the wide use of FMEA in diverse fields and extensive research on infectious 
disease risks within healthcare, there is a recognized need for ongoing development to elevate it into 
a more valuable foundation. This enhancement aims to position FMEA as a comprehensive and 
improved tool serving as the basis for prioritizing and guiding the implementation of preventive and 
mitigation strategies in infectious disease risk management. Consequently, the adoption of 
transmission-based precautions is recommended. One innovative approach in this area is the 
transmission-based risk analysis methodology, which rates and ranks all risks using Fuzzy ART while 
accounting for recent advancements in risk research in both healthcare and non-healthcare settings. 

Thus, this paper uses Fuzzy ART as a tool to investigate FMEA from an alternative perspective. An 
innovative approach in this context introduces the transmission-based risk analysis methodology. For 
this method, experts will utilize the FMEA for scoring and determining the three indices (S, O, and D). 
The values obtained are normalized and fed into the Fuzzy ART algorithm. The outcomes of the Fuzzy 
ART algorithm are interpreted, enabling the clusterisation of transmission potentials in the area of 
interest, which in this paper is the educational institution facilities. This information is then further 
contributed to the prioritisation and guidance of preventive and mitigation strategies. Hence, this 
paper explores FMEA from a different perspective by employing Fuzzy ART as a tool. 
 
2. Literature Review  
2.1 Existing Methods and Models for Infectious Disease Risk Analysis  
 

There are a few techniques used for infectious disease risk analysis besides using fuzzy ART. One 
of the methods is machine learning (ML)[7]. ML is a generic subset of artificial intelligence (AI) that 
can recognize patterns in data without the need for programming. To do this, the data is analysed, 
and predictions are made using the knowledge gained from past events [8]. ML is a field of AI that 
has been practiced for many years. It incorporates ideas from several other fields, including computer 
science, statistics, and mathematics [9]. ML algorithms have been effectively implemented in 
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conjunction with the disciplines in several industries, such as marketing, banking, healthcare, and 
agriculture, due to their accuracy and reliability in diagnosing process [10]. 

Another current technique implemented in infectious disease risk analysis is sentiment analysis 
[11]. Sentiment analysis or opinion mining, is a natural language processing (NLP) technique that 
identifies the sentiment expressed in a text, whether it be positive, negative, or neutral. The objective 
of this analysis is to understand and extract subjective information from the text so that the author's 
emotions may be categorized. One of the methods for using this analysis is getting data through 
social media. These platforms are thought to be the worldwide hub for big data since users use their 
smartphone apps and spend excessive amounts of time on social media platforms [12]. This is 
because users usually give out emotions, whether it be happy, sad, surprised, etc, while using their 
phones [13]. 

 
2.2 Limitations and Challenges Faced by Traditional Approaches 
 

However, there are a few challenges faced in using the existing methods or models to detect and 
diagnose infectious diseases. For the ML technique, the fast and exponential growth of data has 
created a problem for prediction accuracy. The study of data temporalities involves tracking changes 
in data throughout time. Since the quality of each dataset differs and the data from various patients 
may have varied periods, this poses a serious difficulty for disease diagnosis. Besides that, the lack of 
bigger size samples accessible is a barrier to the development of machine-learning models for 
infectious diseases. Finding trends in a small dataset that is typical of the entire population frequently 
produces skewed outcomes [14]. Since there are so few cases worldwide, it is impossible to 
determine with any degree of accuracy when an individual will get infected. The dataset may be small 
in size if it contains only a limited number of samples or if a large amount of data is missing. This does 
not offer a thorough and precise examination of the information. 

For sentiment analysis, there are reported problems with data processing that have to do with 
the idea that data are not relevant or that they come in different forms and formats. The necessity 
of a large number of analytic processes is recognized, in addition to the opinion of other academics 
that processing data from social media calls for exceptional processing abilities [15,16]. On the other 
hand, as social media platforms spread and thus rapidly double the amount of data, gathering 
information on a user's ideas regarding a particular subject is an enormous burden and complex 
procedure [15]. The challenge of defining keywords to locate the needed data is another factor 
contributing to this issue. Other than that, there are also problems and difficulties in the social media 
platform with integrity and reliability [17]. Other researchers talked about the difficulties in 
interpreting sentiments on social media platforms due to factors like the frequency of content 
capability limitations, potential exaggeration, difficulties in understanding different sources, or 
disease outbreaks [18]. 
 
2.3 Introduction of Fuzzy ART and FMEA 
 

In addressing the challenges faced by existing methods for infectious disease risk analysis, our 
research introduces a synergistic approach by integrating Fuzzy Adaptive Resonance Theory (Fuzzy 
ART) and Failure Mode and Effects Analysis (FMEA). This section highlights the reasons why the 
selection of Fuzzy ART within the variety of fuzzy systems and neural network models. Fuzzy ART, a 
neural network model, is strategically chosen for its exceptional capabilities in pattern identification 
and classification, particularly when dealing with ambiguous, imprecise, or incomplete data [19]. The 
adaptability of Fuzzy ART plays a pivotal role in enhancing the precision of risk analysis, making it 
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well-suited for situations where traditional methods may struggle with uncertainty. The algorithm 
within Fuzzy ART controls the similarity between input values, determining their position in classes 
while considering the inherent risk parameter. Notably, the simplicity of Fuzzy ART's architecture 
facilitates a clear interpretation of the neural network's responses to input patterns, offering 
transparency in decision-making compared to more complex models [20]. 

Failure Mode and Effects Analysis (FMEA) is introduced as a complementary methodology, 
providing a systematic and structured approach to assess potential failure modes in infectious 
disease transmission scenarios. FMEA is widely recognized for its effectiveness in identifying, 
evaluating, and ranking risks or failures within systems, processes, or products. By systematically 
examining failure modes and their associated consequences, FMEA aims to formulate mitigation 
tactics and enhance overall system reliability. The incorporation of FMEA into infectious disease risk 
analysis allows for a comprehensive examination of the potential risks and vulnerabilities in 
transmission dynamics [20]. The combined use of Fuzzy ART and FMEA in infectious disease risk 
analysis capitalises on the strengths of each methodology. Fuzzy ART's adaptability ensures the 
precise identification of patterns in infectious disease transmission, considering the inherent 
uncertainties and complexities. Simultaneously, FMEA provides a structured framework for 
systematic risk assessment, allowing for the identification, evaluation, and prioritization of potential 
failure modes. Combining these methodologies enhances the accuracy and effectiveness of 
infectious disease risk analysis, offering a comprehensive approach to understanding and mitigating 
transmission potentials. Therefore, implementing the fuzzy ART and FMEA into the infectious disease 
risk analysis will help make the data more precise and increase the accuracy rate of a specific 
situation. 

 
3. Conceptual Framework  
 

Clusterisation-based Transmission Cause and Effect Analysis, or known as c-TCEA, is an innovative 
approach for infectious disease risk analysis. This model integrates Fuzzy ART (Adaptive Resonance 
Theory) for clusterisation and FMEA (Failure Mode and Effect Analysis) for assessing the causes and 
effects of disease transmission [21]. 

FMEA is employed as the initial step in the c-TCEA model for this analysis. It is a systematic 
methodology for identifying the potential failure modes in a system and assessing their effects. In 
the c-TCEA model, it focuses on assessing the causes and effects of disease transmission. It considers 
factors such as the mode of transmission, vectors involved, and environmental factors to identify 
potential failure modes in the infectious disease transmission process. 

After possible failure modes are identified using FMEA, the c-TCEA model uses Fuzzy ART for 
clustering. Fuzzy ART is a neural network model known for its ability to adaptively learn and 
categorize patterns in a flexible and fuzzy manner. Fuzzy ART is applied to the pre-processed data to 
dynamically group similar infectious disease data points into clusters. This process allows for the 
identification of patterns and relationships in the transmission dynamics, building on the insights 
gained from the FMEA. 

 
4. Methodology  

 
Fig. 1 illustrates the c-TCEA model's flowchart, featuring two primary phases. In the initial stage, 

the focus is on identifying potential transmission causes. This involves data collection through 
observations within the Central Teaching Facilities 1 and 2 at Universiti Malaysia Sarawak (CTF 1 and 
CTF 2). The collected data serves as input for the c-TCEA model's first part, where collaborative 
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discussions with an expert from the Faculty of Medicine and Health Sciences of UNIMAS are crucial 
for constructing a TCEA (transmission cause and effect analysis) table. A portion of the constructed 
TCEA table worksheet, presented in Table 1, emphasizes COVID-19 transmission potentials, effects, 
and causes. 

Significantly, severity, occurrence, and detection scales, detailed in Table 2, Table 3, and Table 4, 
respectively, assist the expert in assessing the significance of the worksheet's highlights. 

After data collection and expert evaluation, the information undergoes input into the Fuzzy ART 
algorithm for clustering. The Fuzzy ART algorithm proves effective in grouping failure modes 
(transmission potentials) into clusters, accommodating new failure modes seamlessly [20]. 
Subsequently, each cluster will be ranked and prioritised accordingly. Examining the risk rankings of 
different sets of failure mechanisms provides detailed information about the associated risks. This 
examination goes beyond traditional FMEA table assessments, enabling experts to implement 
targeted actions swiftly. By focusing on mitigating the risks associated with COVID-19, the results 
facilitate the development of a rapid and effective mitigation plan.  

This section discusses and provides additional details on the Fuzzy ART algorithm that is used with 
FMEA and RPNs. Fig. 2 shows the modelling FMEA methodology by using Fuzzy ART. It shows that the 
model's input is xi,j, that the failure mode classes are represented by Cs, and that the weight between 
Layers 1 and 2 is wi,j. Additionally, it determines whether each input value at Layer 1 belongs to a 
distinct class at Layer 2. 

The three indices values that make up the RPN value are evaluated separately for every input. 
FMEA values are evaluated independently utilising severity, detection, and occurrence values instead 
of a combination of these elements, even though RPN values are equivalent to one another. As a 
consequence, RPN values make up the inputs, and the system is represented with each input 
separately as (S, O, D). Effective parameters result from the application of FMEA to test problems 
present the system with a three-data input (S, O, D) in each event, and related inputs are clustered 
based on the three indices which are the severity, occurrence, and detection. 

 

 

 

 
Fig. 1. The c-TCEA model flowchart  Fig. 2. Modelling FMEA 

methodology by Fuzzy ART [20] 
 
Fig. 3 shows the flowchart of the Fuzzy ART FMEA methodology. Fuzzy ART FMEA methodology 
consists of 11 steps. Step 1 is normalisation. Each of the three input values I(i,j), where the S, O, and 
D, is normalized by using equation (1). 
 
𝑁𝐼!,# =

$(!,#)'(!)(#)
(*+(#)'(!)(#)

		             (1) 

 
i: 1→n, n is the maximum failure mode number, 
j: 1. Severity(S) 2. Occurrence (O), and 3. Detection (D);  
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NIi,j represents the normalised input value.  
Step 2 is where parameters are determined. Following are the parameter intervals for any Fuzzy ART 
problem: 
 Vigilance threshold, (ρ): Responsible for the number of classes (0< ρ ≤1). 
 Choice Parameter, (α): Effective in class selection (0< α ≤ 1) 
 Learning Rate, (β): Controlling the classification's pace (0< β ≤ 1) 
 
Table 1 
Example of the TCEA worksheet 

Area  

Functions 
and 
descriptio
n 

Transmission 
Potentials ID Transmissio

n Effects 

SEV  Transmission 
Causes 

O
CC Control/preventio

n strategy 

DET 

RPN
 

Bilik Sem
inar 1 -6  Small hall 

with 
teaching 
facilities 

Area 
contaminatio
n with 
infectious 
agents (eg, 
tables, chairs, 
computers, 
whiteboards 
and etc. 

TP.9  

Students, lecturers and CTFs Staffs 
 

•Contaminatio
n caused by 
infected 
students and 
staff members 

 

•Provide sanitizing 
hand rub 
dispensers at the 
door entrances 
•Advise lecture 
hall users not to 
change their seats 
once seated. 
• Students 
observe the social 
distancing rule by 
sitting in their 
assigned areas. 
•Sanitize the area 
after use. 

  

 
The parameters must be defined by the user, and the type of problem will determine which 

parameters are used. The values of α, ρ, and β parameters in this model are ρ=0.9, β=1, and α=0.002. 
Step 3 is to determine the initial weights for Fuzzy ART FMEA. Every weight is assigned a value of 1 
for this step. Class, Cs number is set as s = 1. For all jwi,j,s (0) =1. Step 4 is the representation of the 
network's input values. The network is assigned input vector (x), which is the normalised values of 
the input triple. The input vector (x) is normalised in the range of (0,1]. 

Next, step 5 is where the choice function value will be computed. The following equation defines 
the choice function Ti,j,s . 

 

𝑇!,,(𝑁𝐼) =
∑ ./$!,#⋀1!,#,$2
%
#&'

34∑ 1!,#,$%
#&'

	                      (2) 

 
where ‘˄’ is fuzzy ‘AND’ operator and (x ˄ y) = min (x,y). 
Step 6 is where the maximum choice function value (T*) will get selected. The highest choice function 
value will be selected. 

 
𝑇∗ = max+𝑇!,,: 𝑠 = 1,2, … ,𝑚3	                      (3) 

 
Step 7 is the matching test. The matching test in this step establishes the class of the relevant input. 
The following equation is used to calculate the matching function: 
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𝑀!,,(𝑇∗) =
∑ ./$!,#	 ⋀1!,#,$2
%
#&'

∑ /$!,#%
#&'

	                      (4) 

 
There are a few conditions that need to be followed. The first condition is that if the input's class 

value is more than the vigilance threshold value (Mi,s ≥ ρ ⟹ Ti,s), the choice function has passed the 
matching test. Hence, the ith failure mode is added to the existing class Cs. If the condition is satisfied, 
step 8 will be skipped. However, if the input's class value is less than the vigilance threshold value 
(Mi,s < ρ ⟹ Ti,s ), the choice function has not passed the matching test. Then, step 8 will be carried 
out. 

Step 8 is resetting. The choice function value is set as Ti,s =-1, and then goes back to step 6. 
Maintain control over the next highest Ti,s value. So that all of the Ti s values will undergo the matching 
test. For the current input, a new class will be created if none of the Ti,s pass the test. Hence, ith 
failure mode is added to a new class Cs+1. Then, repeat step 4 with the next input. 

The weight gets updated on step 9. The following equation is used to update the input weights 
of the existing inputs. 

 
𝑤!,#,$
(&'() = 𝛽 $𝑁𝐼!,#⋀𝑤!,#,$

(*+,)( + (1 − 𝛽)𝑤!,#,$
(*+,)		                    (5) 

 
Once all of the data has been allocated to one or more classes, the algorithm repeats these steps 

with the next input at step 4 in step 10. Setting class priorities is step 11. Prioritising the failed courses 
acquired is necessary. The arithmetic mean of the input values for each class is employed in the 
prioritization process. Classes are labeled and ranked according to priority. A MATLAB computer 
program will be used to implement the process that has been explained. The Central Teaching 
Facilities (CTF) at Universiti Malaysia Sarawak, a non-healthcare setting, will be the site of the 
implementation of this Fuzzy ART FMEA algorithm. The focus of this implementation is to suggest 
managing the risk of an infectious disease, specifically COVID-19, in educational institutions. 

Tables 2, 3, and 4, respectively, display examples of the S, O, and D scales for this case study. 
Each scale table has three columns: "Ranking", "Descriptions", and "Linguistic Term". In the 
meantime, the "Ranking column" displays score intervals ranging from 1 to 10. The purpose of the S 
scale table is to rate the transmission effects according to a risk group by taking into account the 
lifestyle, medical history, and important health markers of COVID-19 interests. The COVID-19 virus is 
one of many potential risk factors for morbidity and mortality. Five categories, which are pre-existing 
comorbidities, demographic factors, lifestyle factors, established comorbidities, and clinical 
considerations, were identified by [22] and [23] as the risk factors. 

The probability of a transmission-cause event is rated using the O scale table. When creating the 
table of occurrence, two considerations are made. First, the level of assurance regarding the 
prevention of people, things, or even surfaces exposed to COVID-19 from entering the Central 
Teaching Facilities 1 and Central Teaching Facilities 2 (CTF1 and CTF2). Second, by taking into account 
the typical job activities, social contacts, and settings, the assessment determines the probability that 
persons, items, or surfaces could transfer the virus to objects or other humans.  

The purpose of the scale table for D is to assess how well the recommended tactics work. A few 
factors that influence the efficacy of the methods include the personal protective equipment, the 
cleaning and disinfection processes, the symptom and risk screening protocols [24-26]. 

 



Journal of Advanced Research Design 
Volume 146 Issue 1 (2026) 46-58  

53 

 
Fig. 3. Fuzzy ART-FMEA methodology 

 
Table 2 
Ranking of severity 

Ranking Description Linguistic 
Term 

1 
• Staff and students adhere to appropriate safety procedures and health practices 
• All staff and students are vaccinated 
• Regularly sterilizing and sanitation surfaces and items that are touched 

Negligible 

2-3 
• Staff and students adhere to appropriate safety procedures and health practices 
• All staff and students are vaccinated 
• Occasionally sterilizing and sanitation surfaces and items that are touched 

Marginal 

4-6 

• Staff and students occasionally implement appropriate safety procedures and health 
practices 

• The majority of staff and students are vaccinated 
• Occasionally sterilizing and sanitation surfaces and items that are touched 

Moderate 

7-8 
• Staff and students rarely implement appropriate safety procedures and health practices 
• A minority of staff and students are vaccinated 
• Rarely sterilizing and sanitation surfaces and items that are touched 

Critical 

9-10 
• Staff and students do not apply health practices and standard precautions 
• None of the staff or students have received vaccines 
• Cleaning and disinfecting touched objects and surfaces only when required 

Catastrophic 
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Table 3 
Ranking of occurrence 

Ranking Description Linguistic Term 

1 
• High confidence that there is no infection in humans 
• High degree of certainty that surfaces or objects are uncontaminated 
• Close contact can be avoided 

Very low 

2-4 
• High confidence that there is no infection in humans 
• High degree of certainty that surfaces or objects are uncontaminated 
• Close contact is hard to avoid 

Low 

5-6 
• Low confidence that there is no infection in humans 
• Low confidence that objects or surfaces are not contaminated 
• Close communication is hard to avoid 

Medium 

7-8 
• Low confidence that there is no infection in humans 
• Difficulty preventing contaminating objects or surfaces 
• Close contact is hard to avoid 

High 

9-10 
• Low confidence that there is no infection in humans 
• Difficulty preventing contaminating objects or surfaces 
• Crowded areas, close-contact settings, small, enclosed areas 

Very high 

 
Table 4 
Ranking of detection 
Ranking Description Linguistic Term 

1-2 • Extremely likely that COVID-19 transmission will be discovered Very high 
3-5 • A high possibility of detecting COVID-19 transfer High 

6-8 • The moderate likelihood that COVID-19 transmission will be discovered Medium 

9 • Minimal possibility of detecting COVID-19 transfer Low 
10 • Extremely unlikely (or zero) that COVID-19 transmission will be discovered Very low 

 
5. Results and Discussion  

 
The c-TCEA model is applied in this paper to manage the risk of infectious disease, specifically 

COVID-19 in educational facilities. The area is Central Teaching Facilities 1 and 2, Universiti Malaysia 
Sarawak (CTF 1 and CTF 2). The c-TCEA team, including the experts, has found 14 transmission risk 
potentials that might be the possibilities of the infectious disease to be rapidly spread. One of the 
transmission potentials is shown in Table 1. The possible causes and effects of the COVID-19 outbreak 
in the targeted area are contamination of the area, maintenance of the building, human interactions, 
and many more.  

After the evaluation scoring from the expert has been normalized, the value will be inputted into 
the algorithm. A normalisation process is needed to scale the scoring to a common range, in which 
the range is between 0 and 1. For this model, this process is crucial because Fuzzy ART algorithms 
rely on input values that are comparable and consistent, allowing for a fair and unbiased contribution 
of each related variable to the clustering process.  

A graphical interpretation of data is illustrated in Fig.4. In Fig.4, the graph's y-axis represents the 
normalized value of O, which represents the occurrence of the transmission potentials. Meanwhile, 
the x-axis shows the normalized S value, which shows the severity of the transmission potentials. In 
the graph, 8 clusters were created according to the 14 transmission potentials. A summary of which 
data points are included in each cluster is shown in Table 5. Cluster 2 has the greatest number of data 
points in a cluster that consists of six data points: TP.2, TP.3, TP.5, TP.7, TP.8, and TP.10. Followed by 
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Cluster 3 which clusters two data points. Also, in Fig. 4, Cluster 1, Cluster 4, Cluster 5, and Cluster 8 
are at the upper part of the graph, while others are at the lower part of the graph.  

Artificial intelligence (AI) techniques are more adept at handling complexity and uncertainty than 
"traditional methods" because they are designed to replicate human decision-making more closely. 
This c-TCEA model is an example, as an alternative to conventional methods for risk mitigation, and 
successful results are required. One of the contributions of c-TCEA is its clustering ability. The severity 
and occurrences of transmission potentials of COVID-19 mentioned are categorised by similarity 
degrees between them. Not only categorises them, but it also clusters them through a matching 
function. The cluster number is not defined manually. It is formed mathematically according to the 
matching process in step 7. Another contribution of c-TCEA is this model is flexible and can be 
executed whatever the data size. The application of this model does not require any expertise field 
(depending on the applications and situation); with the aid of a small computer program can be easily 
used in practice. Therefore, the c-TCEA model that is introduced in this study can easily group and 
prioritise which transmission potentials to be taken, and suitable action can be taken accordingly to 
prevent and minimise the spread of the disease. 

 

 
Fig. 4. Graphical Result of Occurrence vs Severity 

 
Table 5 
Results summary 

Cluster Transmission 
Potentials 

Number 
of data 
points 

1 TP.1 1 

2 

TP.2, TP.3, 
TP.5, 
TP.7, TP.8, 
TP.10 

6 

3 TP.4, TP.9 2 
4 TP.6 1 
5 TP.11 1 
6 TP.12 1 
7 TP.13 1 
8 TP. 14 1 
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6. Conclusion  
 
In conclusion, the COVID-19 pandemic within Universiti Malaysia Sarawak's Central Teaching 

Facilities 1 and 2 has presented a robust and adaptable approach to addressing the challenges 
presented by the Clustering-Transmission Causes and Effects Analysis (c-TCEA) model, implemented 
for the management of infectious diseases. The model, integrating Fuzzy Adaptive Resonance Theory 
(Fuzzy ART), adeptly identifies and clusters 14 transmission risk potentials associated with the rapid 
spread of the infectious disease. 

The initial phase involves the meticulous identification of potential transmission vectors, ranging 
from environmental factors like contamination to human interactions. Expert evaluation scores are 
then normalised, a critical step ensuring equitable contributions of each variable during the 
subsequent clustering process. The graphical representation in Figure 4 vividly illustrates the 
clustering results, with eight distinct clusters formed based on the severity and occurrence of 
transmission potentials. c-TCEA is distinguished by its distinct clustering capability, which categorises 
and groups transmission potentials according to the degrees of similarity between them. The model 
exhibits remarkable flexibility by being able to accommodate different data sizes and requiring no 
specialised knowledge to implement, making it useful in a variety of scenarios. Because of its 
versatility and ability to form clusters, c-TCEA is a valuable tool for decision-makers looking for 
efficient ways to stop the spread of infectious diseases. The success of the study highlights the 
usefulness of artificial intelligence methods in managing the risks associated with infectious diseases, 
especially Fuzzy ART. The c-TCEA model shows promise as a strong substitute for conventional 
techniques by using mathematical formulations to form clusters objectively and without the need for 
human intervention. In summary, the c-TCEA model represents a significant advancement in 
infectious disease risk mitigation. Its ability to cluster, categorize, and prioritise transmission 
potentials, coupled with its user-friendly application and adaptability, positions it as a valuable asset 
for decision-makers striving to implement proactive measures against the spread of diseases within 
specific environments. 
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