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ARTICLE INFO ABSTRACT 

 The efficiency of drilling operations is determined by numerous aspects, including the 
particle size of the material being drilled. To achieve efficiency, drilling engineers must 
take into consideration the size, shape, and density of the cuttings generated during the 
drilling process. Ineffective drilling can result in increasing expenses and delays for 
projects involving the extraction of natural resources. The objective of this study is to 
enhance drilling efficiency by investigating the correlation between drilling parameters 
such as weight on bit, revolutions per minute, torque, and rate of penetration and 
features of particle size distribution such as mean particle size and coarseness index as 
well as mechanical specific energy (MSE). The influence of particle size on drilling has 
been evaluated through the application of machine learning techniques and 
comprehensive datasets. The study highlighted relationships between particle size 
characteristics and the effectiveness of drilling, offering valuable insights into the 
optimal particle size for tonalite formations that are bordered by mica gneiss. Three 
machine learning techniques were employed to determine the closest relationship 
between drilling characteristics and particle size, with the Random Forest approach 
exhibiting the strongest correlation. This technique may be employed to forecast the 
size attributes of particles for data points that are not available within the usual range 
of drilling parameters. This work successfully emphasizes the significance of particle size 
in drilling operations and showcases the practical use of machine learning in enhanced 
drilling efficiency. 
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1. Introduction 
 

Shale formations and other unconventional reserves are explored and produced via large 
diameter drilling. Copper and gold are extracted from underground mines using large diameter 
drilling. Drilling parameters are the numerous aspects of the drilling process that are managed and 
monitored for the best possible results. Drilling operational variables include the bit size and type, 
revolutions per minute (RPM), weight on bit (WOB), and properties of the drilling fluid. Optimizing 
drilling parameters requires a balance between achieving the desired drilling objectives and 
minimizing the wear and tear on equipment. Drilling efficiency and efficacy are both affected by 
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particle size distribution, such as mean particle size and making it a crucial metric. Particle size 
distribution in drilling is the variation in particle size caused by the cutting action of the drill bit [1]. 
The effectiveness of drilling can be influenced by the size and shape of the particles produced. 
Increased particle size might result in abrasion of the drilling bit and limit drilling velocity. Ensuring 
the size of particles is carefully observed and managed is essential for optimizing efficiency and 
reducing problems such as the wearing down of bits and the blockage of wellbores [2].  

 
1.1 Background of Study 

 
Drilling is a prevalent technique employed to extract various resources, including oil, gas, and 

minerals such as coal, copper, gold, iron, silver, and zinc. The petroleum and mining sectors 
extensively employ large diameter drilling for purposes such as exploration, production, and mineral 
extraction. With the rising need for oil, gas, and minerals, there is an expectation for the ongoing use 
of large-diameter drilling. Monitoring and managing drilling parameters, such as the rate of 
penetration (ROP), is crucial during the drilling process. ROP quantifies the velocity at which the drill 
bit enters the geological formation and can be determined using several methods. The publications 
of Warren et al., [3]; Detournay and Defourny et al., [4]; Hareland and Rampersad et al., [5]; Graham 
and Muench et al., [6]; Maurer et al., [7]; Bingham et al., [8]; Young et al., [9]; Bourgoyne and Young 
[10] have been included for comparison with data-driven models or because of their significance in 
the industry. An outline of the development of ROP models and drilling optimization up to 2010 can 
be obtained from the Doctorate thesis of Eren and Ozbayoglu [11]. Because ROP is expressed 
primarily as a function of both WoB and rotational speed. Some early ROP models are also 
represented as R-W-N (ROP, WoB, Rotary Speed) [12]. The Maurer model serves as a model, 
assuming complete bit tooth penetration and flawless bottom-hole cleaning. For rolling cutter bits, 
Maurer et al., [7] established the following Eq. (1): 
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Where K is the constant of proportionality, S is compressive rock strength, W is the weight of bit, 

db is the drill bit parameter, N is the rotary speed. 
 
Bingham suggested another R-W-N:  
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Where a5 is the weight on bit exponent and K is the constant of proportionality, taking into 

account the influence of rock strength [13]. One of the most significant ROP models was created by 
Bourgoyne and Young [12] in 1974 and is used by the sector. The Bourogyne and Young model (BYM), 
according to Soares and Gray [14] has eight parameters and is expressed as follows:  
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Where D is the well depth, t is the time, the coefficient a1 is related to the formation strength 

parameter, a2 is the formation compaction, a3 to the pore pressure, a4 to differential pressure, a5 
to the WOB exponent, a6 to rotary drilling (N), a7 to drill-bit tooth wear, a8 to the bit hydraulic jet 
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impact. Subsequently, Bourogyne et al., [14] suggested the following modification to their initial ROP 
model: 

 
𝑅𝑂𝑃 = (𝑓1) ∗ (𝑓2) ∗ … ∗ (𝑓8)                          (4) 

 
where the empirical coefficients a1 through a8 are included in f1 through f8. Soares and Gray 

[14] state that the final function is the primary distinction between the two formulations. The revised 
version of the BYM uses a power law function of the hydraulic jet impact force [10,13]. All of the 
significant components of drilling are represented by the BYM equations; however, some model 
parameters, such as drill bit wear and differential pressure, are not computed in real time [14]. A 
general drag bit model was proposed by Hareland and Rampersad [5] based on cutter rock 
interaction:  

 
𝑅𝑂𝑃 = 	 /0./0∗34∗3∗56

$%
                                      (5) 

 
The area of compressed rock ahead of the cutter, or Av, is determined by the type of drill bit used 

and varies depending on the number of cutters (Nc) [5]. As it is already indicated, there is a great deal 
of complexity and ignorance regarding the true link between the drilling factors [15]. Consequently, 
an attempt has been made to gain a better knowledge of the drilling variables and how they impact 
the ROP [16-18]. The reason that specifically improved the accuracy of the theoretical model. Al-
Abduljabbar et al., [18] presented a new model for ROP that was created by regression analysis. 
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Where ρ is the mud density, T is the torque, SSP is the standpipe pressure, Q is the flow rate, PV 

is the plastic viscosity, and UCS is the uniaxial compressive strength. The unit conversion factor 
employed by the authors is 16.96. Using non-linear regression, the coefficients (a and b) were 
determined. The quantity of energy needed to drill through a unit volume of rock is known as 
mechanical specific energy (MSE). Usually, it is stated as energy per unit volume, such as foot-pounds 
per cubic inch (ft-lb/in3) or joules per cubic centimeter (J/cm3). Different definitions of MSE exist, 
depending on the context in which it is intended to be applied [19-22]. MSE is displayed by: 

 
𝑀𝑆𝐸 = 	#@A

5%
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Where WOB is Weight on Bit, RPM is the rotary Speed, TOB is the torque on bit, Ab is the bit area, 

(in2). Additionally, Teale observed that the crushing strength of the drilled medium is correlated with 
the minimum amount of specific energy (SE) [22]. To describe torque as a function of WOB on the 
mean squared error (MSE) correlation, Pessier and Fear [23] developed a bit specific coefficient of 
sliding friction to express torque as a function of WOB on the MSE correlation, as follows: 

 
𝑀𝑆𝐸 = #@A
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		                                   (8) 

 
For field applications, 𝜇 is usually assumed to be equal to 0.25 for tricone bits, and 0.5 for PDC 

bits. Dupriest and Koederitz [20] assumed that drilling efficiency remains at 35%, independent of bit 
type or WOB, based on field data. 



Journal of Advanced Research Design 
Volume 144 Issue 1 (2026) 74-89  

77 
 

𝑀𝑆𝐸 = 0.35 ∗ (#@A
5%

+	/'&∗	B∗C9D∗7@A	
5%∗C@9

)                                  (9) 
 
Rabia et al., [24] provided the following simplified explanation of the bit selection-SE correlation: 
 

𝑆𝐸 = 	 '&∗#@A∗C9D
*%∗C@9

                                                                                     (10) 
 
Among of these models, the Maurer et al., [7] model has been employed in this work to 

determine the ROP. The term "mean particle size" denotes the average dimension of particles or 
cuttings generated during the process of drilling. The drilling rate is dependent upon the specific rock 
being drilled and the drilling settings. The bit generates cuttings by crushing or fracturing rock 
particles. The dimensions and configuration of these cuttings give crucial insights into the 
formation being drilled. Techniques such as laser diffraction and visual inspection can be employed 
to ascertain the average particle size. Microscopy and imaging methods may be employed to examine 
the morphology and surface characteristics of drill cuttings, providing more comprehensive insights. 

 
𝑑 = 5 ∗ 10G, ∗ (𝐶𝐼)'.H))                                                                        (11) 

 
Where, d= Mean Particle Size(mm), CI = Coarseness Index. Coarseness Index (CI) is a parameter 

used in drilling to quantify the distribution of particle sizes in the cuttings generated by the drilling 
process [25]. CI parameter is calculated by using the following formula: 

 

𝐶𝐼 = + I
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,
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For CCS disk cutter, K = 2*1015, n= 5.5. Increased hole cleaning efficiency can be achieved by 

decreasing and micronizing the cutting size [26]. The generated cuttings increase with the 
penetration rate, and a greater amount can be moved toward the output due to the annulus space 
limitation. The likelihood of various mechanical pipes sticking rises in such situations [27]. Many 
academics have sought to predict and optimize the ROP in order to increase drilling efficiency. The 
project typically involves drilling input parameters such bit characteristics, drilling fluid qualities, 
WOB, and RPM. Recent advancements in machine learning algorithms have created new 
opportunities for ROP optimization and general drilling efficiency gains. According to Mitchell and 
Miska [15], the ROP is now an open-ended inquiry used in drilling engineering to comprehend the 
impact of drilling factors. The ROP was optimized using several supervised model types [28]. These 
investigations were limited to examining the drilling variables. Recent research on drilling 
optimization using factors, such as MSE, has demonstrated that proper optimization of the drilling 
operation as a whole cannot be achieved by depending just on drilling parameters [29]. Therefore, in 
order to improve the overall drilling efficiency, consideration must be given to the particle size 
distribution and MSE. Mud loggers have utilized cuttings to construct lithology columns during drilling 
operations. Reservoir cuttings aid in comprehending the characteristics of porosity and permeability 
[42]. The efficiency and prevention of difficulties with real-time drilling depend on the analysis of 
cutting. Accurate sampling, measurement, and analysis of cuttings helps prevent problems and 
improve the efficiency of drilling operations [2]. Despite the fact that researchers have emphasized 
the significance of particle size analysis on different occasions, they have not addressed the impact 
of particle size characteristics on other drilling parameters. The purpose of this work is to examine 
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how the ROP relates to particle characteristics like mean particle size and CI and parameters such as 
MSE. 

Three distinct supervised machine learning models have been employed to forecast and ascertain 
the closely related features of drilling and particle parameters. Out of all the methods, random forest 
demonstrates the most consistent connection among these features. The investigation required 
excavating a substantial diameter hole to extract a narrow gold vein from under the surface. The data 
were gathered from the Research Tunnel, situated at a depth of 60 meters in the VLJ repository. The 
Olkiluoto nuclear power plant utilizes this subterranean repository for the containment of low- and 
intermediate-level waste. The tunnel was constructed using the conventional drill-and-blast 
technique and consists of gneissic tonalite and pegmatite rock formations. The tonalite is composed 
of quartz, plagioclase, biotite, and hornblende minerals. The investigation also included the 
excavation of three complete deposition holes utilizing an innovative full face boring technique. The 
holes had a diameter of 1.527 meters and a depth of 7.5 meters. The tedious procedure entailed the 
utilization of rotating rock crushing and subsequent suction of the pulverized rock. The Subterranean-
OSL-137 raise drilling machine was employed for the purpose of rotational crushing [30]. 

 
2. Application of Supervised Machine Learning Models 

 
Supervised learning is a subfield of machine learning and artificial intelligence. It involves the 

utilization of labeled datasets to instruct algorithms in making predictions or classifying data. Weights 
of the model are modified during the cross-validation procedure, with the aim of progressively 
enhancing the model's performance using the training set [41]. Supervised learning is applicable to 
classification and regression issues, since it enables the examination of the correlation between 
dependent and independent variables [31]. 

Linear regression is a statistical technique used for predicting the relationship between a 
dependent variable and one or more independent variables. The line of best fit is determined using 
the method of least squares. Simple linear regression entails the use of a single independent variable, 
whereas multiple linear regression involves the utilization of numerous independent variables. 

 
𝑦 = 𝑎0 + 𝑎1𝑥 + 𝜀                                                                                                 (13) 

 
Where, Y= Dependent Variable (Target Variable), X= Independent Variable (predictor Variable), 

a0= intercept of the line (Gives an additional degree of freedom), a1 = Linear regression coefficient 
(scale factor to each input value), ε = random error. The values for the x and y variables are training 
datasets for Linear Regression model representation [32].  

 A popular machine learning technique, random forest is a combination of the results of 
numerous decision trees. Its adaptability and simplicity have led to its widespread usage, particularly 
since it can solve both classification and regression issues. The predictor space is divided in the set of 
possible values for X1,X2, . . . ,Xp — into J distinct and non-overlapping regions, R1,R2, . . . ,RJ . For 
every observation that falls into the region Rj , to make the same prediction. To find boxes R1, . . ., Rj 
that minimize the RSS, given by 

 
∑ ∑(𝑦𝑖 − 𝑦M𝑅𝑗)'-
-./                                                                                                 (14) 

 
Where 𝑦M𝑅𝑗 is the mean response for the training observations within the jth box [32]. In greater 

detail, for any j and s, the pair of half-planes can be defined by: R1(j, s) = {X|Xj < s} and R2(j, s) = {X|Xj 
≥ s} and the value of j and s that minimize the equation can be found by the following equation: 
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∑ (𝑦𝑖 − 𝑦	N𝑅1)' + ∑ (𝑦𝑖 − 𝑦	N𝑅2)'	
K:MK∈C'(-,")

	
K:MK∈C/(-,")                                                                                (15) 

 
where 𝑦MR1 is the mean response for the training observations in R1(j, s), and 𝑦MR2 is the mean 

response for the training observations in R2(j, s). Pruning for each value of a there corresponds a 
subtree 𝑇	∁	𝑇0 [32]. 

 
∑ ∑ (𝑦𝑖 − 𝑦M𝑅𝑚)' + 	α|T|K:M∈CR
|T|	
R./                                                                                                              (16) 

 
Here |T| indicates the number of terminal nodes of the tree T, Rm is the rectangle (i.e., the subset 

of predictor space) corresponding to the mth terminal node, and Rm is the predicted response 
associated with Rm—that is, the mean of the training observations in 𝑦MRm [33]. 

 XGBoost is a machine learning algorithm that is used for supervised learning tasks such as 
regression, classification, and ranking. It is based on a gradient-boosting framework that uses 
decision trees as base models. Unlike fitting a single large decision tree to the data, which amounts 
to fitting the data hard and potentially overfitting, the boosting approach instead learns slowly.[33] 
The XGBoost regression can be built by [33]: 
 

i. Setting  𝑓(𝑥)U = 0 and ri = yi for all i in the training set. 
 
ii. For b = 1, 2, . . ., B, 
repeating:  
(a) A tree 𝑓V%  will be fit with d splits (d+1 terminal nodes) to the training data (X, r). 
(b) 𝑓	Wwill be updated by adding in a shrunken version of the new tree: 
      𝑓(𝑥)U ← 𝑓(𝑥)U + 	𝜆𝑓V%(𝑥)                                                                                                                                                   (17) 
(c) The residuals will be updated by, 
      𝑟𝑖 ← 𝑟𝑖 − 𝜆𝑓V%(𝑥𝑖)                                                                                                                                                                  (18) 
 
iii. Output of the boosted model, 
      𝑓(𝑥)U = ∑ 𝜆	𝑓(𝑥)U%A

%./                                                                                                                                                              (19) 
 
A regression model can only forecast values that are more than or less than the actual value. 

Therefore, residuals are the sole method to assess the model's correctness. Residuals represent the 
discrepancy between observed and expected values. The residuals may be conceptualized as a 
distance. Therefore, the closer the residual gets to zero, the more accurately the model predicts. 

 
𝑒𝑖 = 𝑦𝑖 − 𝑦K                                                                                                                                                       (20) 

 
In the equations above, ei =represents the residual value, Yi =represents the true value, 𝑦K= 

represents the expected value [33]. The most important assessment measures for regression issues 
include R2 Score, Mean Absolute Error (MAE), Mean squared error (MSE), Mean Square Root Error 
(RMSE). The R2 score is utilized to assess the model's distance or residual accuracy. R2 score may be 
computed using the following formula: 

 
𝑅' = 1 − C88

788
                                                                                                                                                     (21) 

 
𝑅𝑆𝑆 = ∑(𝑦𝑖 − 𝑦𝚤N )'                                                                                                                                         (22) 
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𝑇𝑆𝑆 = 	∑(𝑦𝑖 − 𝑦])'                                                                                                                                          (23) 
 
Where yi is the actual value,	𝑦𝚤N  is the predicted value, yi is the actual value and 𝑦] is the mean 

value of the variable feature [34] 
 
𝑀𝑒𝑎𝑛	𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒	𝐸𝑟𝑟𝑜𝑟 = +/

3
, ∗ ∑ |𝑦𝑖 − 𝑦M|3

K./                                                                                                                  (24) 
 
Where, ∑=Greek sign for summing, yi=Observation of Ith actual value, 𝑦M=Calculated value for 

observation number Ith Total number of occurrences [35]. 
 
MSE can be determined using the following equation [36]: 
 

𝑀𝑆𝐸 = 	 /
3
∑ (𝑦𝑖 − 𝑦M)'3
K./                                                                                                                                                               (25) 

 
RMSE can be determined by the following equation [35]: 
 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 = g/
3
∑ (𝑦𝑖 − 𝑦M)'3
K./                                                                                                                               (26) 

 
3. Methodology 

 
The data for this investigation is collected from the Research Tunnel, located at a depth of 60 

meters in the VLJ repository. Prior to use in machine learning models, the data must undergo 
preprocessing to enhance its effectiveness. Data pre-processing is an essential step in preparing data 
for machine learning algorithms. The objective is to transform unprocessed data into a well-organized 
and standardized format that can be efficiently utilized by machine learning algorithms. Data 
preparation encompasses the subsequent stages: Data cleaning, data transformation, feature 
selection, data scaling, and data splitting. Furthermore, data visualization serves the purpose of 
enhancing understanding of data, promoting the identification of patterns, and facilitating the 
transmission of discoveries. Subsequently, a quantitative metric is employed to evaluate the degree 
to which a model can effectively forecast results for new data. The process is referred to as "Model 
Fitting". For the purpose of this investigation, three separate supervised machine learning models 
were employed to make predictions. Prediction in machine learning refers to the outcome produced 
by an algorithm that has been trained using a dataset. It provides estimated values for unknown 
variables in new data inputs. The models' accuracy has been evaluated using many criteria, including 
R2 score, MSE, MAE, and RMSE. The random forest model demonstrated superior performance, as 
seen in Figure 1 depending on its level of accuracy. Subsequently, the data variable is incremented 
by employing the "Range Function". The augmented data variables are subsequently utilized for 
further prediction. 
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Fig. 1. Flowchart showing methodology for predicting particle parameters 
from drilling parameters 

 
4. Results 

 
The following Figure 2 demonstrates the correlation between various drilling parameters and 

particle parameters. The correlation between ROP and Mean Particle size is 0.95, indicating a strong 
positive relationship. This correlation is visually represented by the colour yellow. 

 

 
Fig. 2. Data visualization of the relationship between different drilling 
parameters by heatmap 
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The CI also has a value of 0.94. Conversely, the correlation between ROP and SE is shown by a 
purple value of -0.89. A negative value signifies a negative connection or association between the 
variables. In this scenario, there is an inverse relationship between the two variables, where an 
increase in one variable corresponds to a reduction in the other variable. 

 
4.1 Relationship between ROP and Mean Particle Size 

 
The accompanying diagram in Figure 3 illustrates the connection between the mean particle size 

and the ROP, where the Y-axis represents the dependent parameter and the X-axis represents the 
independent variable. ROP and Mean Particle size are shown to have a proportional relationship in 
this illustration. This supports the statement by the research work from Altindag et al., [27]. 

 

 
Fig. 3. Visualization of relationship between ROP and Mean particle size 

 
4.2 Relationship between ROP and Coarseness Index (CI) 

 
The graph shows how the CI and ROP are related, with the dependent parameter (Y-axis) and the 

independent variable (X-axis) being shown. This result replicates the proportional link between ROP 
and the CI from the research work of Kumar et al., [37].  

 



Journal of Advanced Research Design 
Volume 144 Issue 1 (2026) 74-89  

83 
 

 
Fig. 4. Visualization of relationship between ROP and coarseness index 

 
4.3 Relationship between Mean Particle Size and Specific Energy (SE) 

 
The graph depicts the relationship involving mean particle size and SE, with the dependent 

parameter (Y-axis) and independent variable (X-axis) shown. This figure illustrates the inverse 
proportional relationship between the mean particle size and SE. This supports the work from 
Mohammadi et al., [38] and Kim et al., [39]. 

 

 
Fig. 5. Visualization of relationship between mean particle size and specific energy 

 
4.4 Relationship between Coarseness Index (CI) and Specific Energy (SE) 

 
The graph illustrates the relationship between the CI and the SE, with the Y-axis representing the 

dependent variable and the X-axis representing the independent variable. The graph demonstrates 
an inverse relationship between the CI and the SE. This conclusion is supported by the correlation 
seen between the specific energy and CI in a study conducted by Tuncdemir et al., [28] on Kartal 
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Limestone using constant cross-section disc cutter tests in unrelieved cutting mode. Additionally, this 
supports the work from Mohammadi et al., [38], Kim et al., [39] and Abu Bakar and Gertsch [40]. 

 

 
Fig. 6. Visualization of relationship between coarseness index and specific energy 

 
4.5 Prediction of mean particle size from ROP 

 
Actual and expected mean particle size are shown on the Y axis, while ROP is plotted on the X axis 

in the graph (Figure 7). The blue dots in the graph represent the estimated particle size. In contrast, 
the orange dots represent the actual mean particle size values. The predicted values are values 
absent from the training dataset. 

 

 
Fig. 7. Visualization of comparison between actual and predicted mean particle size 
from ROP 
 

4.6 Prediction of Coarseness Index (CI) from ROP 
 
Actual and predicted CI are displayed on the Y axis, while ROP is presented on the X axis in the 

Figure 8. The graph's blue points indicate the estimated CI. The orange dots, in comparison, indicate 
the real CI values. The anticipated values do not exist in the training dataset. 
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Fig. 8. Visualization of comparison between actual and predicted coarseness index from ROP 

 
4.7 Prediction of Mean Particle Size from Specific Energy (SE) 

 
The Y-axis depicts the distinction between measured and expected mean particle size, while the 

X-axis shows the SE in this Figure 9. The estimated actual and expected mean particle size is shown 
in green on the graph. For comparison, the orange dots represent the actual SE levels. There are no 
instances of the expected values in the dataset used for training. 

 

 
Fig. 9. Visualization of comparison between actual and predicted mean particle size from specific 
energy  

 
4.8 Prediction of Mean Coarseness Index (CI) from Specific Energy (SE) 

 
Variance in CI between actual and predicted values is shown against SE on the y-axis. In green, 

the graph depicts the assessed actual and predicted CI. The CI shown by the orange dots is for 
purposes of comparison. Training data lacks occurrences of the target values. 
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Fig. 10. Visualization of comparison between actual and predicted coarseness index from 
specific energy 

 
The best model is selected based on the above evaluation parameters. The evaluation shows as 

follows: 
Here, it is highlighted that, among the three models, the random forest has the best accuracy. 

The previously described parameter R Squared demonstrates the strongest link between ROP and 
Mean Particle Size, with a score of 0.94, and between ROP and CI, with a score of 0.97. The MSE, 
MAE, and RMSE indicate the mistakes of the prediction model. Among these models, random forest 
has the lowest score, indicating that it is capable of preventing "Over Fitting" and "Under Fitting." 
This demonstrates that random forest is the most appropriate model for forecasting particle size 
parameters based on drilling parameters (Table 1). 

 
Table 1 
Comparison of different machine learning techniques for different drilling parameters 
Parameters Linear Regression Random Forest XGBoost 
 R2 MAE MSE RMSE R2 MAE MSE RMSE R2 MAE MSE RMSE 
ROP vs 
Mean 
Particle 
Size 

0.84 0.08 0.01 0.28 0.94 0.013 0.0003 0.11 0.92 0.017 0.0004 0.02 

ROP vs CI 0.8 0.09 0.01 0.3 0.97 2.15 6.01 1.47 0.91 4.38 11.97 4.69 
 
5. Conclusion 

 
Simple linear regression can be used to establish the relationship between drilling parameters 

and particle size characteristics. The correlation is highly noteworthy due to its demonstration of a 
proportional and inverse-proportional relationship between these variables. In order to estimate 
different parameters in the field, these linkages can be utilized to establish links between the 
parameters. Additionally, it is beneficial for creating drilling configurations that optimize drilling 
productivity. For example, the intercept and co-efficient of the ROP vs Mean particle size linear 
regression is 0.452 and 0.321 respectively.  

Both Random Forest and XGBoost demonstrate a strong correlation (R squared>=0.9), but the 
random forest regression findings suggest a more intimate relationship between the variables. 
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Predictive modelling techniques, such as random forest, can be used to accurately estimate particle 
size based on drilling parameters. An R2 score close to 1 indicates that a significant percentage of the 
variability in the dependent variable can be accounted for by the independent variables in the model. 
Put simply, the model effectively corresponds to the data and successfully captures a substantial 
portion of the variability in the target variable. The metric quantifies the extent to which the 
independent variables accurately anticipate the fluctuations in the dependent variable. This 
illustrates the effective utilization of random forest for prediction in this dataset. Due to its enhanced 
precision and decreased margin of error, it is more probable to be employed in practical applications 
for forecasting. 

This study illustrates the substantial significance of particle properties in optimizing ROP. Particle 
size has emerged as a crucial variable to examine due to its detrimental effect on drill bit performance 
and drilling efficiency. The heatmap demonstrates a robust link between the average particle size 
and the cutting depth. Increasing the depth of cut can result in a higher ROP, hence enhancing overall 
drilling efficiency. The conveyance of particles to the surface is significantly affected by the size of 
the particles, which can improve the efficiency of drilling operations. 

The practical use of predicting particle size characteristics from drilling data is when its usefulness 
becomes evident. The practical implementation of such studies can demonstrate numerous possible 
benefits, including but not limited to the accuracy of the drilling can be assessed using the projected 
data. By employing a machine learning strategy, the field-based extraction process may be made 
more efficient, resulting in increased productivity and reduced costs. An identical approach will be 
available for comparable geological conditions. 

There are specific constraints to the work. The work has been founded on the Maurer et al., [7] 
ROP model. The current model is outdated, while the new models are more versatile and consider a 
wider range of variables to optimize ROP. Furthermore, there has been minimal study conducted, 
resulting in limited opportunities for adoption in specialized fields. 
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