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High-dimensional sparse numerical data are normally encountered in machine 
learning, recommender systems, finance and medical imaging. The problem with this 
type of data is that it has high dimensions (many features) and highly sparse (most 
values are zero), which is prone to overfitting. The data visualization can be achieved 
through a neural network architecture called stacked autoencoders. These multilayer 
autoencoders are designed to reconstruct input data, but overfitting is a major 
problem. To overcome this problem novel L1 Regularization-dropout technique is 
introduced to reduce overfitting and boost stacked autoencoder performance. L1 
regularization penalizes large weights, simplifying data representations whereas the 
dropout technique randomly turns off neurons during training and makes the model 
dependent only on the selected turn-on neurons. The model employs batch 
normalization to improve the performance of the autoencoder. The approach was 
implemented on a high-dimensional sparse numerical dataset in the field of 
cybersecurity to minimize the loss function, measured by Mean Square Error (MSE) 
and Mean Absolute Error (MAE). The findings were compared to the conventional 
stacked autoencoder. The study revealed that the suggested method effectively 
mitigated the issue of overfitting. Stacked autoencoders, when combined with L1 
regularisation and the dropout approach, are very successful in handling high-
dimensional sparse numerical data in a diverse range of applications. 
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1. Introduction 
 

Recently, the analysis of high-dimensional data has become essential because of its use in several 
domains such as bioinformatics, image processing, natural language processing and cybersecurity. A 
dataset is classified as high-dimensional when the number of features (p) surpasses the number of 
observations (N). For instance, in the case of a dataset with 6 features (p = 6) and only 3 observations 
(N = 3), it can be classified as high-dimensional due to the presence of more features than data points 
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[9]. High-dimensional data may be categorized into two different types: sparse data and dense data. 
A data set is dense if most of the values are non-zero, otherwise, it's sparse [1,10]. This distinction is 
crucial as it impacts how data is processed and analysed. Sparse data is prevalent in many internet-
scale applications, including search engines, recommendation systems and online advertising. 
However, most deep learning frameworks are designed for dense data and struggle to perform 
effectively on sparse datasets [12]. The exponential increase in the quantity, variety, complexity and 
dimensions of digital data presents unique challenges, particularly in the domain of high dimensional 
sparse data [4]. Various applications, including biology, computer vision and text processing, 
frequently utilize sparse, high-dimensional; vectors for data representation [14]. 

Several methodologies have been proposed to address these challenges, for instance, Liu et al., 
[14] proposed a new approach for learning similarity measures in high-dimensional sparse data that 
aims to circumvent the limitations of traditional methods. While these approaches offer innovative 
solutions, they also have limitations. One major drawback is computational inefficiency when 
handling large, complex datasets, along with limited theoretical guarantees. Another significant 
development is the industrial deep learning framework (XDL), a distributed, scalable and high-
performance system designed specifically for high-dimensional data. Despite this, XDL lacks open-
source availability, hence limiting its accessibility for academic study and affecting contributions from 
the wider research community [10]. The Fast Autoencoder (FAE) model examines High-dimensional 
Structural (HiDS) data and offers reduced computing expenses. Nevertheless, there is a lack of 
empirical evidence to support its effectiveness across various datasets, which gives rise to inquiries 
over its applicability and constraints in dealing with limited data [11]. The SL-LF model, which focusses 
on the smooth L1-norm, is specifically developed to predict missing data in matrices that are both 
high-dimensional and sparse. However, it has challenges in adjusting its hyperparameters 
automatically and achieving optimal performance while sticking to nonnegative restrictions [23]. On 
the other hand, the multi-metric latent factor (MMLF) technique enhances performance by revealing 
hidden patterns in detailed data, but it also brings further complexity owing to its elaborate design 
[24]. Deep learning has been more popular in the field of high-dimensional data analysis due to its 
capacity to identify low-dimensional subspaces. Deep feedforward networks and convolutional 
neural networks have been extensively used in image processing, natural language interpretation 
and robotic control, yielding remarkable achievements [7,8]. A multivariate function can be modelled 
in such deep feedforward networks by a hierarchy of features, each represented as the result of 
applying to an input series of desirable nonlinear projections devised so that high dimensionality 
doesn't create problems. However, a deep network is usually trained using large-scale data, which 
may be too expensive to put into practical use in engineering problems [5,17]. Compared to 
traditional machine learning (ML) techniques, DL is a unique research direction in the field of ML that 
has shown remarkable success in many applications. Feature engineering in standard machine 
learning has become a significant bottleneck, limiting the amount of human labour that can be 
effectively applied [13]. In contrast, deep learning (DL) algorithms excel at handling complex 
relationships because they can hierarchically extract information from raw data through multiple 
levels of nonlinear processing [26]. The development of graphics processing units (GPUs) and 
improvements in computing capacity have made it easier to train deep learning algorithms. Methods 
such as the Stacked Autoencoder (SAE) are very successful in learning important data aspects, which 
makes them beneficial for applications like categorization. SAEs are prone to overfitting, particularly 
when trained on limited datasets, because of their complex structures including several parameters 
[12]. 

This study presents a Regularised Stacked Autoencoder (RSAE) model specifically developed to 
tackle the problem of overfitting that often arises in high-dimensional sparse data. The method 
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employed the use of L1 regularization together with dropout layers to enforce sparsity and decrease 
the complexity of the model, hence enhancing its generalization abilities. The RSAE model 
demonstrates exceptional performance on a cybersecurity dataset, indicating its potential for use in 
other sectors with high-dimensional and sparse data, such as image processing, natural language 
processing and biology.  

The contributions of this paper are as follows: 
i. The RSAE model, which combines L1 regularization with dropout layers, substantially 

improves the performance of the Stacked Autoencoder (SAE) in dealing with high-dimensional 
sparse data. 

ii. The RSAE model outperforms existing techniques, including the classic SAE, by effectively 
reducing overfitting and achieving lower error metrics.  

iii. The rest of this paper is structured as follows: Section 2 explores the detailed workings of the 
Stacked Autoencoder (SAE) enhanced with L1 regularization.  

 
Table 1 
Comparative summary for state-of-the-art approaches 
Literature  Method Limitation Conclusion 

Kuan et 
al., [14]  

Frank-Wolfe Scalability and generalization are 
limited because of high 
computing costs, reliance on 
labelled data and probable 
overfitting. 

This approach increases similarity learning 
in sparse data, resulting in better 
performance but requiring additional 
scalability enhancements. 

Jiang et 
al., [10] 

XDL Framework Large-scale dataset optimization 
is complex and requires a lot of 
processing power. 

Demonstrates good handling of high-
dimensional sparse data, with potential for 
industrial-scale use. 

Jiang et 
al., [11]  

Fast Deep 
AutoEncoder 

Computationally intensive, 
reconstruction accuracy and 
efficiency must be carefully 
tuned. 

Effectively handles high-dimensional 
sparse matrices in recommender systems, 
improving speed and scalability. 

Wu et al., 
[23]  

Robust Latent Factor 
Analysis 

Hyperparameter selection can be 
critical and optimal performance 
may need significant adjustment. 

Accurately and robustly represents high-
dimensional sparse data, boosting data 
analysis and modelling precision. 

Wu et al., 
[24]  

Multi-Metric Latent 
Factor Model 

The integration of many 
measurements is complex and 
parameter adjustment may be 
tough. 

Improves analysis of high-dimensional 
sparse data by using numerous metrics to 
increase accuracy and understanding. 

Zhang et 
al., [27]  

Stacked Sparse 
Autoencoder (SSAE) 
and Improved 
Gaussian Mixture 
Model (GMM) 

The model is computationally 
demanding and necessitates 
significant parameter adjustment, 
which might affect scalability and 
performance in big or noisy 
datasets. 

The model successfully enhances intrusion 
detection accuracy in high-dimensional 
data by utilizing the Stacked Sparse 
Autoencoder and Improved Gaussian 
Mixture Model, however, it may be 
restricted by computational complexity 
and tuning issues. 

 
2. Methodology  
2.1 Data Prepossessing 

 
Raw datasets have numerous problems, such as outliers, missing values, various feature 

dimensions and in-comparability [2]. Data can only be used as input into the model once it has been 
cleaned up and prepossessed [15]. Furthermore, since the SSAE network's input is a numeric matrix, 
we must translate the symbolic characteristics into numerical features. Additionally, a maximum-
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minimum normalization technique is used for the original feature values to put them in the same 
order of magnitude and make comparisons easier [22]. 
 
2.2 Dataset 

 
UNSW-NB15 is the dataset chosen for RSAE evaluation. It was created in 2015 by the Australian 

Centre for Cyber Security (ACCS) laboratory utilizing the IXIA Perfect Storm tool [19]. Table 2 contains 
a breakdown of the specific features that make up a total of 49 features in the dataset. Total traffic 
samples in all are 2,540,044 across 4 CSV files. We create a training set and a testing set from the 
2,540,044 original traffic samples consequently. The dataset was uploaded to Google Drive for 
effective data management and accessibility. Using Google Colab, the experimental setup made use 
of the processing capacity of the Google Cloud-activated free GPU environment. This improved 
efficiency by facilitating easy access to the dataset and speeding up processing power. 
 

Table 2 
The UNSW-NB15 dataset features 
Feature category  Feature name 

low features scrip,sport,dstip,dsport,proto 
base features state,dur,sbytes,dbytes,sttl,dttl,sloss,dloss,service,sload,dload,spkts,dpkts 
content features swin, dwin,stcpb,dtcpb,smeansz, dmeansz, trans_depth,res_bdy_len 
time features sjit,djit,stime,ltime,sintpkt,dintpkt,tcprtt,synack,ackdat 
additional generated features (general 
purpose features) 

is_sm_ips_ports,ct_state_ttl,ct_flw_http_mthd,is_ftp_login,ct_ftp_cmd 

additional generated features 
(connection features) 

ct_srv_src,ct_srv_dst,ct_dst_ltm,ct_src_ltm,ct_src_dport_ltm,ct_dst_sp 
ort_ltm,ct_dst_src_ltm 

labelled features attack_cat,Labe 

 
2.3 Numeralization 

 
We use one-hot encoding to perform Numeralization. The symbolic features the dimensional 

dataset contains include “proto”, “service”, “state” and “attack _ cat” Consequently, the dataset's 
feature dimensions are expanded upon the conclusion of the numerical processing [25]. 
 
2.4 Normalization 

  
The maximal-minimum normalization approach provided in Eq. (1) is used to normalize the 

feature values in the dataset to make it easier to compare the findings [27]. The value of x is scaled 
into the numeric range [0,1] using the min-max normalization method, 
 

𝑋′ =
𝑋−min(𝑋)

max(𝑋)−min(𝑋)
                                                               (1) 

 
Where 𝑋′ = normalized value,      
              𝑋 = Original value 
             min(𝑋) = minimum value of 𝑋 

            max (𝑋) =maximum value of X 
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2.5 Dropout 
 
A neural network model can use a dropout strategy to learn more robust features and reduce the 

amount of interdependent learning among the neurons. In a neural network, dropping-out units are 
referred to as "dropouts." A unit can be temporarily removed from the network by dropping it, 
together with all its incoming and outgoing connections [21]. Random units can be dropped from the 
network. The dropout technique is used in this work to educate unsupervised learning to prevent 
over-fitting or the extraction of the same features again. With the use of dropout, specific nodes are 
set to zero values in a training run and dropped from the network. Therefore, they do not affect its 
prediction and in the backpropagation. Consequently, a new slightly altered network structure is 
created in each run and the network learns to provide quality predictions without specific inputs. On 
setting up the dropout layer a so-called drop probability must be specified. This defines the number 
of nodes that will be assigned 0 in a layer. It should be mentioned that the dropout feature is only 
used during the training phase and is disabled during testing [3]. Figure 1 shows the difference 
between standard neural networks and those after applying dropout. 
 

 
              (a) Standard neural network                      (b) After applying dropout 

Fig. 1. Dropout applied to a standard neural network 

 
2.6 Autoencoder Model 

 
The input layer, hidden layer and output (reconstruction) of the unsupervised three layer network 

known as Autoencoder are depicted in Figure 2 and Figure 3 with the representation of network. 
[18]. Nonlinear transformation from a high dimensional space into a low-dimensional one can 
accomplished by the autoencoder by sequentially mapping the synthetic feature vectors to abstract 
feature vectors [6]. The autoencoder can be divided into two stages: encoding and decoding which 
can be defined as: 
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Fig. 2. Basic autoencoder model 

 

 
Fig. 3. Autoencoder model representation 

 
The encoding process from the input layer to the hidden layer is as in Eq. (2), 
 

𝐻 = 𝑓𝜃1(𝑋) = 𝜎(𝑊𝑖𝑗𝑋 + 𝑏1)                                                                    (2) 

 
The procedure for the decoding from the reconstruction layer to concealed layer is as in Eq. (3), 

 
𝑌 = 𝑓𝜃2(𝐻) = 𝜎(𝑊𝑗𝑘𝑋 + 𝑏2)                                                                    (3) 

 
The input data vector in this formula denoted by 𝑋 = (𝑥1, 𝑥2, 𝑥3, … … 𝑥𝑛) , the reconstruction 

vector of the input data is represented by 𝑌 = (𝑦1, 𝑦2, 𝑦3, … … 𝑦𝑛) and the low dimensional output 
from the hidden layer is denote by 𝐻 = (ℎ1, ℎ2, ℎ3, … … ℎ𝑚). Thus, 𝑋 ∈ 𝑅𝑛, 𝑌 ∈ 𝑅𝑛 , 𝐻 ∈ 𝑅𝑚 (where 
n is the input vector's dimension and m are the number of hidden units). The weight connection 
matrix between the input layer and hidden layer is denoted by 𝑊𝑖𝑗 ∈ 𝑅𝑚×𝑛. The weight connection 

matrix between the output layer and hidden layer is denoted by 𝑊𝑗𝑘 ∈ 𝑅𝑛×𝑚. 𝑊𝑖𝑗 = 𝑊𝑗𝑘
𝑇 often 
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occurs in the experiment to reconstruct the input data as precisely as feasible while minimizing the 
resource consumption during model training. 𝑏1 ∈ 𝑅𝑛×1 and 𝑏1 ∈ 𝑅𝑚×1 are the bias vectors of input 
layer and hidden layer respectively. 𝑓𝜃1(∙) and 𝑓𝜃2(∙) are the activation functions of hidden layer 
neuron and output layer neurons respectively. We use Relu activation function and sigmoid 
activation function in this paper as in Eq. (4) and (5) respectively, 
 
𝑓𝜃1(∙) = 𝑚𝑎𝑥(0, 𝑥)                                                                             (4) 
 

𝑓𝜃2(∙) =
1

1+𝑒−𝑥                                                                                   (5) 

 
The Autoencoder makes the reconstruction of original data through training by minimizing the 

resulting error between reconstructed output and actual values. At this stage we assume that the 
data provided by hidden layer units aggregates all information which was present in initial dataset 
and is optimal low-dimensional representation of it. Eq. (6) illustrates the application of the mean 
squared-error function in the reconstruction error function 𝐽𝐸(𝑊, 𝑏) between 𝐻 and 𝑌, where 𝑁 is 
the number of input samples. 
 

𝐽𝐸(𝑊, 𝑏) =
1

2𝑁
∑ ‖𝑌𝑟 − 𝑋𝑟‖2𝑁

𝑟=1                                                                    (6) 

 
2.7 Stacked Autoencoder (SAE) 

 
The concept of sparse coding to model the computational learning of basic cell receptive fields in 

the primary visual cortex of mammals was first introduced by Olshausen et al., [20]. For instance, the 
input data is transferred to the output layer by straightforward copying because of the autoencoder's 
inevitable issue. In this instance, the autoencoder does not extract any useful features, even though 
the original input data can be reconstructed properly. To make the autoencoder generate more 
concise and efficient low-dimensional data features under sparse constraints to better depict the 
input data, the author used a method of adding L1 penalty terms on hidden layers in an effort. The 
term "L1-norm," also known as "Lasso regression," refers to the weight vector W′s sum of the 
absolute values of each of its elements. It is defined as follows: L1(W) =∥W∥= ∑ ∥ W ∥𝑖𝑖 ,. It can 
therefore be applied to select more significant representations. Choosing features that provide 
greater value to the model during training is hampered by an abundance of characteristics in the 
sample. As a result, we eliminate the connections that add very little to the model and do not affect 
the classification performance at all. With high dimensional data, it can extract more valuable 
features in less time.  

The mean square error term and the regularization term make up the first and second terms of 
the error function at this point. As may be seen in Eq. (7): 
 

𝐽𝐸(𝑊, 𝑏) =
1

2𝑁
∑ ‖𝑌𝑟 − 𝑋𝑟‖2𝑁

𝑟=1 + 𝛼 ∑ ∥ W𝑟
𝑖𝑗 ∥                                                  (7)    

 
Here, α is a user-adjustable hyperparameter that allows us to precisely manage L1 regularization. 

This new regularization method is incorporated into our autoencoder architecture to enhance 
feature learning and minimize overfitting. Layers of encoding and decoding inside the design itself 
aid in constructing hierarchical representations from incoming input. We use dropout layers after 
each encoding layer, where neurons are regularly removed from the training population to avoid 
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overfitting. A RSAE neural network's structure, which is made up of several regularized auto-encoders 
connected end to end, is depicted in Figure 4. 
 

 
Fig. 4. Regularized Stacked Autoencoder model 

 
Higher-level feature representations of the input data are produced by the subsequent layer of 

the sparse self-encoder using the output from the preceding layer. The optimal connection weights 
and bias values of the stacked sparse auto-encoded network are obtained through sequential training 
of each layer using a greedy layer pretrain method. For the best parameter model, RSAE is then tuned 
using error back-propagation way until a satisfactory result of the output value between the input 
and required data. For the error function given in Eq. (6): 
 

𝜕

𝜕W𝑟
𝑖𝑗

𝐽𝐸(𝑊, 𝑏) =
1

2𝑁

𝜕

𝜕W𝑟
𝑖𝑗

∑ ‖𝑌𝑟 − 𝑋𝑟‖2𝑁
𝑟=1 + 𝛼 ⋅ sign(W𝑟

𝑖𝑗)                                       (8) 

 
𝜕

𝜕b𝑟 𝐽𝐸(𝑊, 𝑏) =
1

2𝑁

𝜕

𝜕b𝑟
∑ ‖𝑌𝑟 − 𝑋𝑟‖2𝑁

𝑟=1                                                             (9) 

 
Consequently, the following Eq. (10) and (11) is the weight and bias update processes, 

 

W𝑘
𝑖𝑗 = W𝑘

𝑖𝑗 − 𝜇
𝜕

𝜕W𝑘
𝑖𝑗

𝐽𝐸(𝑊, 𝑏)                                                                            (10) 

 

b𝑟 = b𝑟 − 𝜇
𝜕

𝜕b𝑟 𝐽𝐸(𝑊, 𝑏)                                                                                      (11) 

 
Where, 𝑌𝑟 and 𝑋𝑟 are respectively the original vector and its corresponding reconstruction vectors. 𝜇 
represents the learning rate. 

Due to the sparse structure of the RSAE network, distinct learning rates to the individual 
parameters. For features that aren't used regularly, such as the goal of releasing fewer updates. 
However, most widely used gradient descent algorithms, including mini-batch and stochastic 
gradient descent, employ the same learning rate for every parameter that needs to be updated, 
making it challenging to choose the right learning rate and rapidly arrive at a local minimum [16]. 
Therefore, we employ the adaptive moment estimation (Adam) gradient descent approach described 
by Zhang [28] to perform dynamic adaptive adjustment of various parameters to train a better RSAE 
network model. By calculating the gradient first-order moment estimate m𝑡 and second-order 
moment estimate 𝑣𝑡 as shown in Eqs. (12) to (14), the Adam algorithm allows for the dynamic 
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adjustment of various parameters. β1and β2 stand for the first order and second-order exponential 
damping decrements, respectively. The gradient of the parameters at the time step 𝑡 in the loss 
function 𝐽𝐸(𝑊, 𝑏) is denoted by 𝑔𝑡. 
 
𝑚𝑡 = β1m𝑡−1 + (1 − β1) . 𝑔𝑡                                                                              (12) 
 
𝑣𝑡 = β2v𝑡−1 + (1 − β2) . 𝑔𝑡

2                                                                              (13) 
 
𝑔𝑡 ← ∇𝜗𝐽𝑡(𝜗𝑗 − 1)                                                                                        (14) 

 
Computer bias-corrected for 𝑚𝑡 and𝑣𝑡 as in Eqs. (15) and (16) respectively, 

 

𝑚𝑡
′ =

𝑚𝑡

1−β1
𝑡                                                                                              (15) 

 

𝑣𝑡
′ =

𝑣𝑡

1−β2
𝑡                                                                                               (16) 

 
The update step size is denoted by 𝜏 and 𝜖 is constant to prevent the denominator from zero as 

in Eq. (17), 
 

𝜗𝑡−1 = 𝜗𝑡 −
𝜏

√𝑣𝑡
′+𝜖

 . 𝑚𝑡
′                                                                                  (17)     

 
3. Results  
3.1 Model Parameters and Sensitivity Analysis 

 
In this work, a RSAE architecture is used to obtain significant features and reconstitute input 

information. RSAE includes an encoder and a decoder, both containing five interrelated layers. The 
encoding layers sequentially reduce the input data size, with dense units featuring rectified linear 
activation in addition to batch normalization and dropout mechanisms for countering overfitting. 
According to section 2.1 after the sample in the UNSW-NB15 dataset is pre-processed the features 
are extended from 49 dimensions to 202 dimensions. Consequently, the author decides that the RSAE 
has 202 input layer neurons. Extensive testing and a literature study led to the selection of 
hyperparameters, such as the learning rate, number of neurons in hidden layers, batch size and L1 
regularization strength (alpha). We used grid search techniques to find the best values for these 
parameters, guaranteeing a reasonable trade-off between model complexity and performance. 
Furthermore, investigations demonstrate that the five-layer RSAE network's hidden structure is the 
best experimental model which is shown in Table 3. The dense layer with 32 units and ReLU activation 
is the critical space where important features are captured in the model. This layer is also regularized 
via L1 regularization with various values of alpha, demonstrating to what extent the Regularized 
Stacked Autoencoder. Mean Squared Error (MSE) and Mean Absolute Error (MAE) are used as the 
reconstruction losses with the Adam optimizer, learning rate 0.0001 and 100 epochs. Sigmoid 
activation is applied to the final layer output values, which are constrained between 0 and 1. 128 
samples are organized into batches to avoid overfitting and the regularization term improves model 
robustness. Having used key metrics, such as MSE and MAE, throughout both training and validation 
phases, model performance is measured. The experimental model parameters are presented in Table 
3. 
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Table 3 
Hyperparameter summary of RSAE 
Algorithms Parameter Value 

RSAE 
                              

The number of nodes in the input layer 202 

Number of neurons in the initial hidden layer 512 

Number of neurons in the second hidden layer 256 

Number of neurons in the third hidden layer 128 

Number of neurons in the fourth hidden layer 64 

Number of neurons in the fifth hidden layer 32 

Learning rate 
Alpha 

0.0001 
0.0001,0.001,0.01,0.1,1 

Batch size 
Epochs 

128 
100 

Activation functions ReLU, Sigmoid 

Adam First-order exponential damping decrement 0.9 
 Second-order exponential damping decrement 0.999 
 Non-zero constant 10−8 

 
An extensive sensitivity analysis was conducted to evaluate the impact of varying the L1 

regularization intensity (alpha) on the performance of the model. This research examined the impact 
of different alpha values on the MSE and MAE of the training and validation datasets. The results 
show that an alpha value of 0.0001 yields the best performance and the lowest errors in both 
measurements. Conversely, when alpha values were higher, there was a notable rise in error rates, 
indicating that excessive regularisation negatively impacts the performance of the model. Higher 
alpha values have a detrimental effect on the model because they excessively restrict it, resulting in 
less accuracy and stability. Conversely, lower alpha values help reduce errors and improve the 
model's ability to generalize. 

A comprehensive sensitivity analysis was carried out to assess how changing the L1 regularization 
intensity (alpha) might affect the model's performance. This study examined the effects of various 
alpha values on the training and validation datasets MSE and MAE. The findings show that the highest 
performance is achieved with alpha values of 0.0001 and 0.001, with the lowest errors in both 
measures. Higher alpha values, on the other hand, significantly increased error rates, suggesting that 
over-regularization harms model performance. This implies that greater alpha values tend to unduly 
limit the model, which negatively affects its accuracy and resilience, while lower values aid in 
decreasing error and enhancing model generalization. 
 
3.2 Quantitative Results 

 
The RSAE model's ability to accurately identify structural similarities is shown in Figure 5 and 

Figure 6, which display the training and validation Loss. These figures demonstrate the RSAE's 
effective generalization and its ability to avoid overfitting. The MSE and MAE metrics are used to 
assess the reconstruction quality of the autoencoder under various alpha configurations. These 
metrics serve to illustrate the training and validation performance of the model as it acquires 
knowledge. As the number of epochs rises, the MSE and MAE for the training data drop, suggesting 
that the model is successfully acquiring knowledge from the data. Similarly, the MSE and MAE for the 
validation data fall as the number of epochs increases, indicating that the model effectively applies 
its knowledge to new input. In general, lower values of MSE and MAE imply a more optimal fit. 
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Fig. 5. Training and validation MSE loss with L1 regularization 

 

 
Fig. 6. Training and validation MAE loss with L1 regularization 

 
Table 4 presents a concise overview of how different alpha values affect the performance of the 

RSAE model. Specifically, it examines the MSE and MAE for both the training and validation datasets. 
Alpha is a crucial hyperparameter that determines the level of L1 regularization applied to the model. 
Increasing alpha values enhance regularization, hence mitigating overfitting but probably restricting 
the model. 
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The sensitivity analysis assessed how different alpha values influence model performance. The 
results indicate that alpha values of 0.0001 provide the best performance, with the lowest training 
and validation errors. Conversely, higher alpha values (0.01, 0.1, 1.0) significantly increased both MSE 
and MAE, indicating that over-regularization negatively affects the model's accuracy and robustness. 
Thus, lower alpha values are more effective in reducing errors and improving the model's 
generalization ability. 

 
Table 4 
Sensitivity analysis of RSAE performance metrics with Varying 𝛼 
Alpha (L1 strength) Training MSE Validation MSE Training MAE Validation MAE 

0.0001 0.0043 0.0038 0.0083 0.0072 
0.001 0.0108 0.0099 0.0181 0.0167 
0.01 0.0225 0.0225 0.0405 0.0405 
0.1 0.0225 0.0225 0.0405 0.0405 
1.0 0.0225 0.0225 0.0405 0.0405 

 
To validate the RSAE model with classical stacked autoencoder it is shown in Figure 7 that the 

model lacks regularization The model overfits the training data when MSE and MAE from training is 
much lower than that of validation. This means that the model is learning specific features of what it 
was trained on too well and therefore doesn’t generalize to unseen data as a result. 

 

 
Fig. 7. Training and validation loss without L1 regularization 
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Table 5 summarizes the outcomes for MSE and MAE of classic stacked autoencoder respectively. 
 

Table 5 
SAE without regularization 
S/No MSE MAE 

1 0.0262 0.0329 

 
 A comparison of the training and validation loss curves shows that L1 regularization successfully 

prevents overfitting and enables stack autoencoders to be used on high-dimensional sparse data with 
considerably greater generalizability. L1 therefore provides a paradigm for an example-oriented 
model that also can understand patterns, making it extendable to actual applications. So, it promotes 
sparsity, feature selection and generalizability.  

 
4. Discussion 

 
The outcomes of the proposed RSAE model demonstrate its ability to mitigate overfitting and 

enhance performance on the cybersecurity dataset. These developments have significant practical 
implications in several domains, in addition to being technological. 

 
4.1 Cybersecurity Context 

 
Considering cybersecurity, the better performance of the RSAE model results in more consistent 

threat detection. Less overfitting helps the model distinguish between actual actions and potential 
hazards, hence lowering false positives and negatives. More accurate identification of anomalies and 
hazards follows from this, which is vital for quick reaction and avoidance of security breaches. 
Moreover, more effective use of computer resources made possible by higher model efficiency helps 
to potentially lower running expenses and shorten the time required for threat detection and 
response. 
 
4.2 Financial Sector 

 
The RSAE model may significantly enhance fraud detection in financial organizations, where 

security and accuracy are of utmost importance. By enhancing the model's ability to identify unusual 
patterns in transaction data, banks and financial institutions may enhance their ability to safeguard 
against fraudulent activities and insider threats. This, in turn, will bolster financial transaction security 
and preserve sensitive information. 
 
4.3 Health Sector 

 
The RSAE model's advancements enhance patient data privacy in the healthcare industry. 

Enhanced anomaly detection capabilities ensure the secure storage and adherence to regulations, 
such as HIPAA, of sensitive health information. Not only does this safeguard patient confidentiality, 
but it also fosters confidence in digital healthcare solutions. 

 
4.4 Manufacturing 

 
In an industry where operational technology and critical infrastructure are increasingly being 

attacked by hackers, the RSAE model's increased performance may help prevent costly disruptions. 
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By shielding industrial control systems from potential cyber threats, the method promotes 
operational continuity and safety while minimizing the significant financial and safety risks associated 
with cyberattacks. 

 
5. Conclusions 

 
RSAE models can extract complex characteristics from high-dimensional, sparse data. RSAE 

models learn well from training data and can efficiently generalize to new samples. One method for 
preventing overfitting is L1 regularisation, which penalizes the absolute value of the weights. This 
regularization strategy reduces certain weights to zero, allowing the model to learn sparse 
representations. This may help the model avoid learning unnecessarily intricate properties, resulting 
in a more intelligible structure. Studies have proven that this simplified regularization technique 
provides outstanding performance on high-dimensional sparse data using RSAE models with L1. 
Future research focuses on improving the RSAE model's performance and adapting it to new and 
changing cyber threats. Exploring its use for prediction tasks like binary classification, as well as 
increasing its usage in diverse situations, would help boost its usability and efficacy in cybersecurity 
and other fields. 

 
Acknowledgement 
This project was funded by a YUTP-FRG Grant under the cost centre: 015LC0-442, Universiti Teknologi 
PETRONAS, Malaysia. 
 
References  
[1] Abadi, Martín, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado et al., 

"Tensorflow: Large-scale machine learning on heterogeneous distributed systems." arXiv preprint 
arXiv:1603.04467 (2016). 

[2] Abhaya, Abhaya and Bidyut Kr Patra. "An efficient method for autoencoder based outlier detection." Expert 
Systems with Applications 213 (2023): 118904. https://doi.org/10.1016/j.eswa.2022.118904 

[3] Aouedi, Ons, Kandaraj Piamrat and Dhruvjyoti Bagadthey. "A semi-supervised stacked autoencoder approach for 
network traffic classification." In 2020 IEEE 28th International Conference on Network Protocols (ICNP), pp. 1-6. 
IEEE, 2020. https://doi.org/10.1109/ICNP49622.2020.9259390 

[4] Ayesha, Shaeela, Muhammad Kashif Hanif and Ramzan Talib. "Overview and comparative study of dimensionality 
reduction techniques for high dimensional data." Information Fusion 59 (2020): 44-58. 
https://doi.org/10.1016/j.inffus.2020.01.005 

[5] Baldi, Pierre, Peter Sadowski and Daniel Whiteson. "Searching for exotic particles in high-energy physics with deep 
learning." Nature communications 5, no. 1 (2014): 4308. https://doi.org/10.1038/ncomms5308 

[6] Daneshfar, Fatemeh, Sayvan Soleymanbaigi, Ali Nafisi and Pedram Yamini. "Elastic deep autoencoder for text 
embedding clustering by an improved graph regularization." Expert Systems with Applications 238 (2024): 121780. 
https://doi.org/10.1016/j.eswa.2023.121780 

[7] Han, Jiequn and Arnulf Jentzen. "Deep learning-based numerical methods for high-dimensional parabolic partial 
differential equations and backward stochastic differential equations." Communications in mathematics and 
statistics 5, no. 4 (2017): 349-380. https://doi.org/10.1007/s40304-017-0117-6 

[8] Erfani, Sarah M., Sutharshan Rajasegarar, Shanika Karunasekera and Christopher Leckie. "High-dimensional and 
large-scale anomaly detection using a linear one-class SVM with deep learning." Pattern Recognition 58 (2016): 
121-134. https://doi.org/10.1016/j.patcog.2016.03.028 

[9] Ghaddar, Bissan and Joe Naoum-Sawaya. "High dimensional data classification and feature selection using support 
vector machines." European Journal of Operational Research 265, no. 3 (2018): 993-1004. 
https://doi.org/10.1016/j.ejor.2017.08.040 

[10] Jiang, Biye, Chao Deng, Huimin Yi, Zelin Hu, Guorui Zhou, Yang Zheng, Sui Huang et al., "Xdl: an industrial deep 
learning framework for high-dimensional sparse data." In Proceedings of the 1st International Workshop on Deep 
Learning Practice for High-Dimensional Sparse Data, pp. 1-9. 2019. https://doi.org/10.1145/3326937.3341255 

https://doi.org/10.1016/j.eswa.2022.118904
https://doi.org/10.1109/ICNP49622.2020.9259390
https://doi.org/10.1016/j.inffus.2020.01.005
https://doi.org/10.1038/ncomms5308
https://doi.org/10.1016/j.eswa.2023.121780
https://doi.org/10.1007/s40304-017-0117-6
https://doi.org/10.1016/j.patcog.2016.03.028
https://doi.org/10.1016/j.ejor.2017.08.040
https://doi.org/10.1145/3326937.3341255


Journal of Advanced Research Design 

Volume 129 Issue 1 (2025) 60-74  

74 

[11] Jiang, Jiajia, Weiling Li, Ani Dong, Quanhui Gou and Xin Luo. "A fast deep autoencoder for high-dimensional and 
sparse matrices in recommender systems." Neurocomputing 412 (2020): 381-391. 
https://doi.org/10.1016/j.neucom.2020.06.109 

[12] Jin, Lina, Jiong Yu, Xiaoqian Yuan and Xusheng Du. "Fish classification using DNA barcode sequences through deep 
learning method." Symmetry 13, no. 9 (2021): 1599. https://doi.org/10.3390/sym13091599 

[13] Ketkar, Nikhil. "Introduction to tensorflow." In Deep Learning with Python: A Hands-on Introduction, pp. 159-194. 
Berkeley, CA: Apress, 2017. https://doi.org/10.1007/978-1-4842-2766-4_11 

[14] Liu, Kuan, Aurélien Bellet and Fei Sha. "Similarity learning for high-dimensional sparse data." In Artificial 
Intelligence and Statistics, pp. 653-662. PMLR, 2015. 

[15] Lai, Xiaochen, Xia Wu, Liyong Zhang, Wei Lu and Chongquan Zhong. "Imputations of missing values using a tracking-
removed autoencoder trained with incomplete data." Neurocomputing 366 (2019): 54-65. 
https://doi.org/10.1016/j.neucom.2019.07.066 

[16] Kim, Jihyun and Howon Kim. "An effective intrusion detection classifier using long short-term memory with 
gradient descent optimization." In 2017 International Conference on Platform Technology and Service (PlatCon), 
pp. 1-6. IEEE, 2017. https://doi.org/10.1109/PlatCon.2017.7883684 

[17] Lillicrap, Timothy P., Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver and 
Daan Wierstra. "Continuous control with deep reinforcement learning." arXiv preprint arXiv:1509.02971 (2015). 

[18] Pinaya, Walter Hugo Lopez, Sandra Vieira, Rafael Garcia-Dias and Andrea Mechelli. "Autoencoders." In Machine 
learning, pp. 193-208. Academic Press, 2020. https://doi.org/10.1016/B978-0-12-815739-8.00011-0 

[19] Moustafa, Nour and Jill Slay. "UNSW-NB15: a comprehensive data set for network intrusion detection systems 
(UNSW-NB15 network data set)." In 2015 military communications and information systems conference (MilCIS), 
pp. 1-6. IEEE, 2015. https://doi.org/10.1109/MilCIS.2015.7348942 

[20] Olshausen, Bruno A. and David J. Field. "Emergence of simple-cell receptive field properties by learning a sparse 
code for natural images." Nature 381, no. 6583 (1996): 607-609. https://doi.org/10.1038/381607a0 

[21] Spoorthy, G. and S. G. Sanjeevi. "Multi-criteria–recommendations using autoencoder and deep neural networks 
with weight optimization using firefly algorithm." International Journal of Engineering 36, no. 1 (2023): 130-138. 
https://doi.org/10.5829/IJE.2023.36.01A.15 

[22] Vaziri, Pouya, Sanyar Ahmadi, Fatemeh Daneshfar, Behnam Sedaee, Hamzeh Alimohammadi and Mohammad Reza 
Rasaei. "Machine learning techniques in enhanced oil recovery screening using semisupervised label 
propagation." SPE Journal 29, no. 09 (2024): 4557-4578. https://doi.org/10.2118/221475-PA 

[23] Wu, Di and Xin Luo. "Robust latent factor analysis for precise representation of high-dimensional and sparse 
data." IEEE/CAA Journal of Automatica Sinica 8, no. 4 (2020): 796-805. https://doi.org/10.1109/JAS.2020.1003533 

[24] Wu, Di, Peng Zhang, Yi He and Xin Luo. "A Multi-Metric Latent Factor Model for Analyzing High-Dimensional and 
Sparse data." arXiv preprint arXiv:2204.07819 (2022). 

[25] Yan, Binghao and Guodong Han. "Effective feature extraction via stacked sparse autoencoder to improve intrusion 
detection system." IEEE Access 6 (2018): 41238-41248. https://doi.org/10.1109/ACCESS.2018.2858277 

[26] Zhang, Guoqiang Peter. "Neural networks for classification: a survey." IEEE Transactions on Systems, Man and 
Cybernetics, Part C (Applications and Reviews) 30, no. 4 (2000): 451-462. https://doi.org/10.1109/5326.897072 

[27] Zhang, Tianyue, Wei Chen, Yuxiao Liu and Lifa Wu. "An intrusion detection method based on stacked sparse 
autoencoder and improved gaussian mixture model." Computers & Security 128 (2023): 103144. 
https://doi.org/10.1016/j.cose.2023.103144 

[28] Zhang, Zijun. "Improved adam optimizer for deep neural networks." In 2018 IEEE/ACM 26th international 
symposium on quality of service (IWQoS), pp. 1-2. Ieee, 2018. https://doi.org/10.1109/IWQoS.2018.8624183 

https://doi.org/10.1016/j.neucom.2020.06.109
https://doi.org/10.3390/sym13091599
https://doi.org/10.1007/978-1-4842-2766-4_11
https://doi.org/10.1016/j.neucom.2019.07.066
https://doi.org/10.1109/PlatCon.2017.7883684
https://doi.org/10.1016/B978-0-12-815739-8.00011-0
https://doi.org/10.1109/MilCIS.2015.7348942
https://doi.org/10.1038/381607a0
https://doi.org/10.5829/IJE.2023.36.01A.15
https://doi.org/10.2118/221475-PA
https://doi.org/10.1109/JAS.2020.1003533
https://doi.org/10.1109/ACCESS.2018.2858277
https://doi.org/10.1109/5326.897072
https://doi.org/10.1016/j.cose.2023.103144
https://doi.org/10.1109/IWQoS.2018.8624183

