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High-dimensional sparse numerical data are normally encountered in machine 
learning, recommender systems, finance and medical imaging. The problem with this 
type of data is that it has high dimensions (many features) and highly sparse (most 
values are zero), which is prone to overfitting. The data visualization can be achieved 
through a neural network architecture called stacked autoencoders. These multilayer 
autoencoders are designed to reconstruct input data, but overfitting is a major 
problem. To overcome this problem novel L1 Regularization-dropout technique is 
introduced to reduce overfitting and boost stacked autoencoder performance. L1 
regularization penalizes large weights, simplifying data representations whereas the 
dropout technique randomly turns off neurons during training and makes the model 
dependent only on the selected turn-on neurons. The model employs batch 
normalization to improve the performance of the autoencoder. The approach was 
implemented on a high-dimensional sparse numerical dataset in the field of 
cybersecurity to minimize the loss function, measured by Mean Square Error (MSE) 
and Mean Absolute Error (MAE). The findings were compared to the conventional 
stacked autoencoder. The study revealed that the suggested method effectively 
mitigated the issue of overfitting. Stacked autoencoders, when combined with L1 
regularisation and the dropout approach, are very successful in handling high-
dimensional sparse numerical data in a diverse range of applications. 
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1. Introduction 
 

Recently, the analysis of high-dimensional data has become essential due to its application across 
several domains, including bioinformatics, image processing, natural language processing, and 
cybersecurity. A dataset is classified as high-dimensional when the number of features (p) exceeds 
the number of observations (N). For instance, a dataset with six features (p = 6) and only three 
observations (N = 3) are considered high-dimensional due to the greater number of features relative 
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to data points [1]. High-dimensional data can be categorized into two types: sparse data and dense 
data. A dataset is dense if most of its values are non-zero; otherwise, it is classified as sparse [2], [3]. 
This distinction is crucial because it fundamentally impacts how the data is processed and analyzed. 
Sparse data is prevalent in many large-scale internet applications, such as search engines, 
recommendation systems, and online advertising. However, most deep learning frameworks are 
designed for dense data and tend to perform poorly on sparse datasets [4]. The exponential growth 
in the quantity, variety, complexity, and dimensions of digital data presents unique challenges, 
particularly in managing high-dimensional sparse data [5]. Various fields, including biology, computer 
vision, and text processing, frequently utilize sparse, high-dimensional vectors for data 
representation [6]. 

Several methodologies have been proposed to address these challenges. For instance, Kuan et al.  
[7] introduced a new approach for learning similarity measures in high-dimensional sparse data, 
aiming to overcome the limitations of traditional methods. While innovative, these approaches often 
suffer from computational inefficiency when handling large, complex datasets and generally offer 
limited theoretical guarantees. Another significant development is the industrial deep learning 
framework (XDL), a distributed, scalable, and high-performance system designed specifically for high-
dimensional data. However, the lack of open-source availability of XDL restricts its accessibility for 
academic research and broader contributions from the scientific community [3]. Similarly, the Fast 
Autoencoder (FAE) model investigates high-dimensional structural (HiDS) data and reduces 
computational costs. Nevertheless, empirical evidence supporting its effectiveness across diverse 
datasets remains limited, raising questions about its generalizability and robustness [8]. The SL-LF 
model, which employs a smooth L1-norm approach, is designed for predicting missing data in high-
dimensional sparse matrices. Despite its strengths, it struggles with automatic hyperparameter 
tuning and maintaining non-negative constraints, affecting its optimal performance [9]. Meanwhile, 
the Multi-Metric Latent Factor (MMLF) technique enhances performance by uncovering latent 
structures in complex data, but introduces additional computational complexity due to its intricate 
design [10]. Deep learning (DL) has gained significant popularity for high-dimensional data analysis 
because of its ability to uncover low-dimensional subspaces. Deep feedforward networks and 
convolutional neural networks have achieved remarkable results in image processing, natural 
language interpretation, and robotic control [11], [12]. In these models, a multivariate function is 
modelled through a hierarchical structure of features, each representing nonlinear transformations 
that manage high-dimensional challenges effectively. However, training deep networks typically 
demands large-scale datasets, which may be prohibitively expensive for practical engineering 
applications [13][14]. Compared to traditional machine learning (ML) approaches, deep learning 
represents a distinct research paradigm that has demonstrated outstanding success in multiple fields. 
Feature engineering, a critical bottleneck in standard ML pipelines, often limits scalability due to the 
heavy reliance on human expertise [15]. In contrast, DL algorithms naturally extract hierarchical 
representations from raw data through multiple nonlinear transformations, minimizing the need for 
manual feature selection [16]. Advances in GPU technology and computational infrastructure have 
further facilitated the training of deep learning models. Methods such as the Stacked Autoencoder 
(SAE) have proven highly effective in learning critical data representations, making them valuable for 
classification and other applications. However, SAEs are vulnerable to overfitting, particularly when 
trained on limited datasets, due to their complex architectures and large numbers of trainable 
parameters [4]. Table 1 provides a comparative summary of representative state-of-the-art 
approaches proposed for high-dimensional sparse data analysis. 

In this study, we propose a Regularized Stacked Autoencoder (RSAE) model specifically designed 
to address overfitting issues associated with high-dimensional sparse data. The proposed method 
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integrates L1 regularization and dropout layers to promote sparsity and reduce model complexity, 
thereby enhancing generalization performance. The RSAE model demonstrates outstanding 
performance on a cybersecurity dataset, highlighting its potential applicability across other domains 
involving high-dimensional sparse data, such as image processing, natural language processing, and 
bioinformatics.  

The contributions of this paper are summarized as follows: 
 

i. The RSAE model, combining L1 regularization with dropout layers, significantly improves upon 
the traditional Stacked Autoencoder (SAE) for handling high-dimensional sparse data. 

ii. The RSAE model outperforms conventional techniques, including the classic SAE, by 
effectively mitigating overfitting and achieving superior error metrics.  

 
The rest of this paper is organized as follows: Section 2 details the workings of the Stacked 
Autoencoder (SAE) enhanced with L1 regularization.  
 

Table 1  
Comparative summary for state-of-the-art approaches 
Literature Method Limitation Conclusion 

Kuan et 
al., [7] 

Frank-Wolfe Scalability and generalization are 
limited because of high 
computing costs, reliance on 
labelled data and probable 
overfitting. 

This approach increases similarity learning 
in sparse data, resulting in better 
performance but requiring additional 
scalability enhancements. 

Jiang et 
al., [3] 

XDL Framework Large-scale dataset optimization 
is complex and requires a lot of 
processing power. 

Demonstrates good handling of high-
dimensional sparse data, with potential for 
industrial-scale use. 

Jiang et 
al., [8] 

Fast Deep 
AutoEncoder 

Computationally intensive, 
reconstruction accuracy and 
efficiency must be carefully 
tuned. 

Effectively handles high-dimensional 
sparse matrices in recommender systems, 
improving speed and scalability. 

Wu et al., 
[9] 

Robust Latent Factor 
Analysis 

Hyperparameter selection can be 
critical, and optimal performance 
may need significant adjustment. 

Accurately and robustly represents high-
dimensional sparse data, boosting data 
analysis and modelling precision. 

Wu et al., 
[10] 

Multi-Metric Latent 
Factor Model 

The integration of many 
measurements is complex, and 
parameter adjustment may be 
tough. 

Improves analysis of high-dimensional 
sparse data by using numerous metrics to 
increase accuracy and understanding. 

Zhang et 
al., [17] 

Stacked Sparse 
Autoencoder (SSAE) 
and Improved 
Gaussian Mixture 
Model (GMM) 

The model is computationally 
demanding and necessitates 
significant parameter adjustment, 
which might affect scalability and 
performance in big or noisy 
datasets. 

The model successfully enhances intrusion 
detection accuracy in high-dimensional 
data by utilizing the Stacked Sparse 
Autoencoder and Improved Gaussian 
Mixture Model, however, it may be 
restricted by computational complexity 
and tuning issues. 

 
2. Methodology  
2.1 Data Preprocessing 

 
Raw datasets often present several challenges, including the presence of outliers, missing values, 

varying feature dimensions, and lack of comparability [18]. Data must undergo thorough cleaning 
and preprocessing before it can be effectively utilized as input for model training [19]. Furthermore, 
because the input to the Stacked Sparse Autoencoder (SSAE) network must be in the form of a 
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numerical matrix, symbolic attributes must be converted into corresponding numerical features. To 
ensure feature values are comparable and standardized, a min-max normalization technique is 
applied to rescale the original feature values into a common range, facilitating consistent 
interpretation across different features [20]. 
 
2.2 Dataset 

 
The UNSW-NB15 dataset was selected for the evaluation of the RSAE model. It was generated in 

2015 by the Australian Centre for Cyber Security (ACCS) laboratory using the IXIA Perfect Storm too 
[21]. Table 2 provides a detailed breakdown of the dataset’s 49 features. In total, the dataset 
comprises 2,540,044 traffic samples distributed across four CSV files. For experimental purposes, a 
training set and a testing set were created from the original samples. The dataset was uploaded to 
Google Drive to ensure efficient data management and ease of access. Experimental procedures were 
conducted using Google Colab, leveraging the free GPU environment provided by Google Cloud. This 
setup enhanced computational efficiency by enabling seamless dataset access and significantly 
accelerating processing tasks. 
 

Table 2 
The UNSW-NB15 dataset features 
Feature category  Feature name 

Low features scrip,sport,dstip,dsport,proto 
Base features state,dur,sbytes,dbytes,sttl,dttl,sloss,dloss,service,sload,dload,spkts,dpkts 
Content features swin, dwin,stcpb,dtcpb,smeansz, dmeansz, trans_depth,res_bdy_len 
Time features sjit,djit,stime,ltime,sintpkt,dintpkt,tcprtt,synack,ackdat 
Additional generated features (general 
purpose features) 

is_sm_ips_ports,ct_state_ttl,ct_flw_http_mthd,is_ftp_login,ct_ftp_cmd 

Additional generated features 
(connection features) 

ct_srv_src,ct_srv_dst,ct_dst_ltm,ct_src_ltm,ct_src_dport_ltm,ct_dst_sp 
ort_ltm,ct_dst_src_ltm 

Labelled features attack_cat,Labe 

 
2.3 Numeralization 

 
One-hot encoding is employed to convert categorical attributes into a numerical format. The 

symbolic features present in the high-dimensional dataset include “proto”, “service”, “state”, and 
“attack_cat”. As a result of this numeralization process, the dimensionality of the dataset increases, 
since each categorical value is transformed into a binary vector representation. This step is essential 
for enabling compatibility with deep learning models that require numerical input [22]. 
 
2.4 Normalization 

  
The maximal-minimum normalization approach provided in Eq. (1) is used to normalize the 

feature values in the dataset to make it easier to compare the findings [17]. The value of x is scaled 
into the numeric range [0,1] using the min-max normalization method, 
 

𝑋′ =
𝑋−min(𝑋)

max(𝑋)−min(𝑋)
                                                               (1) 

 
Where 𝑋′ = normalized value, X = Original value, min(X) = minimum value of X, max(X) = maximum 
value of X 



Journal of Advanced Research Design 

Volume 129 Issue 1 (2025) 60-74  

64 

2.5 Dropout Layer 
 
A neural network model can employ a dropout strategy to learn more robust features and reduce 

interdependent learning among neurons. In this context, dropout units refer to nodes that are 
temporarily removed from the network along with all their incoming and outgoing connections [23]. 
During training, random units are dropped from the network, helping to break up complex co-
adaptations among neurons. In this work, dropout is incorporated during the unsupervised learning 
phase to mitigate overfitting and prevent redundant feature extraction. When dropout is applied, 
specific nodes are assigned zero values during a training iteration and are effectively removed from 
the network, meaning they do not contribute to the prediction or backpropagation processes. 
Consequently, each training run results in a slightly altered network architecture, encouraging the 
model to develop redundant-free and generalized feature representations. When configuring the 
dropout layer, a drop probability must be defined, specifying the proportion of nodes to be set to 
zero in each layer. It is important to note that dropout is only active during the training phase and is 
disabled during testing to ensure full network capacity is utilized for inference [24]. Figure 1 illustrates 
the structural difference between a standard neural network and one modified with dropout. 
 

 
              (a) Standard neural network                      (b) After applying dropout 

Fig. 1. Dropout applied to a standard neural network 

 
2.6 Autoencoder Model 

 
The structure of an unsupervised three-layer network, known as an Autoencoder, is illustrated in 

Figure 2 and Figure 3, representing the input layer, hidden layer, and output (reconstruction layer) 
[25]. An autoencoder accomplishes a nonlinear transformation from a high-dimensional space to a 
low-dimensional one by sequentially mapping synthetic feature vectors to abstract feature 
representations [26]. The autoencoder architecture can be conceptually divided into two main 
stages: encoding and decoding, which are formally defined as follows: 
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Fig. 2. Basic autoencoder model 

 

 
Fig. 3. Autoencoder model representation 

 
The encoding process from the input layer to the hidden layer is as in Eq. (2), 
 

𝐻 = 𝑓𝜃1(𝑋) = 𝜎(𝑊𝑖𝑗𝑋 + 𝑏1)                                                                    (2) 

 
The procedure for the decoding from the reconstruction layer to concealed layer is as in Eq. (3), 

 
𝑌 = 𝑓𝜃2(𝐻) = 𝜎(𝑊𝑗𝑘𝑋 + 𝑏2)                                                                    (3) 

 
The input data vector in this formula denoted by 𝑋 = (𝑥1, 𝑥2, 𝑥3, … … 𝑥𝑛) , the reconstruction 

vector of the input data is represented by 𝑌 = (𝑦1, 𝑦2, 𝑦3, … … 𝑦𝑛) and the low dimensional output 
from the hidden layer is denote by 𝐻 = (ℎ1, ℎ2, ℎ3, … … ℎ𝑚). Thus, 𝑋 ∈ 𝑅𝑛, 𝑌 ∈ 𝑅𝑛 , 𝐻 ∈ 𝑅𝑚 (where 
n is the input vector's dimension and m are the number of hidden units). The weight connection 
matrix between the input layer and hidden layer is denoted by 𝑊𝑖𝑗 ∈ 𝑅𝑚×𝑛. The weight connection 

matrix between the output layer and hidden layer is denoted by 𝑊𝑗𝑘 ∈ 𝑅𝑛×𝑚. 𝑊𝑖𝑗 = 𝑊𝑗𝑘
𝑇 often 
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occurs in the experiment to reconstruct the input data as precisely as feasible while minimizing the 
resource consumption during model training. 𝑏1 ∈ 𝑅𝑛×1 and 𝑏1 ∈ 𝑅𝑚×1 are the bias vectors of input 
layer and hidden layer respectively. 𝑓𝜃1(∙) and 𝑓𝜃2(∙) are the activation functions of hidden layer 
neuron and output layer neurons respectively. We use Relu activation function and sigmoid 
activation function in this paper as in Eq. (4) and (5) respectively, 
 
𝑓𝜃1(∙) = 𝑚𝑎𝑥(0, 𝑥)                                                                             (4) 
 

𝑓𝜃2(∙) =
1

1+𝑒−𝑥                                                                                   (5) 

 
The Autoencoder makes the reconstruction of original data through training by minimizing the 

resulting error between reconstructed output and actual values. At this stage we assume that the 
data provided by hidden layer units aggregates all information which was present in initial dataset 
and is optimal low-dimensional representation of it. Eq. (6) illustrates the application of the mean 
squared-error function in the reconstruction error function 𝐽𝐸(𝑊, 𝑏) between 𝐻 and 𝑌, where 𝑁 is 
the number of input samples. 
 

𝐽𝐸(𝑊, 𝑏) =
1

2𝑁
∑ ‖𝑌𝑟 − 𝑋𝑟‖2𝑁

𝑟=1                                                                    (6) 

 
2.7 Stacked Autoencoder (SAE) 

 
The concept of sparse coding to model the computational learning of basic cell receptive fields in 

the primary visual cortex of mammals was first introduced by Olshausen et al.,[27]. For instance, the 
input data is transferred to the output layer by straightforward copying because of the autoencoder's 
inevitable issue. In this instance, the autoencoder does not extract any useful features, even though 
the original input data can be reconstructed properly. To make the autoencoder generate more 
concise and efficient low-dimensional data features under sparse constraints to better depict the 
input data, the author used a method of adding L1 penalty terms on hidden layers in an effort. The 
term "L1-norm," also known as "Lasso regression," refers to the weight vector W′s sum of the 
absolute values of each of its elements. It is defined as follows: L1(W) =∥W∥= ∑ ∥ W ∥𝑖𝑖 ,. It can 
therefore be applied to select more significant representations. Choosing features that provide 
greater value to the model during training is hampered by an abundance of characteristics in the 
sample. As a result, we eliminate the connections that add very little to the model and do not affect 
the classification performance at all. With high dimensional data, it can extract more valuable 
features in less time.  

The mean square error term and the regularization term make up the first and second terms of 
the error function at this point. As may be seen in Eq. (7): 
 

𝐽𝐸(𝑊, 𝑏) =
1

2𝑁
∑ ‖𝑌𝑟 − 𝑋𝑟‖2𝑁

𝑟=1 + 𝛼 ∑ ∥ W𝑟
𝑖𝑗 ∥                                                  (7)    

 
Here, 𝛼 represents a user-adjustable hyperparameter that controls the strength of L1 

regularization, allowing precise regulation of sparsity within the model. This regularization 
mechanism is integrated into the autoencoder architecture to enhance feature learning and reduce 
overfitting. The encoding and decoding layers of the architecture work together to build hierarchical 
feature representations from the input data. Dropout layers are incorporated after each encoding 
layer, where neurons are randomly deactivated during training to further prevent overfitting and 
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encourage robustness. The structure of the Regularized Stacked Autoencoder (RSAE) network 
comprising multiple regularized autoencoders connected sequentially is illustrated in Figure 4. 
 

 
Fig. 4. Regularized Stacked Autoencoder model 

 
Higher-level feature representations of the input data are generated by each successive layer of 

the sparse autoencoder, utilizing the output from the previous layer as input. The optimal connection 
weights and bias values of the stacked sparse autoencoder network are obtained through the 
sequential training of each layer, employing a greedy layer-wise pretraining strategy. Subsequently, 
the RSAE model undergoes fine-tuning using error backpropagation, optimizing the parameters until 
the reconstructed output closely approximates the original input data. The error function used for 
this fine-tuning process is defined in Eq. (6) becomes: 
 

𝜕

𝜕W𝑟
𝑖𝑗

𝐽𝐸(𝑊, 𝑏) =
1

2𝑁

𝜕

𝜕W𝑟
𝑖𝑗

∑ ‖𝑌𝑟 − 𝑋𝑟‖2𝑁
𝑟=1 + 𝛼 ⋅ sign(W𝑟

𝑖𝑗)                                       (8) 

 
𝜕

𝜕b𝑟 𝐽𝐸(𝑊, 𝑏) =
1

2𝑁

𝜕

𝜕b𝑟
∑ ‖𝑌𝑟 − 𝑋𝑟‖2𝑁

𝑟=1                                                             (9) 

 
Consequently, the following Eq. (10) and (11) is the weight and bias update processes, 

 

W𝑘
𝑖𝑗 = W𝑘

𝑖𝑗 − 𝜇
𝜕

𝜕W𝑘
𝑖𝑗

𝐽𝐸(𝑊, 𝑏)                                                                            (10) 

 

b𝑟 = b𝑟 − 𝜇
𝜕

𝜕b𝑟
𝐽𝐸(𝑊, 𝑏)                                                                                      (11) 

 
Where, 𝑌𝑟 and 𝑋𝑟 are respectively the original vector and its corresponding reconstruction vectors. 𝜇 
represents the learning rate. 

Due to the sparse structure of the RSAE network, it is beneficial to assign distinct learning rates 
to individual parameters. Features that are infrequently activated require fewer updates, aligning to 
minimize unnecessary parameter adjustments. However, most conventional gradient descent 
algorithms, including mini-batch and stochastic gradient descent, apply a uniform learning rate across 
all parameters, which complicates the process of selecting an appropriate rate and efficiently 
reaching a local minimum [28]. To address this challenge, the adaptive moment estimation (Adam) 
optimization algorithm, as proposed by Zhang [29], is employed in this work. Adam dynamically 
adjusts learning rates for each parameter based on the first and second moments of the gradients, 
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thereby facilitating faster convergence and improving the training efficiency of the RSAE network 
model. By calculating the gradient first-order moment estimate m𝑡 and second-order moment 
estimate 𝑣𝑡 as shown in Eq. (12) to (14), the Adam algorithm allows for the dynamic adjustment of 
various parameters. β1and β2 stand for the first order and second-order exponential damping 
decrements, respectively. The gradient of the parameters at the time step 𝑡 in the loss function 
𝐽𝐸(𝑊, 𝑏) is denoted by 𝑔𝑡. 
 
𝑚𝑡 = β1m𝑡−1 + (1 − β1) . 𝑔𝑡                                                                              (12) 
 
𝑣𝑡 = β2v𝑡−1 + (1 − β2) . 𝑔𝑡

2                                                                              (13) 
 
𝑔𝑡 ← ∇𝜗𝐽𝑡(𝜗𝑗 − 1)                                                                                        (14) 

 
Computer bias-corrected for 𝑚𝑡 and𝑣𝑡 as in Eqs. (15) and (16) respectively, 

 

𝑚𝑡
′ =

𝑚𝑡

1−β1
𝑡                                                                                              (15) 

 

𝑣𝑡
′ =

𝑣𝑡

1−β2
𝑡                                                                                               (16) 

 
The update step size is denoted by 𝜏 and 𝜖 is constant to prevent the denominator from zero as 

in Eq. (17), 
 

𝜗𝑡−1 = 𝜗𝑡 −
𝜏

√𝑣𝑡
′+𝜖

 . 𝑚𝑡
′                                                                                  (17)     

 
3. Results  
3.1 Model Parameters and Sensitivity Analysis 

 
In this work, a Regularized Stacked Autoencoder (RSAE) architecture is employed to extract 

significant features and reconstruct input data. The RSAE model consists of an encoder and a 
decoder, each comprising five interconnected layers. The encoding layers progressively reduce the 
dimensionality of the input data, with dense units utilizing rectified linear unit (ReLU) activation 
functions, batch normalization, and dropout mechanisms to mitigate overfitting. As described in 
Section 2.1, after preprocessing, the features in the UNSW-NB15 dataset expand from 49 to 202 
dimensions. Consequently, the input layer of the RSAE model is configured with 202 neurons. 
Extensive experimentation and a comprehensive literature review guided the selection of critical 
hyperparameters, including the learning rate, number of neurons in hidden layers, batch size, and L1 
regularization strength (𝛼). A grid search technique was employed to optimize these 
hyperparameters, ensuring a balanced trade-off between model complexity and performance. 

Further investigation confirmed that a five-layer RSAE network structure yielded the best 
experimental results, as detailed in Table 3. Within this architecture, the dense layer with 32 units 
and ReLU activation plays a pivotal role in capturing the most salient features. This critical layer is 
additionally regularized using L1 regularization with varying 𝛼 values, illustrating the effect of sparsity 
enforcement on feature extraction. The model is trained using Mean Squared Error (MSE) and Mean 
Absolute Error (MAE) as reconstruction loss functions, with optimization performed by the Adam 
optimizer using a learning rate of 0.0001 over 100 epochs. Sigmoid activation is applied to the final 
output layer, constraining reconstructed values between 0 and 1. Mini batches of 128 samples are 
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used to improve generalization and reduce overfitting, while the regularization term further 
enhances model robustness. Performance evaluation is conducted by monitoring MSE and MAE 
across both training and validation phases. The final experimental configuration and parameters of 
the RSAE model are summarized in Table 3. 

 
Table 3 
Hyperparameter summary of RSAE 
Algorithms Parameter Value 

RSAE 
                              

The number of nodes in the input layer 202 

Number of neurons in the initial hidden layer 512 

Number of neurons in the second hidden layer 256 

Number of neurons in the third hidden layer 128 

Number of neurons in the fourth hidden layer 64 

Number of neurons in the fifth hidden layer 32 

Learning rate 

Alpha (𝛼) 

0.0001 
0.0001,0.001,0.01,0.1,1 

Batch size 
Epochs 

128 
100 

Activation functions ReLU, Sigmoid 

Adam First-order exponential damping decrement 0.9 
 Second-order exponential damping decrement 0.999 
 Non-zero constant 10−8 

 
An extensive sensitivity analysis was conducted to evaluate the impact of varying the L1 

regularization intensity 𝛼 on the RSAE model's performance. This study systematically examined the 
effects of different 𝛼 values on the MSE and MAE for both training and validation datasets. The 
findings reveal that the best performance, reflected by the lowest error metrics, is achieved with α 
values of 0.0001 and 0.001. 

Conversely, higher 𝛼 values led to a significant increase in both MSE and MAE, indicating that 
excessive regularization degrades model performance. Over-regularization restricts the model’s 
flexibility excessively, resulting in reduced accuracy, diminished stability, and impaired generalization 
capabilities. In contrast, lower 𝛼 values contribute to better error minimization and enhance the 
model's ability to generalize across unseen data. These results emphasize the critical importance of 
carefully tuning the L1 regularization parameter to achieve an optimal balance between sparsity and 
predictive accuracy. 
 
3.2 Quantitative Results 

 
The RSAE model's ability to accurately identify structural similarities is demonstrated in Figures 5 

and 6, which present the training and validation loss curves. These figures illustrate the RSAE’s strong 
generalization capabilities and its effectiveness in mitigating overfitting. 

The MSE and MAE metrics are employed to evaluate the reconstruction quality of the 
autoencoder under various 𝛼 configurations. These metrics provide a comprehensive assessment of 
the model's training and validation performance as learning progresses. As the number of epochs 
increases, both the MSE and MAE for the training dataset steadily decrease, indicating that the model 
is successfully learning meaningful representations from the input data. Similarly, a consistent 
decline in the validation MSE and MAE suggests that the model effectively generalizes the acquired 
knowledge to unseen data. In general, lower values of MSE and MAE correspond to a more optimal 
fit and improved model performance. 
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Fig. 5. Training and validation MSE loss with L1 regularization 

 

 
Fig. 6. Training and validation MAE loss with L1 regularization 

 
Table 4 presents a concise summary of how varying α values impact the performance of the RSAE 

model. Specifically, it reports the MSE and MAE for both training and validation datasets under 
different levels of L1 regularization. The hyperparameter 𝛼 controls the strength of L1 regularization 
applied to the model, where increasing 𝛼 intensifies regularization, potentially mitigating overfitting 
but also restricting the model’s learning capacity. The sensitivity analysis highlights that an 𝛼 value 
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of 0.0001 yields the best performance, achieving the lowest training and validation errors. In 
contrast, higher 𝛼 values (e.g., 0.01, 0.1, and 1.0) result in significantly elevated MSE and MAE values, 
indicating that over-regularization adversely affects the model’s accuracy and stability. These findings 
confirm that smaller 𝛼 values are more effective in minimizing reconstruction errors and enhancing 
the model’s ability to generalize to unseen data. 

 
Table 4 
Sensitivity analysis of RSAE performance metrics with Varying 𝛼 
Alpha (L1 strength) Training MSE Validation MSE Training MAE Validation MAE 

0.0001 0.0043 0.0038 0.0083 0.0072 
0.001 0.0108 0.0099 0.0181 0.0167 
0.01 0.0225 0.0225 0.0405 0.0405 
0.1 0.0225 0.0225 0.0405 0.0405 
1.0 0.0225 0.0225 0.0405 0.0405 

 
To validate the effectiveness of the RSAE model against the classical Stacked Autoencoder (SAE), 

a comparative analysis is presented in Figure 7. The figure illustrates that the classical SAE, which 
lacks regularization, exhibits significant overfitting. This is evident when the training MSE and MAE 
are substantially lower than the corresponding validation metrics. Such a discrepancy indicates that 
the model has memorized specific features of the training data too closely, thereby compromising its 
ability to generalize to unseen data. In contrast, the RSAE model demonstrates improved 
generalization by mitigating overfitting through the incorporation of L1 regularization and dropout 
mechanisms. 

 
Fig. 7. Training and validation loss without L1 regularization 
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Table 5 summarizes the outcomes for MSE and MAE of the classic stacked autoencoder, 
respectively. 

Table 5 
SAE without regularization 
S/No MSE MAE 

1 0.0262 0.0329 

 
 A comparison of the training and validation loss curves demonstrates that the application of L1 

regularization effectively prevents overfitting and enables stacked autoencoders to achieve 
significantly greater generalizability when applied to high-dimensional sparse data. L1 regularization 
thus establishes a paradigm for developing example-oriented models that not only fit the training 
data but also successfully capture underlying patterns, making them extendable to real-world 
applications. By promoting sparsity, facilitating feature selection, and enhancing generalization, L1 
regularization proves to be a critical component in improving model robustness and performance.  

 
4. Discussion 

 
The outcomes of the proposed RSAE model demonstrate its effectiveness in mitigating overfitting 

and enhancing performance on the cybersecurity dataset. Beyond representing a technological 
advancement, these developments carry significant practical implications across multiple domains, 
including cybersecurity, bioinformatics, image processing, and natural language processing. 

 
4.1 Cybersecurity Context 

 
In the context of cybersecurity, the improved performance of the RSAE model leads to more 

consistent and reliable threat detection. By reducing overfitting, the model becomes better at 
distinguishing between legitimate activities and potential threats, thereby lowering both false 
positive and false negative rates. This enhanced accuracy in anomaly and threat detection is critical 
for enabling faster response times and preventing security breaches. Furthermore, the increased 
efficiency of the RSAE model allows for more effective utilization of computational resources, 
potentially reducing operational costs and minimizing the time required for threat detection and 
incident response. 
 
4.2 Financial Sector 

 
The RSAE model also holds significant potential for enhancing fraud detection in financial 

institutions, where security and accuracy are paramount. By improving the model's ability to 
recognize anomalous patterns within transactional data, banks and financial organizations can 
strengthen their defences against fraudulent activities and insider threats. This advancement 
contributes directly to enhancing the security of financial transactions and safeguarding sensitive 
customer information. 

 
4.3 Health Sector 

 
The advancements offered by the RSAE model also contribute to strengthening patient data 

privacy within the healthcare sector. Enhanced anomaly detection capabilities enable the secure 
storage of sensitive health information and support compliance with regulations such as the Health 
Insurance Portability and Accountability Act (HIPAA). These improvements not only protect patient 
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confidentiality but also foster greater trust in digital healthcare solutions, promoting broader 
adoption of secure, data-driven healthcare technologies. 

 
4.4 Manufacturing 

 
In industries where operational technology and critical infrastructure are increasingly targeted by 

cyberattacks, the enhanced performance of the RSAE model can help prevent costly disruptions. By 
shielding industrial control systems from potential cyber threats, the model promotes operational 
continuity and safety while minimizing the significant financial and safety risks associated with 
cyberattacks. 

 
5. Conclusions 

 
This study demonstrates that the Regularized Stacked Autoencoder (RSAE) model effectively 

addresses the challenges associated with high-dimensional sparse data. By incorporating L1 
regularization, controlled through the hyperparameter 𝛼, the RSAE model promotes sparsity in the 
learned representations, reducing the risk of overfitting and enhancing model interpretability. 
Careful tuning of 𝛼 proved critical to optimizing performance, enabling the model to balance feature 
selection and generalization. Experimental results confirm that the RSAE model can efficiently learn 
from training data while maintaining strong generalization capabilities on unseen samples. The 
model achieved notable improvements in reconstruction accuracy, as evidenced by reductions in 
Mean Squared Error (MSE) and Mean Absolute Error (MAE), across various 𝛼 configurations. 
Furthermore, the RSAE architecture demonstrated robustness in cybersecurity applications, with 
potential applicability across other domains involving high-dimensional sparse datasets, such as 
finance, healthcare, and industrial control systems. 

Future research should focus on enhancing the RSAE model's adaptability to evolving cyber 
threats, extending its application to prediction tasks such as binary classification, and exploring its 
integration into real-time anomaly detection systems. Investigating hybrid regularization strategies 
and optimizing the network structure further could also contribute to performance gains in broader 
operational environments. Ultimately, the RSAE model, guided by the strategic tuning of L1 
regularization 𝛼, emerges as a powerful and scalable framework for extracting features from 
complex, high-dimensional, sparse data, enabling more intelligent and secure solutions across critical 
industries. 
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