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Agriculture plays a crucial role in sustaining and ensuring the continuous food supply. 
Crop disease may cause the negative impact on agriculture due to the decrease of yield 
production. Machine vision technology such as object detection can overcome the issue 
of early disease detection with more efficient way compared to the conventional 
method such as manual observation. This study utilizes two one-stage detectors namely 
YOLOv8 and SSDLite-MobilenetV3 to analyze the efficiency and accuracy of both models 
to perform crops disease detection. A total of 23 species of plants dataset are used taken 
from PlantVillage dataset. The datasets are divided into 70:20:10 ratio which results in 
total of 9,936 for training, 1,414 for validation, and 510 for testing images are used. The 
result shows that YOLOv8 has better performance with 86% accuracy compared to 82% 
for SSDLite-MobilenetV3. YOLOv8 also surpassed SSDLite-MobilenetV3 in terms of 
inference time by 76.6% faster with 8.2ms and 35.5ms respectively.   
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1. Introduction 
 

Agriculture is one of the major industries that plays a vital role in maintaining the humanity 
survival across the world population. To some countries it is one of the major backbones [1]. Food 
security is highly dependent on the agriculture sector; thus, it is crucial to ensure that the food 
supplies generated by agriculture is to be maintained for future generation sustenance [2]. It is also 
worth to note that agriculture account a major part of country’s Gross Domestic Product (GDP) [3]. 
Precision farming refers to implementation of technologies such as field mapping, vision technology, 
and GPS has been applied in developed countries. One of the important tasks in precision farming is 
to determine plant diseases and classification which can enhancing crop production by mitigating the 
damage [4]. Traditional method of normal observations is unreliable, laborious, time-consuming, and 
prone to error [5]. 

 In today’s agriculture practices, intelligent species identification serves as a valuable tool that 
helps us detect and prevent large-scope failures caused by pests and diseases. It enhances the ability 
to make informed decisions in agricultural management systems and enables us to guide intelligent 
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robots in a more precise and scientific manner [6]. According to Javaid et al., [7] the recent pandemic 
has opened the door for smart agriculture implementation due to the shortage of labours and the 
increase the demand for supply. Machine vision technology such as image processing and object 
detection can manage a non-invasive, harmless, fast and accurate way to perform task such as yield 
production, harvesting and disease detection in the agriculture [8]. Artificial intelligence (AI) is a 
critical component of digital technology due to it enables automated computers to do tasks such as 
language understanding, picture recognition and decision-making that would typically need human 
intellect [9]. Artificial intelligence systems have the capacity to rapidly assess large amounts of data, 
to the speed at which people can do. AI that comprises of sub-domains such as machine learning and 
deep learning aims to learn based on the data feed into the model to solve problems associated with 
the task which requires statistical processing [10]. Many studies have applied machine learning and 
deep learning techniques to detect and classify crop diseases to assists farmers. This automated early 
detection of crops is helpful as it reduces the time taken as it eliminates the process of manually 
observing the affected crops which is both exhausting and consuming time and energy of the farmers 
[11]. The progression of AI over the years has reach to a point where plant diseases can now be 
detected solely based on the raw images [10,12]. This is possible when the model learns the relation 
among pixel to extract the specific features that may represent by the texture or shape [13].  

Study conducted by Giakoumoglou et al., [14] utilizes multi-spectral imaging with different 
wavelengths to compare the ability of classification model to detect the existence of grey mould 
disease on cucumber leaves. The multi-spectral imaging uses varying spectrum of 460, 540, 640, 700, 
775 and 875 nm. Images are trained on YOLOv5 and YOLOv7 model with YOLOv7 leading the best 
mAP50 of 0.88 and F-1 score of 0.89. Study conducted by Alzahrani et al., [15] compared two methods 
to identify tomato diseases by applying transfer learning techniques and vision transformer model 
(ViT). The researchers compared two transfer learning models in this study namely DenseNet169 and 
ResNet50V2. The study emphasized on tomatoes crops diseases that comprises of disease types such 
as mosaic virus, target spot, bacterial spot, yellow leaf curl, late blight, leaf mold, early blight, spider 
mites, tomato healthy and Septoria leaf spot with each class has approximately 1100 samples. 
DenseNet169 possessed the highest training and testing accuracy of 99.88% and 99% respectively.  

Convolutional neural networks (CNNs) are widely used for their robustness and accuracy, 
particularly in object identification and image classification [16]. Researchers in Gomaa et al., [17] 
utilized CNN with generative adversarial networks (GANs) to augments real-time images. GANs 
served as a technique to overcome problem such as lack of good quality images for the analysis with 
real-time images. This method improved CNN accuracy with 98% where it is observed a 1% 
improvement compared to when GANs is not applied. A segmentation approaches has been 
implemented by researchers in Divyanth et al., [18] that utilized three two-stages detection models 
namely UNet, DeepLabV3+ and integrated UNet-DeepLabV3+ model on corn field imagery dataset. 
The dataset consists of diseases such as gray leaf spot, northern leaf blight, and northern leaf spot. 
The integrated model served the best performance with 96% accuracy. Authors in Nazir et al., [19] 
proposed a novel method called EfficientPNet to classify disease among potatoes crops. The model 
introduced spatial-channel attention that is implemented in EfficientNetV3 network. The experiment 
was conducted using PlantVillage dataset and an accuracy of 98.12% was achieved on classifying 
various potatoes disease. 

The earliest object detection model introduced that emphasizes on sliding window method is 
lacking in term of robustness which requires heavy computation. From the past years, researchers 
have introduced the implementation of deep learning algorithms into object detection frameworks 
to overcome those challenges [20]. There are two tasks that any object detector model must 
accomplished which are the recognition at which it has to discriminate foreground and object/region 
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of interest (ROI) and appoint them label. The second task is the localization of object of interest which 
particularly represents as bounding box [21]. This task can be fulfilled through two method methods 
namely single-stage and two-stage detector. Region based convolutional neural networks (RCNN) 
which is the pioneer of other famous model such as Fast-RCNN and Faster-RCNN is the example of 
detector that utilizes two-stage architecture. First stage is mainly applying Region Proposal Network 
(RPN) to generate ROI and the second stage is responsible for object and label prediction [22]. Single-
stage detector which consists of simple architecture treats detection as regression where the RPN is 
disregarded. Some examples of widely used single stage detector are YOLO and Single Shot Detector 
(SSD). The research contribution is as follows: 
 

i. presentation of a comprehensive process and a proposed solution for challenges encountered 
during the development of two one-stage detectors (YOLOv8 and MobileNetV3 SSDLite), 
aimed at detecting and recognizing diseases on the leaves and fruits of solanaceous crops. 
The study anticipates that its findings will serve as the foundation for the algorithm governing 
a mobile device.  

ii. conducts a performance analysis of these models, considering precision, mean average 
precision (mAP), total parameters, average inference time, and training time. The detailed 
development for the stated purpose is thoroughly examined. 

 
The paper commences with an exploration of related work and theory, followed by a discussion 

of the methods employed to complete the entire simulation. Subsequently, it delves into the results 
and performance evaluation of the YOLOv8 model in comparison to MobileNetV3 SSDLite. Finally, 
the paper concludes by summarizing the overall findings and contributions. 

 
2. Literature Review 
2.1 YOLOv8 

 
YOLO is a series of one-stage object detection frameworks that are heavily applied in research 

and industry. It utilizes a non-regional candidate that enable for the end-to-end process [23]. YOLO 
employs a singular convolutional neural network for the prediction of multiple bounding boxes with 
their respective categories [24]. In YOLO, the input image is divided into a grid size of S X S where 
each grid cell within is assigned to predict any object that is centred within it [25]. To date, the latest 
YOLO families is currently YOLOv8. According to Plastiras et al., [26], YOLO model possesses faster 
training and prediction speed. The latest YOLOv8 is built is anchor-free which is totally independent 
of anchor box that speed up the non-maximum suppression (NMS) process. Figure 1 shows the 
method on how YOLO model making predictions of bounding box. 
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Fig. 1. Basic process in YOLO model [27] 

 
2.2 Single-Shot Detectors 

 
Single Shot Detector (SSD) is another one-stage object detection framework which works is 

comparable to YOLO. The original proposed SSD model is as shown in Figure 2 is with VGG16 as the 
backbone. The SSD algorithm uses single forward pass where the identification and classification take 
place at a single pass of the neural network [28]. SSD has several underlying benefits over other 
detector such as YOLO. SSD model utilizes multi-scale bounding box with different aspect ratio and 
scales which improve localization. The utilization of feature maps at multiple resolutions also helps 
SSD to detect smaller object.  A method proposed by Shen et al., [29] incorporated several advance 
principal designs such as deep supervision and dense layer wise connections improve the ability of 
SSD to detect smaller objects. Another method by Fu et al., [30] proposed the implementations of 
Resnet as backbone to overcome the same issue. Unlike YOLOv8, SSD still requires NMS on multiscale 
bounding boxes to obtain the final predictions. 

 

 
Fig. 2. Architecture of SSD [28] 
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MobileNet backbone pioneered in 2017 was designed with the implementation of depth-wise 
separable convolutions to perform trade-off between computation and accuracy [31]. A lightweight 
variant of SSD which is SSDLite is known for its compact architecture especially when implements 
Mobilenet as its backbone that is suitable for mobile deployments. SSDLite was first introduced 
during the development of MobilenetV2. The improvement of MobilenetV2 compared to 
MobilenetV1, is the incorporation of inverted residuals layer to capture non-linearity more efficiently 
and the linear bottleneck as shown in Figure 3 [32].  

 

 
Fig. 3. The building block of MobilenetV2 with residual [32] 

 
In 2019, MobilenetV3 was introduced with the addition of Squeeze-and-Excitation (SE) layer and 

h-swish activations, that results to better trade-off between accuracy and efficiency on mobile device 
[33]. The block diagram is as shown in Figure 4. 

 
Fig. 4. MobilenetV3 block with the implementation of  
Squeeze-and-Excitation block [33] 

 
This paper compares the performance of YOLOv8 with SSDLite-MobilenetV3 in terms of accuracy 

and performance based on several metrics. 
 

3. Methodology 
3.1 Data Collection 

 
Data is collected from the open-source Plant Village dataset taken from Kaggle 

(https://www.kaggle.com/-datasets/emmarex/plantdisease). The total number of classes are 23 that 
consists of four species namely chilli, potato, eggplant, and tomato. The distribution of dataset is as 
shown in Table 1. The raw samples of images for each class are 300. 
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Table 1 
Species and classes of dataset 
Solanaceous Crops Classes of Disease 

Chili Chili Healthy fruit 
 Chili Healthy leaf 
 Chili Anthracnose fruit 
 Chili Bacterial leaf spot 
 Chili Mosaic virus leaf 
Eggplant Eggplant Healthy fruit 
 Eggplant Healthy leaf 
 Eggplant Fruit rot 
 Eggplant Cercospora leaf spot 
 Eggplant Colorado potato beetle 
Potato Potato Healthy fruit 
 Potato Healthy leaf 
 Potato Common scab fruit 
 Potato Alternaria solani leaf 
 Potato Phytopthora infestans leaf 
Tomato Tomato Healthy fruit 
 Tomato Healthy leaf 
 Tomato Anthracnose fruit 
 Tomato Early blight leaf 
 Tomato Late blight leaf 
 Tomato Leaf mold 
 Tomato Tomato yellow leaf curl virus 
 Tomato Bacterial spot leaf 

 
3.2 Data Annotation and Preprocessing 

 
Since this project utilized two models namely YOLOv8 and MobileNetV3 SSDLite, the annotations 

take place in two ways. For YOLOv8, the annotations are done through Roboflow platform. The 
images are loaded and annotated by drawing a bounding box against the region of interest. The 
images are then split into the ratio of 70:20:10 for training, validation, and testing. This ratio was 
selected since it was also used by other research works [5,10]. 

Preprocessing is one of the crucial parts in object detection since it discards data discrepancies 
and duplication which might result in model performance degradation. This is achieved by altering 
the sample images to optimize the training later. In this experiment, we resize the sample image to 
640 x 640 for YOLOv8 since the pretrained model is based on this size alone. 

 

 
Fig. 5. Preprocessing in Roboflow 

 
Once the preprocessing is finished, we carried out the data augmentations procedure. Roboflow 

software has the inbuilt options for augmentations. We have selected the augmentations options as 
shown in Figure 6. The reason for this is that we want to imitate the real and logical scene if the 
model is applied in the outside environment. 
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Fig. 6. Augmentations method used for the study 

 
Once the augmentations are done, the sample images are generated with annotations format of 

txt. The original YOLO architecture is designed to be mapped with txt label format annotations. 
In contrast with YOLOv8, the model in SSDLite-MobilenetV3 is trained with images that is 

annotated using the open-source Python library, labelling. Bounding boxes are drawn, and the 
annotations is saved in the format of PASCAL that is represented in xml extension format. 

In terms of preprocessing, the samples are resized with 320×320-pixel size, while the 
augmentations are exactly the same as done in YOLOv8. The final number of sample images after 
augmentations are 9,936 for training, 1,414 for validation, and 510 for testing. 

 
3.3 Device Specifications 

 
The experiment is performed using the same device with CPU specifications 12th Gen Intel(R) 

Core (TM) i7-12700H 2.70 GHz and NVIDIA GeForce RTX 3060 GPU with 16GB RAM. Both models are 
trained and tested using a created virtual environment in Python with deep learning framework, 
PyTorch version of 2.0.1 and CUDA 11.7. 
 
3.4 Hyperparameters 

 
The models are trained and tuned several times until the best result is obtained. Table 2 shows 

the details of hyperparameters used in both models.  
 

Table 2  
Hyperparameters specifications 
Hyperparameters YOLOv8 SSDLite-MobilenetV3 

Epoch 100 100 
Optimizer Adam Stochastic Gradient Descent (SGD) 
Learning rate 0.001 0.005 
Batch size 8 8 

 
Table 3 shows the layers and parameters of both models. The parameter value selected have 

been decided after conducting ten-fold cross-validation. This method compares and select an 
appropriate parameter/model for the specific predictive modelling problem. 
 

Table 3 
Model Details 
Details YOLOv8s SSDLite-MobilenetV3-large 

Total layers 168 383 
Total parameters 11M 3.4M 
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4. Results 
 
The performance of the two models is evaluated based on mean average precision metrics (mAP) 

that are measured in two thresholds at 0.50 and 0.95, training time and inference time. 
 

4.1 Mean Average Precision 
 
Accuracy is regarded as the common metric when measuring any deep learning or machine 

learning model. However, being solely dependent on this metric might cause a biased model when 
the dataset is imbalanced [34]. Most object detection models such as R-CNN and YOLO will utilize 
mAP as the metric to evaluate the model performance. mAP performs comparison between the 
bounding box grounding truth with the predicted bounding box. The mAP comes from another two 
underlying metrics named precision and recall. Precision refers to the measure of false positives rate 
while recall does the opposite, that is measuring the false negatives rate. In simple wording, false 
positives are the measure of positively labelled is predicted is true and false negatives is the measure 
of how well the model predicts all the positive labels. The formula of both are as follows: 

 

Precision =  
TP

TP+FP
                                                                                                                                          (1) 

Recall =  
TP

TP+FN
                                                                                                                                                (2) 

 
Where, TP is True Positive, FP is False Positive and FN is False Negative. 

 
The mAP is generated based on the mentioned metrics in a that it first generates a precision-

recall curve to present the trade-off between precision and recall. The average precision (AP) is 
calculated by measuring the area under curve (AOC) of the graph. The AP is however calculated 
separately for each class, thus averaging all the AP across all classes will result in the mAP value which 
represents the overall performance of the model for different classes. The result shown in Table 2 
takes mAP based on two different thresholds approximately at 0.50 and 0.95. This threshold 
represents the IoU threshold. 

Intersection over Union (IoU) or also known as Jaccard Index calculates the ratio of area of 
overlapping between predicted bounding box with the ground truth over the total region encompass 
by the predicted and ground truth box. Figure 7 illustrates the calculation of IoU.  

 

 
Fig. 7. Illustration of how IoU is calculated 

 
Table 4 displays the result obtained after training, validation and testing of the model. 
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Table 4 
Result based on metrics 
Metrics YOLOv8 SSDLite-MobilenetV3 

Average training time (h) 7 hours 28 minutes 5 hours 50 minutes 
mAP@.50 0.86 0.82 
mAP@.95 0.99 0.96 
Average inference time (ms) 8.2 35.5 

   

 
Fig. 8. Illustration of the difference in training time 
for both models 

 
The model is then tested on several images to show the prediction made. Figure 10 and Figure 11 

show the result of prediction being made by SSDLite-MobilenetV3 and YOLOv8. 
 

 
Fig. 9. Predictions made on testing dataset  
using SSDLite-MobilenetV3 
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Fig. 10. Predictions made on testing dataset using  
YOLOv8 

 
5. Discussions 

 
In this paper, two methods were proposed to perform crop disease detection by means of object 

detectors model. Based on the result obtained above, YOLOv8 performed better in terms of accuracy 
with final mAP@0.95 with 99% and mAP@0.50 with 86% compared to SSDLite-MobilenetV3 model 
that able to achieve mAP of 96% and 82% respectively. There is no big difference between in between 
the accuracy of both models at which MobilenetV3 only possesses slight reduction of accuracy at 
about 4% based on the mAP@0.50. However, the SSDLite-MobilenetV3 performs quite poorly during 
testing with images that has multiple leaf/fruit. As noticed in Figure 10, the model falsely predicted 
the potato common scab fruit and chilli healthy fruit on the last two images. The stem on the eggplant 
do appear quite similar with the heathy chili fruit. It is believed that further tuning of the 
hyperparameter or training with higher epoch might be able to improve the model prediction. 

SSDLite-MobilenetV3 possessed faster training speed that takes approximately 5 hours 50 
minutes to finish training the model with 100 epochs while YOLOv8 took much longer time at about 
7 hours 28 minutes to finish training. This is due to SSDLite-MobilenetV3’s architecture having only 
3.4M parameters compared to 11M, which accounts to 69% smaller. As previously mentioned, 
MobilenetV3 backbone is designed to be able to be deployed on mobile devices, hence the 
lightweight architecture. This proves that YOLOv8 requires much higher computation compared to 
SSDLite-MobilenetV3 model to train per epoch.  

Although YOLOv8 requires much longer time to train, but the inference time taken for YOLOv8 is 
much 76.6% faster than SSDLite-MobilenetV3 with YOLOv8 took 8.2ms while SSDLite-MobilenetV3 
with 35.5ms. One possible reason is because YOLOv8 is designed with anchor free architecture 
compared to SSDLite model that has a predefined anchor. Based on the result achieved, YOLOv8 has 
better performance since it surpassed SSDLite-MobilenetV3 in many metrics performance including 
inference time.  

During inference testing, certain bounding boxes are excessively large for the disease area, 
resulting in the full names of labels and predictions not being fully visible in the image. This issue 
arises from the names being set too long, causing incomplete visibility within the images. To address 
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this, it is imperative to ensure accurate annotation and labeling by using shorter yet meaningful 
names. Adjustments should be made to draw bounding boxes in close proximity to the object's area 
that necessitates detection. This approach aids the training algorithm in focusing exclusively on the 
bounding box area, optimizing the learning process. 

 
6. Conclusions 

 
The purpose of this project is to analyse and compare the performance between YOLOv8 and 

SSDLite-MobilenetV3 to the task of detecting disease types among crops. Our dataset consists of 
variations of images that some contain single leaf/fruit while some contains multiple leaf/fruits in a 
single image. The parameters chosen such as training time is to show the difference in computational 
cost when training with model with large and small parameters. Based on the performance analysed, 
it can be concluded that YOLOv8 performs better in comparison to SSDLite-MobilenetV3. Considering 
that YOLOv8 was released in 2023, it is expected that the architecture has improved so much 
compared to SSDLite-MobilenetV3 that was released in 2019. YOLOv8 has mAP@0.5 of 86% which is 
4.88% higher than SSDLite-MobilenetV3 with 82%. The inference time for YOLOv8 is also much faster 
than SSDLite-MobilenetV3.  

One of the limitations of this project is that the model was not deployed in mobile devices to 
further compared each performance. For SSDLite-MobilenetV3 model, it is believed that the 
performance can be further improved by tweaking some hyperparameters and use the small version 
of the model instead of the large version. This project has showcased the ability to implement object 
detection model for crop disease detection which able to assist farmer in making early crop disease 
to better secure the agriculture industry.  

In the future, the lightweight model can be seamlessly integrated into various applications, such 
as medical devices, wearable technologies, and embedded systems utilized in manufacturing and 
industrial automation. This adaptability allows the model to cater to diverse domains, offering 
advantages in scenarios such as real-time health monitoring in medical settings or enhancing the 
efficiency of process control in industrial environments. Its low resource requirements make it well-
suited for deployment in resource-constrained environments commonly found in embedded 
systems. The versatility of this model extends its potential applications beyond mobile devices, 
showcasing its relevance in addressing a wide array of technological needs. 
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