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The Internet of Vehicles (IoV) has emerged as a promising paradigm to revolutionize 
transportation systems by enabling seamless communication and data exchange 
among vehicles and infrastructure. A crucial challenge in IoV is optimizing the routes 
of information, which is used to enhance network efficiency, reduce congestion, and 
enhance network lifetime. This research presents a centralized reinforcement base 
learning framework that leverages the power of reinforcement learning algorithms 
to optimize the routes by minimizing communication overhead. To evaluate the 
proposed approach, extensive simulations are conducted in a realistic IoV 
environment, incorporating various scenarios and traffic conditions. Comparative 
analyses are performed against LEACH, PEGASIS and EER_RL traditional widely used 
route optimization algorithms and heuristic-based methods to assess the 
effectiveness and efficiency of the reinforcement learning-based approach. Our 
findings demonstrate that the reinforcement learning-based route optimization 
approach exhibits superior performance in terms of reducing energy consumption, 
minimizing communication overhead, and enhancing network lifetime compared to 
conventional methods. This work opens new avenues for future research in 
leveraging RL algorithms for optimizing various aspects of IoV systems and 
addressing the challenges posed by dynamic and complex vehicular networks. 
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1. Introduction 
 

The Internet of Vehicles (IoV) is becoming increasingly important as research into its potential 
benefits continues to grow [38]. Some of the key reasons why IoV is considered important are due to 
these factors. Several research of IoV can help to improve road safety by enabling vehicles to 
communicate with each other and with roadside infrastructure. This can help to prevent accidents by 
providing drivers with real-time information about the traffic conditions around them. Additionally, a 
few proposed research models on IoV can also help to reduce traffic congestion by enabling vehicles to 
coordinate their movements. Moreover, IoVs enhance convenience for drivers by providing them with 
a variety of services, such as remote vehicle diagnostics, real-time traffic information, and even 
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entertainment [34]. Recently, environmentally friendly research on IoV shows that IoV help to improve 
environmental sustainability by reducing fuel consumption and emissions. Modern age moves from the 
Internet of Things (IoTs) to IoVs it provides a potential research portfolio because the proliferation of 
high-speed Internet and wireless communication technologies has made it easier to connect vehicles 
and to the Internet. This connectivity enables real-time data exchange and opens up new possibilities 
from IoTs to the IoVs [25]. Finally, IoV research contributes to the development of intelligent 
transportation systems (ITS). These systems integrate various technologies, including communication, 
sensing, and data analytics to optimize transportation networks. IoV plays a crucial role in ITS by 
enabling seamless connectivity and facilitating the exchange of information among vehicles, 
infrastructure, and users [27]. 

IoV is a network of vehicles equipped with sensors, software and technologies that mediate 
between these to connect & exchange data over the Internet according to agreed standards [2,39]. It 
can be seen that the IoV has evolved from a vehicular ad hoc network (VANET) that used a mobile ad 
hoc network for communication between vehicles and roadside systems to an internet of autonomous 
vehicles which enables autonomous, connected, electric, and shared (ACES) future mobility. It is 
expected that IoV will be one of the enablers for ACES future mobility [9]. Here are some advanced 
applications of IoVs presented. Under the domain of road safety and ITS, IoVs used for collision 
avoidance systems (CAS) sensors to detect other vehicles, obstacles, and objects in the closed vicinity 
of the car. If a collision is imminent, the system will alert the driver and take corrective action, such as 
braking or steering. The adaptive cruise control (ACC) system uses sensors to maintain a safe distance 
between the car and the vehicle in front of it. The system will automatically adjust the car's speed to 
maintain the desired distance. Lane departure warning systems (LWS) systems use sensors to detect 
when the car is about to leave its lane. If the car begins to drift, the system will alert the driver and take 
corrective action, such as steering the car back into its lane. Traffic signal information systems (TSIS) 
use sensors to detect traffic signals and provide the driver with information about the current signal 
status. This information can help drivers to avoid traffic tickets and improve traffic flow. Other than 
road safety, IoVs effectively implement traffic prediction congestion avoidance, and traveling rote 
management. IoVs can be used to optimize traffic flow by coordinating the movements of vehicles. For 
example, vehicles can be routed around traffic jams or directed to less congested roads. Moreover, IoV 
can be used to provide drivers with some convenience features, such as real-time traffic information, 
navigation assistance, and parking availability which help to make accurate decisions and save fuel 
consumption, and furthermore help to improve environmental emissions [15]. 

While IoV has the potential to revolutionize transportation systems and improve road safety, it also 
faces several challenges and issues. Here are some of the key challenges associated with the IoVs, and 
a few are presented here briefly, IoV systems are vulnerable to cyberattacks, including unauthorized 
access, data breaches, and malicious activities. Protecting the privacy of users' personal information 
and securing the communication channels within the IoV network is crucial. The interconnected nature 
of IoV increases the potential attack surface, making it essential to implement robust security measures 
[3,19]. Another challenge is data management because IoV generates vast amounts of data from 
various sources, including sensors, cameras, and communication devices. Managing and processing this 
massive volume of data in real time is a significant challenge. Effective data management solutions, 
such as data storage, data analytics, and data integration techniques, are required to handle the high 
velocity, variety, and volume of IoV data [24]. 

Network congestion is indeed a significant challenge in the context of the IoV to enable 
communication and data exchange IoV involves the interconnection of vehicles, infrastructure, and 
other entities. The increasing number of vehicles and the growing demand for real-time data exchange 
pose significant congestion issues in IoV networks. Congestion issues in IoVs are because of high device 
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density, data volume, and bandwidth contention, latency requirements, heterogeneous network 
connectivity, infrastructure limitations [12,42]. Network congestion can have a few negative 
consequences for the IoV, including reduced performance, increased safety risks, and higher resource 
costs [10]. To address network congestion challenges in IoV, several strategies can be implemented 
traffic management and prioritization, edge computing and caching implementation, dynamic 
spectrum access, network optimization and resource allocation, infrastructure expansion, hybrid 
connectivity solutions, using congestion control and avoidance algorithms, using edge computing, using 
ml base efficient communication protocols [5]. 

Mobility issues in the context of the IoVs primarily revolve around the movement and coordination 
of vehicles within the network. As vehicles move around, their communication links with other vehicles 
and infrastructure can be disrupted. This can make it difficult to maintain a reliable network connection, 
which is essential for many IoV applications [40]. Vehicle heterogeneity, dynamic topological 
connectivity, and random mobility models are major factors that badly affect the network performance 
and lead to increasing packet loss, bandwidth contention, latency, security breach, flooding, and 
shortage of network lifetime [34]. Till now to address mobility challenges in IoV, several strategies can 
be implemented, like efficient routing and handover management, mobility prediction and traffic 
management, cooperative systems, location-based services and positioning systems, network 
optimization and resource management, dedicated short-range communication (DSRC). 

Routing is one of the most critical challenges in IoVs because efficient routing is crucial in ensuring 
reliable and timely communication, as well as enabling various IoV applications such as traffic 
management, collision avoidance, and infotainment services. Due to routing issues, the network faces 
overhead (spending more resources and time on the communication process instead of data 
transformation), delay increase, packet delivery ratio exponentially decreased, and all available 
resources wasted [4]. There are several research efforts underway to address the routing challenges 
Promising approaches and protocols include proactive, reactive, and hybrid routing protocols, ML base 
routing algorithms and approaches, deep learning, and Q-learning routing methods. Example of 
communications in IoVs is illustrated in Figure 1. 

 

 
Fig. 1. Communications in IoVs 

 
Finally, one of the key challenges of the IoVs is ensuring energy efficiency. This issue arises because 

IoV systems involve the integration of vehicles with various communication technologies, such as 
cellular networks, Wi-Fi, and DSRC. Other than technologies many challenges further lead to 
compromised network energy efficiency like data processing and analysis, constant heavy connectivity 
requirements, power-hungry sensors, and topological implementation, communication overhead (CO) 
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network contention, random mobility, and rout disruption. Induction of these technologies and other 
mentioned factors consume more energy, furthermore, inefficient use of energy can lead to shorter 
battery life [28]. Some of the potential solutions include using more efficient sensors, power-saving 
modes, renewable energy sources, more efficient communication protocols, intelligent overhead 
avoidance models, sustainable and reliable hybrid routing protocols, and congestion avoidance ML 
prediction models are promising methods and protocols to achieve energy efficiency in IoVs [36,44]. 

As IoV networks continue to grow, CO is likely to become an increasingly important issue. CO is the 
state of the system when the system spends most of the time on the communication process (like 
sending, receiving, and processing inquiry messages or frequently initiating communication process or 
spending more time on communication handling all types of CO) instead of performing data 
transformation. CO has sworn effects on network performance like increased latency or throughput 
degradation, reduced operational bandwidth, flooding of unnecessary massages, and high draining of 
battery backup. To handle this issue there are a few ways to reduce CO in IoV networks like traffic 
scheduling prioritizing at an initial stage, information slicing, time sharing approach, and developing 
route optimization protocol for information transformation. 

Route optimization plays a central role in IoVs because for timely and accurate decision-making 
information needs to be routed from source to destination without delay [18]. In this regard, we are 
facing a major challenge like communicational overhead, which further leads to delay, congests the 
network traffic flow, and uses much available energy which further degrades the network lifetime. 
Regarding communication, multiple unnecessary packets become part of the network, which reserves 
the resource (if throughput capacity at a given bandwidth is supposed 100 packets, then it’s may 
possible more than 50 packets are due to CO and the system will only use half of the bandwidth). 
Furthermore, if communicational overhead is not tackled efficiently all resources like energy, 
bandwidth, computational power, and memory are futile.    

So, in the research, we aim to provide optimum routing by minimizing the routing overhead. 
Furthermore, this minimization of routing overhead aims to minimize CO in IoV. For this purpose, we 
are going to propose a centralized reinforcement learning base route optimization model (CRLRO). 
Reinforce learning (RL) issues are formalized as Markov decision processes (MDPs) with a tuple (S,P,R), 
where S denotes the possible states for an agent at a given time t and A denotes the potential actions 

the agent might take.   represents the transition probability that an agent will perform action at time 
t and then transition from state s(t) to state s(t+1), where R represents the reward, the agent will 
receive for completing the action. CRLRO is centralized by nature, in which all computation (reward 
calculation and matrix updating, yield matrix maintenance and updating, and optimum route decision) 
is done by a centralized entity like a base station (entity capable of offering long-range transmission 
coverage and providing global internet connectivity). A base station (BS) broadcasts an Inquiry (INQ) 
message like a heartbeat message (HM), all the under-coverage nodes receive HM, and respond to the 
request to reply (RREP), but due to a shortage of node transmission RREP is not reached to BS directly 
(expect few which are one step away from BS) so intermediate node (IN) require to relay the RREP. 
RREP messages are embedded with multiple information like sender address and location, route path 
including source to an IN, residual energy of each node, number of connectivity, and traffic congestion 
level. By using the IN as a relay node, the RREP of all the nodes reach BS, after receiving RREQ, BS 
extracts all information and builds a reward and yield matrix (detail will be discussed in the 
methodology chapter). In a distributed architecture, if INQ and RREP broadcasting is the major cause 
of CO because at each node level broadcasting and rebroadcasting continue which becomes a 
bottleneck when the number of connectivity grows up, we must minimize it at an initial level as well. 
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2. Proposed Methodology 
 

In a distributed architecture, INQ and RREP broadcasting and rebroadcasting is the major cause 
of CO because at each node level broadcasting and rebroadcasting continue which becomes a 
bottleneck when the number of connectivity grows up. In the initial phase going to implement our 
model with centralized architecture, because BS has long-range coverage capability, heavy 
computation power, and no issue with backup power. While implementing a centralized approach 
aimed to minimize rebroadcasting during the inquiry period, here is the first layer of controlling CO. 
For this purpose, CRLRO, in which all computations (reward calculation, matrix updating, yield matrix 
maintenance and updating, and finally optimum route decision) are done by a centralized entity like 
base station (entity capable of offering long rang transmission coverage and providing global internet 
connectivity). BS broadcasts an INQ message like a HM, all the under-coverage nodes receive HM, 
and respond to the request to reply (RREP), but due to a shortage of node transmission, RREP is not 
reached to BS directly (expect few which are one step away from BS) so IN require to relay the RREP. 
RREP messages are embedded with multiple information like sender address and location, route path 
including source to an IN, its residual energy, node connectivity, and traffic congestion level of each 
available. By using the IN as a relay node, the RREP of all the nodes reaches BS, after receiving RREQ, 
BS extracts all information and builds a reward and Yield matrix. So, the working principle of CRLRO 
is comprised of sending HM by BS, under coverage node start RREP by putting values like position, 
number of connectivity, residual energy, link traffic condition, and path information (to find shortest 
path) from source to destination. All this information is put in the node information part (NIP) of the 
message header, and initiated by the edge node (which is not used as a relay node) while passing to 
IN, each node puts all this information into NIP and sends it to next level, till NIP reached to BS. On 
reception of NIP from the whole network, BS starts calculating the reward function (high reward for 
those who have the shortest path, high residual energy, more connectivity, and low link congestion 
level) and puts reward value in the reward matrix detail will be discussed in the reward matrix 
calculation part. Furthermore, each NIP reward matrix needs to be updated, next step is to calculate 
the yield function by applying Q_Learning at each NIP and update the yield matrix after each NIP. 
Finally, the optimum path-finding process starts, when any routing requires the source node to send 
the request to BS through IN, BS finds the optimum route by analyzing the yield matrix and responds 
as optimum RREP (ORREP), to the requesting node (detail will be discussed in optimum path finding 
part). So, here are calculations involving reward finding, yield calculation (Q_Matrix updating), and 
optimum pathfinding. Now try to elaborate on variable detail here, 

 To find the shortest path, instead of measuring the actual distance in meters or kilometers, the 
distance from a source to a destination is typically expressed in terms of "hops" (Fewer hops mean 
shortest path), residual energy is the remaining energy level of each node, number of connectivity is 
found through the neighbor table and finally link congestion level need to be found. Congestion will 
occur when the input exceeds the output and input data needs to wait in a memory buffer, in some 
cases memory buffer is also saturated, and the data packet starts dropping. So, to check congestion, 
check the buffer counter for each point which shows the congestion level for each link. After receiving 
HM, each node puts information in the index listed below and forwards it to its neighbors, till it 
reaches BS. When all this information reaches BS, at each HM, now BS starts applying RL to find the 
optimum path. As RL consists of two parts i.e., reward calculation and yield matrix maintenance and 
updating, Now I will explore how CRLRO calculates the reward matrix as shown in Eq. (1). Here 
predefine reward parameters here, high reward for those who have the shortest path (fewer hops), 
high residual energy, more connectivity, and low link congestion level and vice versa.  
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𝑟𝑡 + 1 = (1 − 𝑃) [(
1

ℎ𝑝
) + (

1

𝐶𝑜𝑛𝑔
)] + 𝑝[𝐸𝑟 + 𝑐𝑜𝑚]                              (1) 

 
Here, 𝑟𝑡+1 is the reward at time t+1, “𝜌” is the probabilistic variable (taken value from 0 to 1) 

which shows the impact on other variables, like high 𝜌 mean high chances to be selected, ℎ𝑝is the 

hop count, 𝑐𝑜𝑛𝑔is the congestion level, 𝐸𝑟residual energy Etotal= Etx+Erx is the number of 

connectivity.  
Now I calculate the Q_Learning yield function by using the Q_learning matrix, here is the standard 

equation, the Q_Learning equation states that the Q value at a given time (t+1), while the state is (s) 
and action is (a), will be calculated as a reward at that state and action plus a maximum of all possible 
stats and corresponding actions (will select the state which has higher previous value) and multiply 
by ϒ (which is learning rate) as shown in Eq. (2). 

 

𝑄𝑡+1(𝑠, 𝑎) = 𝑟𝑡+1(𝑠, 𝑎) + ϒ ×𝑚𝑎𝑥[𝑄(𝑛𝑒𝑥𝑡( 𝑠) , 𝑎𝑙𝑙_𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒_𝑎𝑐𝑡𝑖𝑜𝑛𝑠( 𝑎/))]      (2) 

 
3. Related Work 

 
Routing is the process of selecting paths for network traffic to travel from its source to its 

destination across a network, it determines the path that data packets should take to reach their 
intended destination efficiently and reliably [13]. Routing enables efficient and effective 
communication between different devices and networks by dynamically adapting to changes in 
network conditions, such as link failures or congestion [33]. It plays a crucial role in ensuring that data 
packets are delivered accurately and promptly to their intended destinations across the complex 
network infrastructure. Routing protocols and algorithms are used to exchange information and 
various metrics, such as hop count, link bandwidth, delay, or cost, to evaluate and select the most 
suitable path for packet delivery. Several issues and challenges can arise in routing, including, 
Topology changes, Link failures, Traffic congestion, Scalability, Routing loops, Routing table overload 
(memory leakage), and Routing protocol convergence [29]. Routing is a complex and ever-evolving 
field. As networks continue to grow and become complex, the challenges of routing will also increase. 
To handle these challenges and offer energy efficiency a few protocols are proposed under the 
category of proactive, reactive, and machine learning-based algorithms and models [8]. 

 
3.1 Proactive Routing Protocols 

 
Also known as a table-driven protocol because all routing information needs to be stored and 

updated in short-term memory called a routing table. Table-driven routing systems rely on regular 
updates to ensure that all mobile nodes have accurate and up-to-date information about the network 
[31,32]. Table-driven routing ensures that connections are always made to every destination on the 
network. Every node must frequently broadcast RREQ so that all receiving nodes ensure accurate 
route information. Routing methods based on tables include Optimal Link State Routing (OLSR) and 
destination-sequenced distance vector (DSDV). 

 
3.1.1 Sequential distance vector routing to multiple destinations (DSDV)   
 

Each entry in the routing table is assigned a sequence number; if a link is present, the number is 
even, otherwise it is odd. If the destination generates the number, the sender must include it in the 
next update. Nodes share routing data by infrequently exchanging complete dumps and more 
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commonly exchanging incremental changes [16]. A guarantee of loop-free DSDV pathways is 
provided due to odd-even number assignment. INQ and RREQ massages can be controlled because 
instead of keeping numerous pathways to each destination, DSDV keeps only the best one. The 
routing tables of this protocol need to be updated regularly, which consumes some bandwidth and 
battery life. A new most recent sequence number is required whenever the topology evolves. But 
when due to mobility, route disturbing probability increase updating can cause CO. 

 
3.1.2 Protocol for optimal link state routing (OLSR)  

 
OLSR uses INQ and topology control (TC) messages, it actively discovers and disseminates 

connection state information across the network. With this knowledge of the network's structure, 
each node may determine the shortest path to the next hop destination for every other node. All 
network destinations are known and updated proactively [11]. OLSR performs well for the small-scale 
network, but due to not defining any quality of a connection mechanism not fit for IoVs. Moreover, 
variants of OLSR which are quite suitable for IoVs consumed high Power and faced bandwidth 
contention. 

These protocols are highly suitable for small-scale static networks; by providing fast and accurate 
routing information, also short-range mobility does not affect table maintenance. However, for a 
large stage and long-range mobility, these models do not provide suitable results. The reason behind 
this is that it can cause flooding into the network and wastage of available resources, Since RREQ 
messages are sent out even when there is no data flow, proactive routing techniques may be wasteful 
of bandwidth. 

 
3.2 Reactive Routing Protocols 
 

Due to the lack of requirement to actively seek out and maintain routes in the absence of data 
traffic, On-Demand (reactive) routing is greatly beneficial under this scenario. In this approach, the 
path between a source and a destination will be found only when it's needed, as opposed to the 
proactive protocols where all paths are kept indefinitely. Therefore, with reactive protocols, we can 
ignore paths that are currently not in use. Moreover, network traffic can be managed by not sending 
unnecessary control messages, which is the main difference between proactive and reactive 
protocols, and the cost of maintaining unused routes can be. Since reactive protocols only calculate 
routes when they are needed, they are significantly slower than proactive ones. Some examples of 
such protocols are hoc on-demand Distance Vector (AODV), Dynamic Source Routing (DSR), and so 
on. 

 
3.2.1 Dynamic source routing (DSR)  
 

By eliminating the need for the periodic table-update messages mandated by the table-driven 
approach, the DSR protocol can reduce the amount of network bandwidth devoted to control 
packets, the sender provides the full route to the destination. The packets are sent along by the INs 
according to the paths they were given by their sources. If a route to the destination exists in the 
node's route [17]. A node's route to its destination can be chosen from among several possible routes, 
additionally, when a connection fails, an error message is sent back to its point of origin, invalidating 
the path. 
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3.2.2 Efficient power aware routing protocol (EPAR)  
 

Protocol for Efficient and Power-Conscious Routing This is an on-demand routing protocol that 
reduces energy usage per packet. EPAR determines a node's capability by measuring its remaining 
battery life and the predicted energy required to reliably transfer data packets over a given link. EPAR 
employs a mini-max formulation to determine the best possible path for transmitting packets while 
minimizing the number of packets lost in the process. The goal of EPAR is to extend the lifetime of 
the network by reducing the variation in the residual energy of all the nodes. Saves power, speeds up 
connections, and lengthens battery life [14]. Authors show that EPAR is used to reduce residual 
energy, save power, speed up connections, and lengthen battery life. Despite ERAR encountering 
issues because while maintaining two paths active and backup, dwindling battery power, follows a 
circuitous routing path that lacks a backup route in case of a link breakdown. 

 
3.3 Machine Learning-Based Energy-Efficient Routing Models 
 

Machine learning (ML) can indeed be used for route optimization to achieve energy efficiency 
under diverse conditions [43]. ML algorithms can examine various factors like traffic patterns, load 
conditions, number of alternative suitable paths, shortest path, and most importantly energy-
efficient routes by using historical data and real-time information [37]. As machine learning 
technology continues to develop, we can expect to see even more innovative ways to use this 
technology to make the model more intelligent and autonomous which adopts as per environmental 
impact to achieve the goal. These systems can be valuable for various IoTs applications, like health 
care, self-driving vehicles, multi-agent gaming apps, smart homes, etc. where energy efficiency is 
crucial [20,26]. Since the last decay number of research focus on this area and proposed ML bade 
models to achieve energy efficiency for specific objectives or handling challenges, few are presented 
here. 

 
3.3.1 Routing protocol for low-power and lossy networks (RPLPL) 
 

Ancillotti et al., [6] proposed the Routing Protocol for Low-Power and Lossy Networks (RPL) link 
quality monitoring scheme has been proposed to keep network routing information current and 
respond immediately to link quality variations and topology changes brought on by nodes' mobility. 
To reduce the overhead brought on by active analytical operations, RL has been used. The proposed 
approach helps to improve packet loss rates and energy consumption, only for single-channel 
networks. While considering only link quality and remaining power not fit for multi hops 
communications, because for long ranges link quality will be compromised and energy level 
decreased exponentially. 

 
3.3.2 State action reward state action (SARSA)   
 

Yang et al., [41] proposed a trusted routing system to save energy during a flooding attack period, 
a model built on blockchain technology and RL has been introduced to enhance secure data 
transactions. The proposed scheme makes use of the tamper-proof (i.e., detection of flooding of 
bombardment of INQ massage), decentralized, and traceability properties of the blockchain to handle 
the routing information, while RL assisted nodes in selecting more reliable and effective relay nodes 
to further develop the model. To choose dependable routing links, the RL algorithm in each routing 
node dynamically learns the trusted routing data on the blockchain. The study's findings demonstrate 
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that adding RL to the blockchain system reduces energy use and improves delay performance even 
when there are 50% of malicious nodes in the routing environment. 

 
3.3.3 Optimized path algorithm based on reinforcement learning (OPABRL) 
  

Liu et al., [22,23] have solved the issue of shortest paths selection in multi hops and estimated 
energy consumption. The authors proposed a relatively shorter path with fewer turns was analyzed 
and found using the OPABRL proposed in these papers. It combined prior RL technology with 
searching for the optimal shortest path algorithm and expected energy consumption. With a 
probability of 98% close to the ideal solution, OPABRL outperforms all other algorithms frequently 
used in intelligent robot trajectory planning in terms of the number of turns, the path lengths, and 
the running time. Metrics include variables like packet loss, data content, the separation between a 
forward node and sink node, and residual energy. OPABRL displays the best results, but they are all 
for a static network and understate the mobility of the nodes when we consider increased mobility 
packet drop rates and power consumption. 

 
3.3.4 Prior knowledge reinforcement learning (PKRL) and RLBPLP 
 

Liu et al., [23] and Pasandideh et al., [30] have created a routing algorithm PKRL and RL best path 
selection with length priority (RLBPLP), which deliberate metrics like packet loss, data content, the 
distance between a forward node and a sink node, residual energy, and these other factors are taken 
into consideration to ensure high throughput while using less energy. By updating the q-value in 
accordance with the metrics gathered, each node learns the behavior of its neighbors and avoids 
unfit nodes in the upcoming routing scheme. Depending on the percentage of participating device 
nodes, the packet delivery rate increased over time. On the other hand, the proposed approaches 
use less energy, because it is distributed and prefers short-range communication, this model is 
vulnerable to flooding in the network. 

 
3.3.5 Clustered state action reward state action (C-SARSA)  
 

Variants of SARSA have been proposed by Aslam et al., [7] for multi-objective optimization 
function known as Clustering SARSA (C-SARSA) for WSN data routing, using clustering and the RL 
method SARSA. The main goals are to distribute energy fairly and extend its idle time, moreover data 
generation rate, energy consumption rate for receiving and sending the data, arrival time, charging 
time, travel time, and field have all been considered. Each node chooses its willingness, which 
indicates whether it can take part in choosing the data route, based on the remaining energy. This 
willingness makes this architecture for fair resource allocation which extends the lifetime but due to 
flat implements architecture, the suggested solution is unsuitable for large-scale WSNs and only 
intended for small networks with low requirements. 

 
3.3.6 Intelligent IoT connectivity deep reinforcement learning (ICDRL) approach 
 

Kwon et al., [21] have developed a Double Deep Q-Network-based (DQN) distributed decision-
making process for multi-hop wireless ad hoc networks. By choosing the best course of action based 
on an online network and calculating the target Q-value of that action using a target network, Double 
DQN addresses the issue of overestimating Q-values. To increase network throughput and reduce 
the amount of corresponding transmission power consumption, each relay node modifies its 
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transmission power to widen or narrow the wave range. ICDRL handles routing optimization issues 
that RL techniques have addressed as path selection in terms of QoS and distance as well as routing 
strategies based on energy efficiency. But due to distributed nature and implementation of double 
calculation make it more complex and increase flooding probability. 

 
3.3.7 Reinforcement learning-based clustering-enhanced protocol (ReLeC) 
 

Sharma et al., [35] have proposed ReLeC protocol that enables devices to make more accurate 
routing decisions, improve next-hop selection, and use less energy by sharing local information with 
the neighborhood. While the sender adds local data to the packet header, neighboring devices' 
routing tables are modified in accordance with the contents of the communicating device's packet 
header. Ids, residual energy value, geographic coordinates. ReLeC has three levels: network 
initialization, CH election and cluster creation, and communication phase, just like other effective, 
clustering-based routing protocols. Simulation results show that high throughput extends the 
network lifetime, but most of the resources used for CH selection, moreover if due to mobility CH 
disturbance probability increased, because ReLeC did not define any rule to maintain CH to avoid 
disturbance due to mobility. 

 
3.3.8 Reinforcement-learning-based energy efficient control and routing protocol (RLBEEP) 
 

Abadi et al., [1] have utilized reinforcement learning (RLBEEP) to maximize the long-term reward 
received by each node when optimizing routing policies. Three energy management strategies have 
been suggested to extend the lifespan of wireless sensor networks. The first strategy is to use 
reinforcement learning to correctly navigate to shorten routes and reduce energy consumption. The 
second strategy is to increase node energy consumption by utilizing a sleep scheduling technique. 
The final method is used to limit each node's data transmission based on the received data change 
rate. Simulation results demonstrate that the proposed method significantly outperforms previously 
reported methods in terms of network lifespan. On the other hand, due distribution nature and 
implementation of three strategies make the implementation more complex and time-consuming. 
CO was also introduced because for all three techniques, more and more INQs of different natures 
need to be broadcast which is the main source of CO, and this overhead reduces. 
 
4. Results  
 

We used the NS3 simulation tool and will deploy up to 100 nodes at random over a sensing field 
in a random fashion under the coverage of BS, in addition, we considered the network to be 
heterogeneous, with devices ranging in energy up to 5 joules maximum as shown in Table 1. All nodes 
can communicate with their neighbor nodes (except nodes that are 1 hop away from BS). Because 
it’s an iterative process, model will run thousands of times to find the optimum path, but when the 
model reaches BS through any route it is called an episode or round. We compare proposed model 
CRLRO with Low-energy adaptive clustering hierarchy (LEACH), Power-Efficient Gathering in Sensor 
Information Systems (PEGASIS) and Energy-Efficient Routing Based on Reinforcement Learning 
(EER_RL), which is currently inducted and implemented also having the same circumstances. 
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Table 1  
Parameters and its value  
Parameter Value 

Network operation area 1 km square 
Number of nodes 25-100 
Initial energy level Up to 5 joules maximum 
Maximum data size 4000 bits 

TxE
 

100 Neno Joules per bit 

RxE
 

50 Neno Joules per bit 


 100*10-9 

 
Network lifetime: The time till the network can transmit and receive data, so to check network 

lifetime we carry out multiple performance checks as compared to LEACH and flat EER-RL. We use 
four matrices in this regard, number of alive nodes vs. time (number of episodes), energy 
consumption at each round, and the time when the first node becomes dead while changing the node 
density (from 25 to 100) This matrix shows the lifetime over time. To check which phase of the model 
consumes how much energy, a phase-wise energy consumption graph will be drawn and evaluated. 

 
4.1 Number of Alive Nodes Over Time 
 

We are going to compare lifetime by evaluating some alive nodes after each episode or round. 
We are putting some episodes at the x-axis and node density at the y-axis, in the first two graphs 
node density is low (25 and 50) then LEACH and flat EER-RL perform well because LEACH use the 
clustering technique, and small networks with few clusters are formed, and the network will manage 
energy efficiently. Moreover, flat EER-RL uses distributed RL with multiple agents’ policy, so after a 
few iterations model will find the optimum path with no more energy consumed. On the other hand, 
when density increases CRLRO shows tremendous results because most of the energy is implemented 
during the reward and Q_matrix updating process which is done by BS, so most of the energy is 
conserved. But in the case of LEACH, the number of cluster increases, and the formation of cluster 
and the selection of cluster head consume much energy, also in the case of Flat EER-RL, due to its 
distributed nature CO occur which consume much energy as shown in Figure 2.  
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Fig. 2. Network lifetime w.r.t network density 

 
4.2 The Time When the First Node Becomes Dead 
 

To evaluate the lifetime, we draw a bar graph, divide this graph into four patches as per node 
density, and calculate the time for each patch as shown in Figure 3.  We notice that LEACH performs 
consistently around (550-600 seconds) at each density level, but this time is quite shorter. Flat EER_RL 
long time at basic three density levels (25,50 and 75) but while reaching 100 exponentially decreased, 
because at 100 node level, CO occurs (in distributed model while increasing node density flooding of 
INQ will start which will cause energy consumption). While CRLCO performs well at high-density level, 
due to reaching request message to BS quickly and sharply, high, and accurate response of BS on each 
request only one-way INQ message is required (instead of two-way INQ for LEACH, Flat EER_RL), 
which conserves the weighty energy. 
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Fig. 3. Time when first node become dead 

 

4.3 Long-Term Energy Consumption Evaluation 
 

Now it’s time to evaluate energy consumption to complete the network for the long term. We 
observed heavy fluctuations in LEACH because its focus on short-term cluster forming and long-term 
cluster maintenance process consumes much energy as depicted in Figure 4. Also, the Flat EER-RL 
model focuses on short-term rewards instead of long-term rewards, due to short-term reward and 
distributed architecture Flat EER-RL consistently consumes more energy. But we see a steady state 
line in the CRLCO model because at each level energy computation is the same because all 
maintenance and updating are done in BS, the source node just sends INQ when required and BS will 
provide a complete path efficiently, no use of much energy. We see in LEACH, initially steady, after 
those heavy fluctuations for much time, then calms down and again at the end energy fluctuations. 
Because of that LEACH applies a cold start strategy (state line at the initial point), then clustering and 
cluster head process start which requires heavy computation and communication for a long time 
(heavy fluctuation in the middle), and finally due to no specific cluster head selection process, may 
require cluster head selection at the end also (again fluctuation at the end also). In the case of the 
Flat EER_RL model, we see a little bit of high consumption at the starting state, then consumption 
variation at the middle and end points. It's because, in the start stage, each node starts broadcasting 
and rebroadcasting to build the RL model (high energy consumption at the initial point), after the RL 
model starts the optimization process which continues till the end and consumes energy. In our 
model cold steady start, and no need for any broadcasting and rebroadcasting message why steady 
state line (starting from the initial point to the middle). After that HM is initiated by BS and all nodes 
start responding that why energy fluctuation is observed in the middle, after BS build a model and 
optimize it by using its energy (BS energy is not included in network energy). 
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Fig. 4.  Phase wise energy consumption 

 
5. Conclusions 
 

Our research presents a route optimization model under diverse conditions, that successfully 
improves the network lifetime on the Internet of Vehicles by minimizing communication overhead. 
By implementing RL approach in a centralized form, we successfully control the communication 
overhead which further leads to minimize energy consumption. We evaluated our model in multiple 
directions and found much better results under different possible situations with respect to LEACH, 
PEGASIS and EER_RL. The implications of this research use its knowledge of the network to make 
optimal extend beyond the IoV, as the concepts and methodologies can be applied to other dynamic 
and resource-constrained networks as well. As the IoV continues to evolve and expand, our model 
can serve as a valuable tool to optimize communication, promote sustainability, and ensure a 
seamless and reliable vehicular networking experience. 
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