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Software-Defined Networking (SDN) has been introduced as a new approach to 
networking for designing and managing computer networks. SDN architecture 
decouples control and data planes, enabling programmable network management. 
The significant component is the Controller, which is responsible for managing and 
distributing information to all network devices. While prior studies evaluate SDN 
controllers, comprehensive comparisons across multiple topologies and performance 
metrics remain limited. This paper addresses this gap by analysing and comparing the 
performance of the Ryu, OpenDayLight and Floodlight controllers under single, linear 
and tree network topologies using Mininet. The performance parameters considered 
include round-trip time (RTT), throughput, jitter and packet delivery ratio. The results 
indicate that in linear and tree topologies, Ryu exhibited the lowest RTT, highest 
bandwidth and lowest jitter compared to the ODL and Floodlight controllers. 
Conversely, in the single topology, Floodlight demonstrated the lowest jitter, while Ryu 
maintained the lowest RTT and highest bandwidth. In conclusion, Ryu is often 
preferred in scenarios requiring lower latency and higher throughput, particularly in 
more complex network topologies. However, Floodlight may still be advantageous in 
simpler topologies where minimizing jitter is critical. This comprehensive evaluation 
not only aids in controller selection but also informs future enhancements in SDN 
architecture and performance benchmarking methodologies, which will be 
implemented in modern data centres. 
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1. Introduction 
1.1 Background 
 

In today’s world of technology, the diversified increase of new technologies such as big data, 
cloud computing and Internet of Things reveal that the business volume is also increasing. There has 
been a growing challenge over the existing network architecture with the additional data forwarding 
and routing devices, for example, switches and routers, which are highly outfitted with the policies 
and control requirements. This challenge stems from the research conducted by Liu et al., [1] that 
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the traditional network architecture is rigid yet complex to configure and manage. The control plane 
and data plane of traditional network forwarding devices are tightly coupled and the manual 
configuration of them is time consuming and error prone. The challenge is upgraded when the 
network is built from different vendors. In the wake of the hurdles, the idea of programmable 
networks was introduced by Campbell et al., [2], attempted to resolve limitations of conceptual 
network framework. The proposed solution has brought to a series of research and eventually, the 
concept of Software-Defined Networking (SDN) was proposed in 2009 [3]. 

Several major modifications of network infrastructures in SDN to adapt the current demand [4]. 
The control and data planes are decoupled and communicated via southbound interface, 
transforming the rigid traditional network architecture into vendor-neutral, software-based network 
infrastructures with flexibility in self-development and evolution. This flexibility is further enhanced 
by the introduction of application plane which provides the programmability towards the centralized 
controller at the control plane, supported by northbound interface. The programmable controller 
acts the core of the SDN as it controls the network behaviour based on the high-level rules set. Hence, 
the controller used is crucial for a network performance.  

 
1.2 Problem Statement 

 
The rapid development of Software-Defined Networking (SDN) has led to the proliferation of 

diverse controllers, with Ryu, OpenDayLight (ODL) and Floodlight emerging as widely adopted 
solutions [5]. However, existing research exhibits critical gaps: 
 

i. limited comparative analysis of these controllers’ inherent features (e.g., architectural design, 
protocol support, scalability) 

ii. insufficient exploration of their performance across varied network topologies (e.g., single, 
linear, tree)  

iii. fragmented evaluation of critical metrics such as latency, throughput, jitter and packet 
delivery ratio under topology-specific conditions.  

 
Prior studies often focus on isolated parameters or simplified topologies, neglecting the interplay 

between controller architecture, topology complexity and multi-metric performance. This work 
addresses these gaps by conducting a systematic evaluation of Ryu, ODL and Floodlight across single, 
linear and tree topologies, providing empirical insights to guide controller selection based on network 
requirements and operational environments. 
 
1.3 Contributions 

 
The key contributions of this study: 
 

i. Comprehensive Evaluation: Ryu, ODL and Floodlight are analysed under diverse topologies, 
incorporating both TCP and UDP traffic to assess throughput, latency, jitter and packet 
delivery ratio. 

ii. Architectural Insights: Performance outcomes are correlated with controller design principles, 
demonstrating Ryu’s Python-based asynchronous processing excels in complex topologies, 
whereas Floodlight’s Java-based modularity benefits simpler setups. 



Journal of Advanced Research Design 

Volume 132 Issue 1 (2025) 103-114  

105 

iii. Practical Guidelines: Evidence-based recommendations for controller selection are provided, 
tailored to network scale and application requirements, such as prioritizing Ryu for data 
centres and Floodlight for real-time communication. 

 
2. Literature Review 

 
The performance of SDN controllers has been extensively studied, yet existing literature exhibits 

critical limitations. Early work by Mamushiane et al., [5] has evaluated the performance of Ryu, 
Floodlight, ONOS and OpenDaylight in terms of throughput and latency using the same topology. The 
experiment is setup by varying the number of switches in first scenarios and the number of MACs in 
another. In this paper, ONOS is found to have the best performance in terms of throughput and Ryu 
is best in terms of least latency. 

The performance analysis is done by Bholebawa et al., [6] using Floodlight, a Java-based controller 
and POX, a python-based controller. The RTT and throughput of the controllers are analysed under 
single, linear, tree and custom topologies. This research found that Floodlight outperforms POX in 
both metrics. 

Work done by Rowshanrad et al., [7] is to evaluate and compare the performances of the SDN 
controllers namely Floodlight and OpenDayLight in different topologies which are single, linear and 
tree topologies. The performance metrics involved are traffic loads, delay and packet loss. The results 
demonstrate that, in terms of latency, OpenDaylight performs better than Floodlight in both low-
loaded networks and tree topology of medium-loaded networks. In heavily-loaded networks, 
Floodlight can surpass OpenDaylight in terms of latency and packet loss for linear topology and tree 
topology, respectively. 

In Gupta et al., [8] the effects of several SDN controllers on SDN are analysed as controller is the 
core element in SDN that influences the network performance. The work done by researches in past 
9 years is used in the study. The functionalities and features of several controllers such as Beacon, 
Faucet, Nox, POX, ONOS, OpenDayLight, Ryu, Floodlight, Trema and MUL are discussed. This paper 
concluded that different controllers have their suitable use cases and the selection of the controller 
is reflected to its intention. 

From Askar et al., [9], the performance of POX and Ryu controllers are evaluated in the aspect of 
throughput, round-trip time and jitter using single topologies only. It was found that Ryu controller 
performed better than POX controller. 

The work conducted by Chouhan et al., [10] is to compare the performance between Ryu and 
Floodlight controller under several network topologies such as single, linear, tree, torus and custom. 
The metrics involved are latency, throughput, packet loss and jitter. It was found that the 
performance of Ryu is better than Floodlight in all topologies of all metrics except the latency and 
jitter of torus topology and packet loss of linear topology. 

Arahunashi et al., [11] has compared the performance between Ryu, OpenDayLight and ONOS 
controllers using linear, tree and mesh topologies. The parameters considered are average latency 
and throughput. Through the work done, Floodlight controller is found to have best performance. 

In summary, the network performance of several controllers is analysed in different network 
parameters using different network topologies. The network performance SDN controllers are 
selected according to their popularity and previous work performances. In this paper, the popular 
parameters according to previous work which are round-trip time, throughput, jitter and packet 
delivery ratio will be all analysed under various network topologies which are single, linear and tree 
topologies for a more comprehensive review. This approach not only validates prior findings but also 
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reveals new insights, such as Ryu’s superiority in tree topologies and Floodlight’s efficiency in 
minimizing jitter. 

 
3. Methodology 
3.1 Experiment Setup  

 
The Mininet and the controllers are installed on the laptop configured with AMD Ryzen 7 4800H 

CPU @2.90 GHz processor, 512SSD and 16GB RAM running the Linux Operating System Ubuntu 
version 20.04.6 LTS-64 bit. 

 
3.2 Features of Ryu, OpenDayLight and Floodlight 

 
Table 1 provides the overview of the features supported by Ryu, OpenDayLight and Floodlight 

controllers. This table is updated from several works being compared to verity the features of the 
controllers [12-15].  
 

Table 1 
Feature comparison 
Feature Ryu OpenDayLight Floodlight 

Southbound Interfaces OpenFlow 1.0, 1.2, 1.3, 1.4, 
1.5, NETCONF, OFCONFIG, 
OVSDB 

OpenFlow 1.0, 1.3, 1.4, 1.5, NETCONF, 
OFCONFIG, YANG Model, SNMP, 
OVSDB, PCEP, LISP, BGP/LS  

OpenFlow 1.0, 
1.1, 1.2, 1.3, 1.4, 
1.5 

REST API Yes (For SB only) Yes Yes 
GUI Yes (Initial Phase) Web-based Java/Web-based 
Modularity Medium Medium High 
Productivity Medium Medium Medium 
OS Support Most supported-on Linux Linux, MAC, Windows Linux, MAC, 

Windows 
Partnership Nippo Telegraph and 

Telephone Corporation 
(NTT) 

Linux Foundation with membership 
covering more than 40 companies 

Big Switch 
Networks 

Documentation Medium Very good Good 
Programming Language Python Java Java 
Distributed/Centralized Centralized Distributed Centralized 
Virtualization Open vSwitch and Mininet Open vSwitch and Mininet Open vSwitch and 

Mininet 
Multi- threading 
support 

Yes Yes Yes 

Application domain Campus Transport-SDN WAN, data centre Campus 
SDN deployment scale Small/Medium  Small 
Cloud orchestrator 
support 

Yes Yes No 

 
3.3 Mininet 

 
Mininet is an open-source, lightweight network virtualization emulator that is crucial for SDN 

research, particularly for creating the SDN network topologies. Mininet allows the emulation of 
switches, hosts and links to stimulate the network environments via Linux containers. Without 
requiring the physical network infrastructures, Mininet provides a versatile environment for network 
building, testing and education purposes such as experimenting with different network 
configurations and protocols. 
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Mininet supports a variety of features to stimulate the network environments. It supports Python 
scripts, allowing the customization of the functionalities. Users can use default or develop custom 
network topologies in Mininet, saving time in building topology. Mininet supports OpenFlow protocol 
for the communication between control plane and data plane. With the OpenFlow protocol, the 
network built can be controlled in aspects such as traffic forwarding, topology discovery and Quality 
of Service. In addition, Mininet provides tools which aid in monitoring the network traffic and 
performance analysis. 

 
3.4 Network Topologies 

 
Network topology describes the structure of the network physically and logically. Mininet is an 

emulation tool with various default topologies [16]. The performances of Ryu, OpenDayLight and 
Floodlight controllers are tested using the default single, linear and tree topologies in Mininet. 

Single topology is built with 1 switch and 27 hosts and Figure 1 shows the single topology 
generated. 

 
Fig. 1. Single topology view in OpenDayLight 

 
Linear topology is built with 9 switches and 27 hosts and Figure 2 shows the linear topology 

generated. 
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Fig. 2. Linear topology view in OpenDayLight 

 
Tree topology is built with the depth (number of levels of the switch) of 3 and the fanout (the 

number of output ports) of 3. Hence, 13 switches and 27 hosts are generated. Switch 1 of the tree 
topology is set as root node as shown in Figure 3.  
 

 
Fig. 3. Root node command 

 
Figure 4 shows the tree topology generated. 

 

 
Fig. 4. Tree topology view in OpenDayLight 
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3.5 Performance Parameters 
3.5.1 Latency 

 
The latency is measured using the round-trip time (RTT) which is the time taken for the data 

packet to reach the destination and return to the source. As shown by Shirvar et al., [17] the round-
trip time can be calculated using the formula RTT = Time of packet received – Time of packet 
departed. 

To collect the average RTT, the latency tests of Ryu, OpenDayLight and Floodlight controllers are 
conducted by executing the ICMP connectivity. Average RTT of each controller under each topology 
will be collected when 10 packets are ping from host 1 to host 27.  

 
3.5.2 Throughput 

 
From the Punithavathani et al., [18], the throughput can be calculated using the formula T=P/t 

where T represents throughput, P represents packet size of the data transferred and t represents 
time cost in transferring.  

To evaluate this parameter, Iperf3 command is executed in Mininet. The average TCP and UDP 
bandwidth of each controller under each topology are collected within 10 intervals. In bandwidth 
test, host 1 will set as the client and host 27 as the server. The packets will be sent as many from the 
client to server. 

 
3.5.3 Jitter 

 
Jitter of each controller under each topology can be observed when the UDP bandwidth is 

executed. Calculated as the variance in packet arrival times during UDP tests. 
 

3.5.4 Packet delivery ratio 
 
As shown in Fazeldehkordi et al., [19], the packet delivery ratio can be calculated using the 

formula PDR=R/S where PDR represents packet delivery ratio, R represents total number of packets 
received and S represents total number of packets send. The total packet loss and total packet sent 
of each controller under each topology can be collected when the UDP bandwidth is executed. 
 
4. Results  

 
The RTT, TCP throughput, UDP throughput, jitter and packet delivery ratio are tested using 

Mininet connected to Ryu, OpenDayLight and Floodlight controllers sequentially under single, linear 
and tree topologies. The hosts involved are host 1 and host 27.  

From the graph shown in Figure 5, when the RTT is compared from the aspect of controllers, Ryu 
controller has the lowest average RTT, followed by OpenDayLight controller and then Floodlight 
controller in single and linear topologies. In tree topology, the average RTT of Ryu controller remains 
the lowest, followed by the Floodlight controller and then the OpenDayLight controller. In another 
hand, when average RTT is compared from the aspect of topologies, single topology has the lowest 
average RTT, followed by tree topology and then the linear topology for both Ryu and OpenDayLight 
controllers. However, in Floodlight controller, tree topology has a lower average RTT than single 
topology and linear topology remains to have the highest average RTT.  
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Fig. 5. RTT comparison 

 
From the graph shown in Figure 6, when the TCP bandwidth is compared from the aspect of 

controllers, Ryu controller has the highest average TCP bandwidth, followed by Floodlight controller 
and then OpenDayLight controller in linear and tree topologies. In single topology, the average TCP 
bandwidth of Ryu controller is still the highest, followed by the OpenDayLight controller and then the 
Floodlight controller. In another hand, when average TCP bandwidth is compared from the aspect of 
topologies, single topology has the highest average bandwidth, followed by tree topology and then 
the linear topology for both OpenDayLight and Floodlight controllers. However, in Ryu controller, 
tree topology has a highest average bandwidth than single topology and linear topology remains to 
have the lowest average bandwidth.  

 
Fig. 6. TCP bandwidth comparison 
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From the graph shown in Figure 7, when the UDP bandwidth is compared from the aspect of 
controllers, Ryu controller has the highest average UDP bandwidth, followed by Floodlight controller 
and then OpenDayLight controller in linear and tree topologies. In single topology, the average TCP 
bandwidth of Ryu controller is still the highest, followed by the OpenDayLight controller and then the 
Floodlight controller. In another hand, when average TCP bandwidth is compared from the aspect of 
topologies, single topology has the highest average UDP bandwidth, followed by tree topology and 
then the linear topology for all controllers.  

 
Fig. 7. UDP bandwidth comparison 

 
Based on Figure 5 until Figure 7, Ryu exhibited superior performance in complex topologies, 

achieving the lowest RTT (0.068 ms in single topology), highest TCP bandwidth (55.8 Mbps in tree 
topology) and highest UDP bandwidth (42.5 Mbps in single topology). This is attributed to its 
lightweight Python architecture, which minimizes processing overhead. In contrast, Floodlight’s Java-
based design incurred higher latency (0.77 ms in linear topology) but delivered stable TCP throughput 
(52.2 Mbps in linear topology), ideal for environments prioritizing reliability over speed. ODL, despite 
its modularity, lagged in both metrics due to resource-intensive features like SNMP and BGP support. 

From the graph shown in Figure 8, when the jitter is compared from the aspect of controllers, 
Ryu controller has the lowest average jitter, followed by OpenDayLight controller and then Floodlight 
controller in linear and tree topologies. In single topology, the average jitter of Floodlight controller 
is the lowest, followed by the Ryu controller which remains lower than OpenDayLight controller. In 
another hand, when average jitter is compared from the aspect of topologies, single topology has 
the lowest average jitter, followed by tree topology and then the linear topology for both the 
OpenDayLight and Floodlight controllers. However, in Ryu controller, tree topology has a lower 
average jitter than single topology and linear topology remains to have the highest average 
bandwidth.  
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Fig. 8. Jitter comparison 

 
From the graph shown in Figure 9, the packet delivery ratio of all controllers under all network 

topology is 1, which means that there is no packet loss. The result is due to the small network, running 
on the same machines.  

 
Fig. 9. Packet delivery ratio comparison 
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Single topologies favoured Floodlight due to minimal switch-controller interactions, while Ryu 
thrived in tree topologies by efficiently managing distributed flows. ODL’s performance suffered in 
all topologies, highlighting the trade-offs of modular design. 

 
5. Conclusion & Future Work 

 
This study offers a comprehensive analysis of SDN controller performance, highlighting the critical 

influence of network topology and architectural design on operational efficiency. The findings 
demonstrate that Ryu, with its lightweight Python-based architecture, excels in scalable, high-
throughput environments such as data centres, delivering superior performance in complex 
topologies. Conversely, Floodlight’s Java-based modularity proves advantageous in simpler 
topologies like enterprise LANs, where minimizing jitter for latency-sensitive applications is 
paramount. Meanwhile, OpenDayLight’s modular framework, while versatile, necessitates 
optimization to mitigate resource overhead. Future research should prioritize extending these 
evaluations to real-world SDN deployments with heterogeneous traffic patterns to validate scalability 
under practical conditions. Additionally, exploring machine learning-driven dynamic controller 
adaptation could enhance responsiveness in fluctuating network environments. Further investigation 
into hybrid topologies, such as fat-tree architectures, would provide deeper insights into scalability 
limits and controller robustness in large-scale, distributed networks. These directions promise to 
refine SDN benchmarking methodologies and inform the development of adaptive, topology-aware 
controller solutions. 
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