

Journal of Advanced Research Design 132, Issue 1 (2025) 103-114

103

Journal of Advanced Research Design

Journal homepage:
https://akademiabaru.com/submit/index.php/ard

ISSN: 2289-7984

Performance Evaluation of Ryu, OpenDayLight and Floodlight Controllers
in Diverse Software-Defined Networking Topologies

Diong Hui1, Wei Siang Hoh1,*, Bi Lynn Ong2, XinPing Zhu3, Si-Kee Yoon1

1

2

3

Faculty of Computing, Universiti Malaysia Pahang Al-Sultan Abdullah, 26600 Pekan, Pahang, Malaysia
Faculty of Electronic Engineering Technology, Universiti Malaysia Perlis, 02600 Ulu Pauh, Perlis, Malaysia
Faculty of Software, Harbin Institute of Information Technology, Heilongjiang 150001, China

ARTICLE INFO ABSTRACT

Article history:
Received 6 January 2025
Received in revised form 7 February 2025
Accepted 2 May 2025
Available online 23 May 2025

Software-Defined Networking (SDN) has been introduced as a new approach to
networking for designing and managing computer networks. SDN architecture
decouples control and data planes, enabling programmable network management.
The significant component is the Controller, which is responsible for managing and
distributing information to all network devices. While prior studies evaluate SDN
controllers, comprehensive comparisons across multiple topologies and performance
metrics remain limited. This paper addresses this gap by analysing and comparing the
performance of the Ryu, OpenDayLight and Floodlight controllers under single, linear
and tree network topologies using Mininet. The performance parameters considered
include round-trip time (RTT), throughput, jitter and packet delivery ratio. The results
indicate that in linear and tree topologies, Ryu exhibited the lowest RTT, highest
bandwidth and lowest jitter compared to the ODL and Floodlight controllers.
Conversely, in the single topology, Floodlight demonstrated the lowest jitter, while Ryu
maintained the lowest RTT and highest bandwidth. In conclusion, Ryu is often
preferred in scenarios requiring lower latency and higher throughput, particularly in
more complex network topologies. However, Floodlight may still be advantageous in
simpler topologies where minimizing jitter is critical. This comprehensive evaluation
not only aids in controller selection but also informs future enhancements in SDN
architecture and performance benchmarking methodologies, which will be
implemented in modern data centres.

Keywords:

SDN; network emulation; Mininet; Ryu;
OpenDayLight; Floodlight

1. Introduction
1.1 Background

In today’s world of technology, the diversified increase of new technologies such as big data,
cloud computing and Internet of Things reveal that the business volume is also increasing. There has
been a growing challenge over the existing network architecture with the additional data forwarding
and routing devices, for example, switches and routers, which are highly outfitted with the policies
and control requirements. This challenge stems from the research conducted by Liu et al., [1] that

* Corresponding author
E-mail address: weisiang@umpsa.edu.my

https://doi.org/10.37934/ard.132.1.103114

https://akademiabaru.com/submit/index.php/ard

Journal of Advanced Research Design

Volume 132 Issue 1 (2025) 103-114

104

the traditional network architecture is rigid yet complex to configure and manage. The control plane
and data plane of traditional network forwarding devices are tightly coupled and the manual
configuration of them is time consuming and error prone. The challenge is upgraded when the
network is built from different vendors. In the wake of the hurdles, the idea of programmable
networks was introduced by Campbell et al., [2], attempted to resolve limitations of conceptual
network framework. The proposed solution has brought to a series of research and eventually, the
concept of Software-Defined Networking (SDN) was proposed in 2009 [3].

Several major modifications of network infrastructures in SDN to adapt the current demand [4].
The control and data planes are decoupled and communicated via southbound interface,
transforming the rigid traditional network architecture into vendor-neutral, software-based network
infrastructures with flexibility in self-development and evolution. This flexibility is further enhanced
by the introduction of application plane which provides the programmability towards the centralized
controller at the control plane, supported by northbound interface. The programmable controller
acts the core of the SDN as it controls the network behaviour based on the high-level rules set. Hence,
the controller used is crucial for a network performance.

1.2 Problem Statement

The rapid development of Software-Defined Networking (SDN) has led to the proliferation of

diverse controllers, with Ryu, OpenDayLight (ODL) and Floodlight emerging as widely adopted
solutions [5]. However, existing research exhibits critical gaps:

i. limited comparative analysis of these controllers’ inherent features (e.g., architectural design,
protocol support, scalability)

ii. insufficient exploration of their performance across varied network topologies (e.g., single,
linear, tree)

iii. fragmented evaluation of critical metrics such as latency, throughput, jitter and packet
delivery ratio under topology-specific conditions.

Prior studies often focus on isolated parameters or simplified topologies, neglecting the interplay

between controller architecture, topology complexity and multi-metric performance. This work
addresses these gaps by conducting a systematic evaluation of Ryu, ODL and Floodlight across single,
linear and tree topologies, providing empirical insights to guide controller selection based on network
requirements and operational environments.

1.3 Contributions

The key contributions of this study:

i. Comprehensive Evaluation: Ryu, ODL and Floodlight are analysed under diverse topologies,
incorporating both TCP and UDP traffic to assess throughput, latency, jitter and packet
delivery ratio.

ii. Architectural Insights: Performance outcomes are correlated with controller design principles,
demonstrating Ryu’s Python-based asynchronous processing excels in complex topologies,
whereas Floodlight’s Java-based modularity benefits simpler setups.

Journal of Advanced Research Design

Volume 132 Issue 1 (2025) 103-114

105

iii. Practical Guidelines: Evidence-based recommendations for controller selection are provided,
tailored to network scale and application requirements, such as prioritizing Ryu for data
centres and Floodlight for real-time communication.

2. Literature Review

The performance of SDN controllers has been extensively studied, yet existing literature exhibits

critical limitations. Early work by Mamushiane et al., [5] has evaluated the performance of Ryu,
Floodlight, ONOS and OpenDaylight in terms of throughput and latency using the same topology. The
experiment is setup by varying the number of switches in first scenarios and the number of MACs in
another. In this paper, ONOS is found to have the best performance in terms of throughput and Ryu
is best in terms of least latency.

The performance analysis is done by Bholebawa et al., [6] using Floodlight, a Java-based controller
and POX, a python-based controller. The RTT and throughput of the controllers are analysed under
single, linear, tree and custom topologies. This research found that Floodlight outperforms POX in
both metrics.

Work done by Rowshanrad et al., [7] is to evaluate and compare the performances of the SDN
controllers namely Floodlight and OpenDayLight in different topologies which are single, linear and
tree topologies. The performance metrics involved are traffic loads, delay and packet loss. The results
demonstrate that, in terms of latency, OpenDaylight performs better than Floodlight in both low-
loaded networks and tree topology of medium-loaded networks. In heavily-loaded networks,
Floodlight can surpass OpenDaylight in terms of latency and packet loss for linear topology and tree
topology, respectively.

In Gupta et al., [8] the effects of several SDN controllers on SDN are analysed as controller is the
core element in SDN that influences the network performance. The work done by researches in past
9 years is used in the study. The functionalities and features of several controllers such as Beacon,
Faucet, Nox, POX, ONOS, OpenDayLight, Ryu, Floodlight, Trema and MUL are discussed. This paper
concluded that different controllers have their suitable use cases and the selection of the controller
is reflected to its intention.

From Askar et al., [9], the performance of POX and Ryu controllers are evaluated in the aspect of
throughput, round-trip time and jitter using single topologies only. It was found that Ryu controller
performed better than POX controller.

The work conducted by Chouhan et al., [10] is to compare the performance between Ryu and
Floodlight controller under several network topologies such as single, linear, tree, torus and custom.
The metrics involved are latency, throughput, packet loss and jitter. It was found that the
performance of Ryu is better than Floodlight in all topologies of all metrics except the latency and
jitter of torus topology and packet loss of linear topology.

Arahunashi et al., [11] has compared the performance between Ryu, OpenDayLight and ONOS
controllers using linear, tree and mesh topologies. The parameters considered are average latency
and throughput. Through the work done, Floodlight controller is found to have best performance.

In summary, the network performance of several controllers is analysed in different network
parameters using different network topologies. The network performance SDN controllers are
selected according to their popularity and previous work performances. In this paper, the popular
parameters according to previous work which are round-trip time, throughput, jitter and packet
delivery ratio will be all analysed under various network topologies which are single, linear and tree
topologies for a more comprehensive review. This approach not only validates prior findings but also

Journal of Advanced Research Design

Volume 132 Issue 1 (2025) 103-114

106

reveals new insights, such as Ryu’s superiority in tree topologies and Floodlight’s efficiency in
minimizing jitter.

3. Methodology
3.1 Experiment Setup

The Mininet and the controllers are installed on the laptop configured with AMD Ryzen 7 4800H

CPU @2.90 GHz processor, 512SSD and 16GB RAM running the Linux Operating System Ubuntu
version 20.04.6 LTS-64 bit.

3.2 Features of Ryu, OpenDayLight and Floodlight

Table 1 provides the overview of the features supported by Ryu, OpenDayLight and Floodlight

controllers. This table is updated from several works being compared to verity the features of the
controllers [12-15].

Table 1
Feature comparison
Feature Ryu OpenDayLight Floodlight

Southbound Interfaces OpenFlow 1.0, 1.2, 1.3, 1.4,
1.5, NETCONF, OFCONFIG,
OVSDB

OpenFlow 1.0, 1.3, 1.4, 1.5, NETCONF,
OFCONFIG, YANG Model, SNMP,
OVSDB, PCEP, LISP, BGP/LS

OpenFlow 1.0,
1.1, 1.2, 1.3, 1.4,
1.5

REST API Yes (For SB only) Yes Yes
GUI Yes (Initial Phase) Web-based Java/Web-based
Modularity Medium Medium High
Productivity Medium Medium Medium
OS Support Most supported-on Linux Linux, MAC, Windows Linux, MAC,

Windows
Partnership Nippo Telegraph and

Telephone Corporation
(NTT)

Linux Foundation with membership
covering more than 40 companies

Big Switch
Networks

Documentation Medium Very good Good
Programming Language Python Java Java
Distributed/Centralized Centralized Distributed Centralized
Virtualization Open vSwitch and Mininet Open vSwitch and Mininet Open vSwitch and

Mininet
Multi- threading
support

Yes Yes Yes

Application domain Campus Transport-SDN WAN, data centre Campus
SDN deployment scale Small/Medium Small
Cloud orchestrator
support

Yes Yes No

3.3 Mininet

Mininet is an open-source, lightweight network virtualization emulator that is crucial for SDN

research, particularly for creating the SDN network topologies. Mininet allows the emulation of
switches, hosts and links to stimulate the network environments via Linux containers. Without
requiring the physical network infrastructures, Mininet provides a versatile environment for network
building, testing and education purposes such as experimenting with different network
configurations and protocols.

Journal of Advanced Research Design

Volume 132 Issue 1 (2025) 103-114

107

Mininet supports a variety of features to stimulate the network environments. It supports Python
scripts, allowing the customization of the functionalities. Users can use default or develop custom
network topologies in Mininet, saving time in building topology. Mininet supports OpenFlow protocol
for the communication between control plane and data plane. With the OpenFlow protocol, the
network built can be controlled in aspects such as traffic forwarding, topology discovery and Quality
of Service. In addition, Mininet provides tools which aid in monitoring the network traffic and
performance analysis.

3.4 Network Topologies

Network topology describes the structure of the network physically and logically. Mininet is an

emulation tool with various default topologies [16]. The performances of Ryu, OpenDayLight and
Floodlight controllers are tested using the default single, linear and tree topologies in Mininet.

Single topology is built with 1 switch and 27 hosts and Figure 1 shows the single topology
generated.

Fig. 1. Single topology view in OpenDayLight

Linear topology is built with 9 switches and 27 hosts and Figure 2 shows the linear topology

generated.

Journal of Advanced Research Design

Volume 132 Issue 1 (2025) 103-114

108

Fig. 2. Linear topology view in OpenDayLight

Tree topology is built with the depth (number of levels of the switch) of 3 and the fanout (the

number of output ports) of 3. Hence, 13 switches and 27 hosts are generated. Switch 1 of the tree
topology is set as root node as shown in Figure 3.

Fig. 3. Root node command

Figure 4 shows the tree topology generated.

Fig. 4. Tree topology view in OpenDayLight

Journal of Advanced Research Design

Volume 132 Issue 1 (2025) 103-114

109

3.5 Performance Parameters
3.5.1 Latency

The latency is measured using the round-trip time (RTT) which is the time taken for the data

packet to reach the destination and return to the source. As shown by Shirvar et al., [17] the round-
trip time can be calculated using the formula RTT = Time of packet received – Time of packet
departed.

To collect the average RTT, the latency tests of Ryu, OpenDayLight and Floodlight controllers are
conducted by executing the ICMP connectivity. Average RTT of each controller under each topology
will be collected when 10 packets are ping from host 1 to host 27.

3.5.2 Throughput

From the Punithavathani et al., [18], the throughput can be calculated using the formula T=P/t

where T represents throughput, P represents packet size of the data transferred and t represents
time cost in transferring.

To evaluate this parameter, Iperf3 command is executed in Mininet. The average TCP and UDP
bandwidth of each controller under each topology are collected within 10 intervals. In bandwidth
test, host 1 will set as the client and host 27 as the server. The packets will be sent as many from the
client to server.

3.5.3 Jitter

Jitter of each controller under each topology can be observed when the UDP bandwidth is

executed. Calculated as the variance in packet arrival times during UDP tests.

3.5.4 Packet delivery ratio

As shown in Fazeldehkordi et al., [19], the packet delivery ratio can be calculated using the

formula PDR=R/S where PDR represents packet delivery ratio, R represents total number of packets
received and S represents total number of packets send. The total packet loss and total packet sent
of each controller under each topology can be collected when the UDP bandwidth is executed.

4. Results

The RTT, TCP throughput, UDP throughput, jitter and packet delivery ratio are tested using

Mininet connected to Ryu, OpenDayLight and Floodlight controllers sequentially under single, linear
and tree topologies. The hosts involved are host 1 and host 27.

From the graph shown in Figure 5, when the RTT is compared from the aspect of controllers, Ryu
controller has the lowest average RTT, followed by OpenDayLight controller and then Floodlight
controller in single and linear topologies. In tree topology, the average RTT of Ryu controller remains
the lowest, followed by the Floodlight controller and then the OpenDayLight controller. In another
hand, when average RTT is compared from the aspect of topologies, single topology has the lowest
average RTT, followed by tree topology and then the linear topology for both Ryu and OpenDayLight
controllers. However, in Floodlight controller, tree topology has a lower average RTT than single
topology and linear topology remains to have the highest average RTT.

Journal of Advanced Research Design

Volume 132 Issue 1 (2025) 103-114

110

Fig. 5. RTT comparison

From the graph shown in Figure 6, when the TCP bandwidth is compared from the aspect of

controllers, Ryu controller has the highest average TCP bandwidth, followed by Floodlight controller
and then OpenDayLight controller in linear and tree topologies. In single topology, the average TCP
bandwidth of Ryu controller is still the highest, followed by the OpenDayLight controller and then the
Floodlight controller. In another hand, when average TCP bandwidth is compared from the aspect of
topologies, single topology has the highest average bandwidth, followed by tree topology and then
the linear topology for both OpenDayLight and Floodlight controllers. However, in Ryu controller,
tree topology has a highest average bandwidth than single topology and linear topology remains to
have the lowest average bandwidth.

Fig. 6. TCP bandwidth comparison

0.241

0.77

0.1210.107

0.523

0.441

0.068

0.133 0.112

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Single Linear Tree

Ti
m

e
(m

s)

Type of Topology

Average RTT

Floodlight

OpenDayLight

Ryu

52.9 52.2 52.453.5

34.9 35

54.9 54.7 55.8

0

10

20

30

40

50

60

Single Linear Tree

A
ve

ra
ge

 B
an

d
w

id
th

 (
M

b
it

s/
se

c)

Type of Topology

Average TCP Bandwidth

Floodlight

OpenDayLight

Ryu

Journal of Advanced Research Design

Volume 132 Issue 1 (2025) 103-114

111

From the graph shown in Figure 7, when the UDP bandwidth is compared from the aspect of
controllers, Ryu controller has the highest average UDP bandwidth, followed by Floodlight controller
and then OpenDayLight controller in linear and tree topologies. In single topology, the average TCP
bandwidth of Ryu controller is still the highest, followed by the OpenDayLight controller and then the
Floodlight controller. In another hand, when average TCP bandwidth is compared from the aspect of
topologies, single topology has the highest average UDP bandwidth, followed by tree topology and
then the linear topology for all controllers.

Fig. 7. UDP bandwidth comparison

Based on Figure 5 until Figure 7, Ryu exhibited superior performance in complex topologies,

achieving the lowest RTT (0.068 ms in single topology), highest TCP bandwidth (55.8 Mbps in tree
topology) and highest UDP bandwidth (42.5 Mbps in single topology). This is attributed to its
lightweight Python architecture, which minimizes processing overhead. In contrast, Floodlight’s Java-
based design incurred higher latency (0.77 ms in linear topology) but delivered stable TCP throughput
(52.2 Mbps in linear topology), ideal for environments prioritizing reliability over speed. ODL, despite
its modularity, lagged in both metrics due to resource-intensive features like SNMP and BGP support.

From the graph shown in Figure 8, when the jitter is compared from the aspect of controllers,
Ryu controller has the lowest average jitter, followed by OpenDayLight controller and then Floodlight
controller in linear and tree topologies. In single topology, the average jitter of Floodlight controller
is the lowest, followed by the Ryu controller which remains lower than OpenDayLight controller. In
another hand, when average jitter is compared from the aspect of topologies, single topology has
the lowest average jitter, followed by tree topology and then the linear topology for both the
OpenDayLight and Floodlight controllers. However, in Ryu controller, tree topology has a lower
average jitter than single topology and linear topology remains to have the highest average
bandwidth.

40.1

31.4

36.6

40.9

7.6 8.18

42.5

32

39

0

5

10

15

20

25

30

35

40

45

Single Linear Tree

A
ve

ra
ge

 B
an

d
w

id
th

 (
M

b
it

s/
se

c)

Type of Topology

Average UDP Bandwidth

Floodlight

OpenDayLight

Ryu

Journal of Advanced Research Design

Volume 132 Issue 1 (2025) 103-114

112

Fig. 8. Jitter comparison

From the graph shown in Figure 9, the packet delivery ratio of all controllers under all network

topology is 1, which means that there is no packet loss. The result is due to the small network, running
on the same machines.

Fig. 9. Packet delivery ratio comparison

Based on Figures 8 and 9, Floodlight outperformed others in single topologies, achieving the

lowest jitter (0.007 ms), a critical factor for VoIP and video streaming. However, its performance
degraded in linear and tree topologies, where Ryu maintained consistent jitter levels (0.009 ms). All
controllers achieved a 100% packet delivery ratio, reflecting Mininet’s controlled environment.

0.007

0.11

0.064

0.01

0.031
0.024

0.009 0.012
0.005

0

0.02

0.04

0.06

0.08

0.1

0.12

Single Linear Tree

Ti
m

e
(m

s)

Type of Topology

Average Jitter

Floodlight

OpenDayLight

Ryu

1 1 11 1 11 1 1

0

0.2

0.4

0.6

0.8

1

1.2

Single Linear Tree

P
ac

ke
t

D
el

iv
er

y
R

at
io

Type of Topology

Average Packet Delivery Ratio

Floodlight

OpenDayLight

Ryu

Journal of Advanced Research Design

Volume 132 Issue 1 (2025) 103-114

113

Single topologies favoured Floodlight due to minimal switch-controller interactions, while Ryu
thrived in tree topologies by efficiently managing distributed flows. ODL’s performance suffered in
all topologies, highlighting the trade-offs of modular design.

5. Conclusion & Future Work

This study offers a comprehensive analysis of SDN controller performance, highlighting the critical

influence of network topology and architectural design on operational efficiency. The findings
demonstrate that Ryu, with its lightweight Python-based architecture, excels in scalable, high-
throughput environments such as data centres, delivering superior performance in complex
topologies. Conversely, Floodlight’s Java-based modularity proves advantageous in simpler
topologies like enterprise LANs, where minimizing jitter for latency-sensitive applications is
paramount. Meanwhile, OpenDayLight’s modular framework, while versatile, necessitates
optimization to mitigate resource overhead. Future research should prioritize extending these
evaluations to real-world SDN deployments with heterogeneous traffic patterns to validate scalability
under practical conditions. Additionally, exploring machine learning-driven dynamic controller
adaptation could enhance responsiveness in fluctuating network environments. Further investigation
into hybrid topologies, such as fat-tree architectures, would provide deeper insights into scalability
limits and controller robustness in large-scale, distributed networks. These directions promise to
refine SDN benchmarking methodologies and inform the development of adaptive, topology-aware
controller solutions.

References
[1] Liu, Fanglin, Godfrey Kibalya, S. V. N. Santhosh Kumar and Peiying Zhang. "Challenges of traditional networks and

development of programmable networks." In Software defined internet of everything, pp. 37-61. Cham: Springer
International Publishing, 2021. https://doi.org/10.1007/978-3-030-89328-6_3

[2] Campbell andrew T., Herman G. De Meer, Michael E. Kounavis, Kazuho Miki, John B. Vicente and Daniel Villela. "A
survey of programmable networks." ACM SIGCOMM Computer Communication Review 29, no. 2 (1999): 7-23.
https://doi.org/10.1145/505733.505735

[3] Zhang, Zhao, Hailong Li, Siqi Dong and Lei Hu. "Software defined networking (SDN) research review." In 2018
International Conference on Mechanical, Electronic, Control and Automation Engineering (MECAE 2018), pp. 291-
300. Atlantis Press, 2018. https://doi.org/10.2991/mecae-18.2018.129

[4] Waseem, Quadri, Wan Isni Sofiah Wan Din, Afrig Aminuddin, Muzammil Hussain Mohammed and Rifda Faticha
Alfa Aziza. "Software-defined networking (SDN): a review." In 2022 5th international conference on information
and communications technology (ICOIACT), pp. 30-35. IEEE, 2022.
https://doi.org/10.1109/ICOIACT55506.2022.9972067

[5] Mamushiane, Lusani, Albert Lysko and Sabelo Dlamini. "A comparative evaluation of the performance of popular
SDN controllers." In 2018 Wireless Days (WD), pp. 54-59. IEEE, 2018. https://doi.org/10.1109/WD.2018.8361694

[6] Bholebawa, Idris Z. and Upena D. Dalal. "Performance analysis of SDN/OpenFlow controllers: POX versus
floodlight." Wireless Personal Communications 98 (2018): 1679-1699. https://doi.org/10.1007/s11277-017-4939-
z

[7] Rowshanrad, Shiva, Vajihe Abdi and Manijeh Keshtgari. "Performance evaluation of SDN controllers: Floodlight
and OpenDaylight." IIUM Engineering Journal 17, no. 2 (2016): 47-57. https://doi.org/10.31436/iiumej.v17i2.615

[8] Gupta, Neelam, Sarvesh Tanwar, Sumit Badotra and Sunny Behal. "Performance Analysis of SDN
controller." International Journal of Performability Engineering 18, no. 8 (2022): 537.
https://doi.org/10.23940/ijpe.22.08.p1.537544

[9] Askar, Shavan and Faris Keti. "Performance evaluation of different SDN controllers." (2021): 67-80.
[10] Chouhan, Ravindra Kumar, Mithilesh Atulkar and Naresh Kumar Nagwani. "Performance comparison of Ryu and

floodlight controllers in different SDN topologies." In 2019 1st International Conference on Advanced Technologies
in Intelligent Control, Environment, Computing & Communication Engineering (ICATIECE), pp. 188-191. IEEE, 2019.
https://doi.org/10.1109/ICATIECE45860.2019.9063806

https://doi.org/10.1007/978-3-030-89328-6_3
https://doi.org/10.1145/505733.505735
https://doi.org/10.2991/mecae-18.2018.129
https://doi.org/10.1109/ICOIACT55506.2022.9972067
https://doi.org/10.1109/WD.2018.8361694
https://doi.org/10.1007/s11277-017-4939-z
https://doi.org/10.1007/s11277-017-4939-z
https://doi.org/10.31436/iiumej.v17i2.615
https://doi.org/10.23940/ijpe.22.08.p1.537544
https://doi.org/10.1109/ICATIECE45860.2019.9063806

Journal of Advanced Research Design

Volume 132 Issue 1 (2025) 103-114

114

[11] Arahunashi, Arun K., S. Neethu and HV Ravish Aradhya. "Performance analysis of various sdn controllers in mininet
emulator." In 2019 4th International Conference on Recent Trends on Electronics, Information, Communication &
Technology (RTEICT), pp. 752-756. IEEE, 2019. https://doi.org/10.1109/RTEICT46194.2019.9016693

[12] Khondoker, Rahamatullah, Adel Zaalouk, Ronald Marx and Kpatcha Bayarou. "Feature-based comparison and
selection of Software Defined Networking (SDN) controllers." In 2014 world congress on computer applications
and information systems (WCCAIS), pp. 1-7. IEEE, 2014. https://doi.org/10.1109/WCCAIS.2014.6916572

[13] Salman, Ola, Imad H. Elhajj, Ayman Kayssi and Ali Chehab. "SDN controllers: A comparative study." In 2016 18th
mediterranean electrotechnical conference (MELECON), pp. 1-6. IEEE, 2016.
https://doi.org/10.1109/MELCON.2016.7495430

[14] Li, Yanzhen, Xiaobo Guo, Xue Pang, Bo Peng, Xiaoyue Li and Peiying Zhang. "Performance analysis of floodlight and
ryu SDN controllers under mininet simulator." In 2020 IEEE/CIC International Conference on Communications in
China (ICCC Workshops), pp. 85-90. IEEE, 2020. https://doi.org/10.1109/ICCCWorkshops49972.2020.9209935

[15] Chandroth, Jisi, Byeong-Hee Roh and Jehad Ali. "Performance analysis of python based SDN controllers over real
internet topology." In 2022 Thirteenth International Conference on Ubiquitous and Future Networks (ICUFN), pp.
283-288. IEEE, 2022. https://doi.org/10.1109/ICUFN55119.2022.9829591

[16] Kumar, Deepak and Manu Sood. "Software defined networks (SDN): experimentation with Mininet
topologies." Indian Journal of Science and Technology 9, no. 32 (2016): 1-7.
https://doi.org/10.17485/ijst/2016/v9i32/100195

[17] Shirvar, Arash and Bhargavi Goswami. "Performance comparison of software-defined network controllers."
In 2021 International conference on advances in electrical, computing, communication and sustainable
technologies (ICAECT), pp. 1-13. IEEE, 2021. https://doi.org/10.1109/ICAECT49130.2021.9392559

[18] Punithavathani, D. Shalini and K. Sankaranarayanan. "IPv4/IPv6 transition mechanisms." European Journal of
Scientific Research 34, no. 1 (2009): 110-124.

[19] Fazeldehkordi, Elahe, Iraj Sadegh Amiri, Oluwatobi Ayodeji Akanbi and M. Neely. "A Study of Black Hole Attack
Solutions." (2016).

https://doi.org/10.1109/RTEICT46194.2019.9016693
https://doi.org/10.1109/WCCAIS.2014.6916572
https://doi.org/10.1109/MELCON.2016.7495430
https://doi.org/10.1109/ICCCWorkshops49972.2020.9209935
https://doi.org/10.1109/ICUFN55119.2022.9829591
https://doi.org/10.17485/ijst/2016/v9i32/100195
https://doi.org/10.1109/ICAECT49130.2021.9392559

