

Journal of Advanced Research Design 132, Issue 1 (2025) 1-14

1

Journal of Advanced Research Design

Journal homepage:
https://akademiabaru.com/submit/index.php/ard

ISSN: 2289-7984

Harmonic Path Planning using Quarter-Sweep Boosted TOR Iterative
Method

Sumiati Suparmin1, Andang Sunarto2, Azali Saudi1,*

1

2

Faculty of Computing and Informatics, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
Tadris Matematika, Universitas Islam Negeri Fatmawati Sukarno, Bengkulu City, Bengkulu 38211, Indonesia

ARTICLE INFO ABSTRACT

Article history:
Received 17 January 2025
Received in revised form 10 February 2025
Accepted 2 May 2025
Available online 23 May 2025

This paper presents the study to examine the effectiveness of the application of
Quarter Sweep Boosted TOR with the 9-Point Laplacian operator using the families of
relaxation methods in the computation of Laplace equation solutions to obtain the
harmonic potentials. This work is a continuation from the past study that applied the
standard application 5-Point Laplacian to solve path planning issue which a mobile
robot faces because of working in indoor environment. The robot can navigate from a
given initial position to a goal position by following the safest path, ensuring it avoids
any obstacles and minimizes the risk of collisions. By utilizing the equation of Laplace
and computing the potential values’ distribution in the environments which have been
simulated, the robot can determine the safest path that avoids obstacles which exists
in the environment. This method ensures that the robot moves along a path where the
potential for collisions is minimized. The findings confirm that QSBTOR outperforms
Half Sweep Boosted TOR (HSBTOR) and Full Sweep Boosted TOR (FSBTOR). QSBTOR
and HSBTOR show 73% and 50% reduction respectively, compared to FSBTOR in terms
of computational complexity.

Keywords:

Path planning; quarter-sweep; boosted
iterative method; two-parameter over-
relaxation (TOR); harmonic potentials

1. Introduction

Mobile robots are widely used in various industrial fields where they are exposed to hazardous
conditions such as space research, nuclear industry and the mining industry. Their use is also essential
for indoor applications, including offices, warehouses, pharmacies and other industrial sectors [1].
To find a safe route in a dangerous environment, mobile robots are the most suitable and safe to use
[2]. One of the difficult issues with moving robots is the problem of route planning [3]. Currently,
research for mobile robot path planning is increasingly becoming a hot topic among researchers [4,5].

A robot is an automated machine that can respond to the environment. To achieve such
automated properties, it is necessary to use techniques from signal processing, control theory and
artificial intelligence [6]. This technique is accompanied by mechanics, detectors and robot actuators.
Therefore, designing a robot requires a deep understanding of its interface to the physical world.
Among the key requirements for building a real automated robot is the capability in planning a route

* Corresponding author
E-mail address: azali@ums.edu.my

https://doi.org/10.37934/ard.132.1.114

https://akademiabaru.com/submit/index.php/ard

Journal of Advanced Research Design

Volume 132 Issue 1 (2025) 1-14

2

effectively from a starting point to a specified destination point without colliding with objects or
getting stuck in the path with obstacles it passes through.

Path planning is a vital component in robotics as it plays a crucial role in enabling robots to
navigate from a designated starting point to a desired goal location. Especially in the ability to plan
routes to allow robots to find a smooth path towards their destination. Algorithms for finding the
safe path are important not only in robotics but also in network routing, video games, etc. Route
planning requires a map for the purpose of allowing the robot to know its location in the environment
to avoid getting stuck by any obstacles or walls while in motion.

In general, path planning strategies for navigation are divided into two categories local methods
and global methods. The local methods which work in response to input sensors and global methods,
which involve the creation and execution of action plans [7]. The challenge of keeping the robot in a
collision-free state is solved using local planning algorithms. These strategies are referred to as local
since they only assess the robot's immediate environment when determining how it should react.
Only immediate sensory data is dealt with by the local technique. As a result, it operates extremely
quickly, allowing it to quickly react to the environment’s changes. However, this speed comes at the
expense of completeness. In general, a local method follows its specific functions greedily. Therefore,
it may become stuck in local minimum of the function and fail to reach its destination [8,9].

The global methods, however, solve the problem by making a full representation of the
environment. Moreover, the environment model is a three-dimensional space with several obstacles
of various shapes, as well as inner and outer borders. When global planners construct a plan, they
consider the entire environment, which demands a substantial amount of processing power [10].
Global path planning, in general, is computationally inflexible. The cost of computing the exact
solution to a path planning problem grows exponentially as the environment grows larger [11]. The
real world's dynamic nature is always in motion. Thus, the availability of time for a robot to make
effective planning is greatly constrained in this dynamic setting. The researchers are challenged by
the complexity of the computational demands of such planning challenges. To make matters worse,
data and knowledge about the environment are gathered from noisy sensors, making them
inaccurate and incomplete. As a result, to deal with incomplete and perhaps erroneous
representations of the world, path planning algorithms must be reliable and efficient. In this study,
the exact method used in global manner, that utilize the concept Potential Field, then create the
Harmonic Potential Fields by solving Laplace’s Equation. They established a global method for path
finding that used the harmonic potentials to construct a smooth as well as collision-free path [8].
Harmonic potentials have been obtained by solving Laplace's Eq. (1), which is defined as:

∇2𝑢 = ∑
𝜕2𝑢

𝜕𝑥𝑖
2

𝑛
𝑖=1 = 0 (1)

where the dimension is n and the i-th Cartesian coordinate is denoted by xi. Consequently, Harmonic
potentials have been established globally throughout the whole region. Additionally, the solutions
which are harmonic to Laplace’s Eq. (1) are later employed to figure out the path lines from the
starting point towards the goal point. Moreover, obstacles have been regarded as current sources,
while the aim has been regarded as a sink. Dirichlet boundary conditions are used in this case. The
path to the goal point can be discovered by executing a path search on the harmonic potentials using
the gradient descent method [12].

This study applies the above paradigm to solve path-finding problems, employing the analogies
of temperature as well as heat flow for the potential as well as path line, accordingly, to characterize
the solutions of Laplace’s equation. Numerical methods are used in solving Laplace's equation and

Journal of Advanced Research Design

Volume 132 Issue 1 (2025) 1-14

3

acquiring the harmonic potential (temperature values) for each node. The obtained temperature
values are then used in the path-finding process by descending from a starting point (high
temperature) to the goal point (lowest temperature).

The fundamental concept of numerical methods is to represent the problem, i.e. Laplace’s Eq.
(1), in the form of a linear system as in Eq. (2),

𝐴𝑥 = 𝑏 (2)

in which A represents a coefficient matrix, x is a vector which has been given, while b denotes the
unknown vector to be determined. Although Eq. (2) can be solved using a direct method, the more
efficient iterative methods have been employed to compute the solutions. This is because its
application in path-finding problems often results in large linear systems along with sparse coefficient
matrices [13]. Additionally, iterative methods are mathematical techniques that produce a series of
improving approximations [14]. These techniques are efficient in terms of memory storage as well as
computation.

Traditional iterative methods for solving linear systems have largely relied on the 5-Point
Laplacian operator. While effective, this approach has certain limitations in terms of computational
efficiency. Recently, the 9-Point Laplacian operator has gained attention for its ability to address
these limitations, demonstrating notable success in solving various types of linear systems, as
reported in prior studies [15,16]. Historically, these iterative methods employed the Full-Sweep (FS)
iteration technique, which processes computational nodes on a regular fine grid. However,
advancements such as the Half-Sweep (HS) method, introduced by Abdullah [17] and the Quarter-
Sweep (QS) method, developed by Othman et al., [18], have significantly improved execution times
by reducing the number of active computational nodes using coarse grids.

Further enhancements in computation speed were achieved through the application of relaxation
techniques, including Successive Over-Relaxation (SOR), Accelerated Over-Relaxation (AOR) and
Two-Parameter Over-Relaxation (TOR) methods [19,20]. These approaches optimized the iterative
process, offering faster convergence and reduced computational cost. Despite these advances, many
existing solutions to Eq. (1) remain rooted in the 5-point iterative scheme.

Building on this foundation, recent research has highlighted the potential of the 9-Point Laplacian
operator to deliver improved performance in terms of computational efficiency [21,22]. Recognizing
this, the present work adopts the 9-Point Laplacian operator as a framework for developing enhanced
iterative methods. These methods, referred to as the family of Boosted iterative schemes, aim to
leverage the strengths of the 9-point operator to achieve superior performance in solving linear
systems.

2. Methodology

To ensure the study outcome, this study is structured into four phases to comprehensively cover

the following aspects:
i. Environment Setup: In the initial phase, four different environments were designed for path

generation, varying in sizes: 300 by 300, 600 by 600, 900 by 900, 1200 by 1200 and 1500 by
1500. This variety of sizes allowed for a comprehensive exploration of path generation across
different scales.

ii. Computing the Harmonic Potentials: This process involved the use of numerical iterative
methods, including full-sweep, half-sweep and quarter-sweep iterations, applied through
both regular and modified point iterative techniques. These approaches were critical for

Journal of Advanced Research Design

Volume 132 Issue 1 (2025) 1-14

4

accurately determining the Harmonic potentials. In particular, the 9-point finite difference
schemes were employed to ensure computational precision and accuracy. During this phase,
the proposed QSBTOR method, which is based on Quarter-Sweep iteration, was introduced
and implemented.

iii. GDS Algorithm: In this phase, the computed Harmonic Potentials were fed into the Gradient
Descent Search (GDS) algorithm. The GDS algorithm, starting from a designated point,
strategically navigated through the environment, identifying the lowest point among its
neighbouring points. Moreover, this process continued iteratively until the algorithm reached
the lowest function values, which were recognized as the goal points. The GDS algorithm
played a pivotal role in optimizing the path-finding process, ensuring efficiency.

iv. Path Generation: The final phase focused on generating paths using the optimized algorithms
and displaying them on the simulation platform. Additionally, the simulator provided detailed
information about the generated paths, including the time taken and the number of iterations
required.

2.1 Formulation of Iteration Methods with 9-Point Laplacian

The approximation of the 2D Laplacian Eq. (1) based on the 9-point Laplacian is given as in Eq. (3),

∇2𝑓(𝑥, 𝑦) =
1

6ℎ2 ((4𝑢(𝑥 − ℎ, 𝑦) + 4𝑢 (𝑥 + ℎ, 𝑦) + 4𝑢 (𝑥, 𝑦 − ℎ) + 4𝑢 (𝑥, 𝑦 + ℎ) + 𝑢 (𝑥 − ℎ, 𝑦 −

ℎ) + 𝑢 (𝑥 + ℎ, 𝑦 − ℎ) + 𝑢(𝑥 − ℎ, 𝑦 + ℎ) + 𝑢(𝑥 + ℎ, 𝑦 + ℎ) − 20𝑢(𝑥, 𝑦)) (3)

By rotating the x-y axis clockwise 45֯, the rotated 9-point Laplacian approximation can be written

as Eq. (4),

∇2𝑓(𝑥, 𝑦) =
1

12ℎ2 ((4𝑢(𝑥 − ℎ, 𝑦 − ℎ) + 4𝑢 (𝑥 + ℎ, 𝑦 − ℎ) + 4𝑢 (𝑥 − ℎ, 𝑦 + ℎ) + 4𝑢 (𝑥 + ℎ, 𝑦 +

ℎ) + 𝑢 (𝑥 − 2ℎ, 𝑦) + 𝑢 (𝑥 + 2ℎ, 𝑦) + 𝑢(𝑥, 𝑦 − 2ℎ) + 𝑢(𝑥, 𝑦 + 2ℎ) − 20𝑢(𝑥, 𝑦)) (4)

Moreover, by considering he points at grids size 2h, the 9-point approximation can be expressed

as Eq. (5):

∇2𝑓(𝑥, 𝑦) =
1

24ℎ2 ((4𝑢(𝑥 − 2ℎ, 𝑦) + 4𝑢 (𝑥 + 2ℎ, 𝑦) + 4𝑢 (𝑥, 𝑦 − 2ℎ) + 4𝑢 (𝑥, 𝑦 + 2ℎ) + 𝑢 (𝑥 −

2ℎ, 𝑦 − 2ℎ) + 𝑢 (𝑥 + 2ℎ, 𝑦 − 2ℎ) + 𝑢(𝑥 − 2ℎ, 𝑦 + 2ℎ) + 𝑢(𝑥 + 2ℎ, 𝑦 + 2ℎ) − 20𝑢(𝑥, 𝑦)) (5)

For the respective full-, half- and quarter-sweep Boosted, Figure 1 and 2 illustrate the

computational molecules and portion of the computational grids.

Journal of Advanced Research Design

Volume 132 Issue 1 (2025) 1-14

5

(a) (b) (c)

Fig. 1. The 9-point Laplacian approximation computational molecules for the FS, HS and QS Boosted
operations, respectively

(a) (b) (c)

Fig. 2. The 9-point Laplacian computational grids at (i, j) for (a) FS (b) HS (c) QS Boosted cases,
respectively

By applying ui,j to approximate f(x, y) and applying the 9-point approximations Eq. (3), (4) and (5)

for FS, HS and QS, the approximation equations for Eq. (1) may be expressed in a different form as
Eq. (6) to (8),

4(𝑢𝑖−1,𝑗 + 𝑢𝑖+1,𝑗 + 𝑢𝑖,𝑗−1 + 𝑢𝑖,𝑗+1) + 𝑢𝑖−1,𝑗−1 + 𝑢𝑖+1,𝑗−1 + 𝑢𝑖−1,𝑗+1 + 𝑢𝑖+1,𝑗+1 − 20𝑢𝑖,𝑗 = 0, (6)

4(𝑢𝑖−1,𝑗−1 + 𝑢𝑖+1,𝑗−1 + 𝑢𝑖−1,𝑗+1 + 𝑢𝑖+1,𝑗+1) + 𝑢𝑖−2,𝑗 + 𝑢𝑖+2,𝑗 + 𝑢𝑖,𝑗−2 + 𝑢𝑖,𝑗+2 − 20𝑢𝑖,𝑗 = 0, (7)

4(𝑢𝑖−2,𝑗 + 𝑢𝑖+2,𝑗 + 𝑢𝑖,𝑗+2 + 𝑢𝑖,𝑗+2) + 𝑢𝑖−2,𝑗−2 + 𝑢𝑖+2,𝑗−2 + 𝑢𝑖−2,𝑗+2 + 𝑢𝑖+2,𝑗+2 − 20𝑢𝑖,𝑗 = 0. (8)

According to the finite difference Eq. (6), (7) and (8), the iterative strategies for the 9-point FS, HS

and QS instances are defined as follows in Eq. (9) to (11),

𝑢𝑖,𝑗
(𝑘+1)

=
1

5
 (𝑢𝑖−1,𝑗

(𝑘+1)
+ 𝑢𝑖+1,𝑗

(𝑘)
+ 𝑢𝑖,𝑗−1

(𝑘+1)
+ 𝑢𝑖,𝑗+1

(𝑘)
) +

1

20
 (𝑢𝑖−1,𝑗−1

(𝑘+1)
+ 𝑢𝑖+1,𝑗−1

(𝑘+1)
+ 𝑢𝑖−1,𝑗+1

(𝑘)
+ 𝑢𝑖+1,𝑗+1

(𝑘)
), (9)

𝑢𝑖,𝑗
(𝑘+1)

=
1

5
 (𝑢𝑖−1,𝑗−1

(𝑘+1)
+ 𝑢𝑖+1,𝑗−1

(𝑘+1)
+ 𝑢𝑖−1,𝑗+1

(𝑘)
+ 𝑢𝑖+1,𝑗+1

(𝑘)
) +

1

20
 (𝑢𝑖−2,𝑗

(𝑘+1)
+ 𝑢𝑖,+2,𝑗

(𝑘)
+ 𝑢𝑖,𝑗−2

(𝑘+1)
+ 𝑢𝑖,𝑗+2

(𝑘)
)

 (10)

Journal of Advanced Research Design

Volume 132 Issue 1 (2025) 1-14

6

𝑢𝑖,𝑗
(𝑘+1)

=
1

5
 (𝑢𝑖−2,𝑗

(𝑘+1)
+ 𝑢𝑖+2,𝑗

(𝑘)
+ 𝑢𝑖,𝑗−2

(𝑘+1)
+ 𝑢𝑖,𝑗+2

(𝑘)
) +

1

20
 (𝑢𝑖−2,𝑗−2

(𝑘+1)
+ 𝑢𝑖+2,𝑗−2

(𝑘+1)
+ 𝑢𝑖−2,𝑗+2

(𝑘)
+ 𝑢𝑖+2,𝑗+2

(𝑘)
).

 (11)

2.2 Boosted SOR Methods with the 9-Point Laplacian

By using the weighted parameter ω and in accordance with Eq. (9), (10) and (11), the

corresponding 9-point SOR iterative schemes for the Full-Sweep Boosted SOR (FSBSOR) [23], Half-
Sweep Boosted SOR (HSBSOR) [24] and Quarter-Sweep Boosted SOR (QSBSOR) are formulated as
follows in Eq. (12) to (14),

𝑢𝑖,𝑗
(𝑘+1)

=
𝜔

5
 (𝑢𝑖−1,𝑗

(𝑘+1)
+ 𝑢𝑖+1,𝑗

(𝑘)
+ 𝑢𝑖,𝑗−1

(𝑘+1)
+ 𝑢𝑖,𝑗+1

(𝑘)
) +

𝜔

20
 (𝑢𝑖−1,𝑗−1

(𝑘+1)
+ 𝑢𝑖+1,𝑗−1

(𝑘+1)
+ 𝑢𝑖−1,𝑗+1

(𝑘)
+ 𝑢𝑖+1,𝑗+1

(𝑘)
) +

 (1 − 𝜔)𝑢𝑖,𝑗
(𝑘)

, (12)

𝑢𝑖,𝑗
(𝑘+1)

=
𝜔

5
(𝑢𝑖−1,𝑗−1

(𝑘+1)
+ 𝑢𝑖+1,𝑗−1

(𝑘+1)
+ 𝑢𝑖−1,𝑗+1

(𝑘)
+ 𝑢𝑖+1,𝑗+1

(𝑘)
) +

𝜔

20
 (𝑢𝑖−2,𝑗

(𝑘+1)
+ 𝑢𝑖+2,𝑗

(𝑘)
+ 𝑢𝑖,𝑗−2

(𝑘+1)
+ 𝑢𝑖,𝑗+2

(𝑘)
) +

 (1 − 𝜔)𝑢𝑖,𝑗
(𝑘)

, (13)

𝑢𝑖,𝑗
(𝑘+1)

=
𝜔

5
 (𝑢𝑖−2,𝑗

(𝑘+1)
+ 𝑢𝑖+2,𝑗

(𝑘)
+ 𝑢𝑖,𝑗−2

(𝑘+1)
+ 𝑢𝑖,𝑗+2

(𝑘)
) +

𝜔

20
 (𝑢𝑖−2,𝑗−2

(𝑘+1)
+ 𝑢𝑖+2,𝑗−2

(𝑘+1)
+ 𝑢𝑖−2,𝑗+2

(𝑘)
+ 𝑢𝑖+2,𝑗+2

(𝑘)
) +

 (1 − 𝜔)𝑢𝑖,𝑗
(𝑘)

. (14)

2.3 Boosted AOR Methods with the 9-Point Laplacian

Over the years, the development of the AOR family’s fast iterative schemes has focused on

exploring the application of this method to such schemes. The AOR approach serves as a two-
parameter generalization of the Successive Over-Relaxation (SOR) method. By fully leveraging these
two adjustable parameters, it is possible to design iterative methods that are more flexible, widely
applicable and achieve a faster rate of convergence compared to similar methods. The derivation of
the Full-Sweep Accelerated Over-Relaxation (FSBAOR) scheme for this approximation is provided by
Ling et al., [25] and the formulation of FSBAOR is expressed as follows in Eq. (15),

𝑢𝑖,𝑗
(𝑘+1)

=
𝜔

5
(𝑢𝑖−1,𝑗

(𝑘)
+ 𝑢𝑖+1,𝑗

(𝑘)
+ 𝑢𝑖,𝑗−1

(𝑘)
+ 𝑢𝑖,𝑗+1

(𝑘)
) +

𝑟

5
(𝑢𝑖−1,𝑗

(𝑘+1)
− 𝑢𝑖−1,𝑗

(𝑘)
+ 𝑢𝑖,𝑗−1

(𝑘+1)
− 𝑢𝑖,𝑗−1

(𝑘)
) +

𝜔

20
(𝑢𝑖−1,𝑗−1

(𝑘)
+ 𝑢𝑖+1,𝑗−1

(𝑘)
+ 𝑢𝑖−1,𝑗+1

(𝑘)
+ 𝑢𝑖+1,𝑗+1

(𝑘)
) +

𝑟

20
(𝑢𝑖−1,𝑗−1

(𝑘+1)
− 𝑢𝑖−1,𝑗−1

(𝑘)
+ 𝑢𝑖+1,𝑗−1

(𝑘+1)
− 𝑢𝑖+1,𝑗−1

(𝑘)
) +

(1 − 𝜔)𝑢𝑖,𝑗
(𝑘)

. (15)

By rotating the computational mesh by 45 degrees, the rotated 9-point AOR iterative scheme is

derived. In this scheme, only half of the total mesh points are considered. Consequently, the Half-
Sweep Boosted AOR (HSBAOR) method can be expressed as follows in Eq. (16),

𝑢𝑖,𝑗
(𝑘+1)

=
𝜔

5
(𝑢𝑖−1,𝑗−1

(𝑘)
+ 𝑢𝑖+1,𝑗−1

(𝑘)
+ 𝑢𝑖−1,𝑗+1

(𝑘)
+ 𝑢𝑖+1,𝑗+1

(𝑘)
) +

𝑟

5
(𝑢𝑖−1,𝑗−1

(𝑘+1)
− 𝑢𝑖−1,𝑗−1

(𝑘)
+ 𝑢𝑖+1,𝑗−1

(𝑘+1)
−

𝑢𝑖+1,𝑗−1
(𝑘)

) +
𝜔

20
(𝑢𝑖−2,𝑗

(𝑘)
+ 𝑢𝑖+2,𝑗

(𝑘)
+ 𝑢𝑖,𝑗−2

(𝑘)
+ 𝑢𝑖,𝑗+2

(𝑘)
) +

𝑟

20
(𝑢𝑖−2,𝑗

(𝑘+1)
− 𝑢𝑖−2,𝑗

(𝑘)
+ 𝑢𝑖,𝑗−2

(𝑘+1)
− 𝑢𝑖,𝑗−2

(𝑘)
) + (1 −

𝜔)𝑢𝑖,𝑗
(𝑘)

. (16)

Journal of Advanced Research Design

Volume 132 Issue 1 (2025) 1-14

7

When the quarter-sweep iteration is applied to the 9-point AOR iterative scheme, only a quarter
of the total nodes in the mesh points are involved in the computation. Consequently, the proposed
Quarter-Sweep Boosted AOR (QSBAOR) cases are formulated as follows in Eq. (17),

𝑢𝑖,𝑗
(𝑘+1)

=
𝜔

5
(𝑢𝑖−2,𝑗

(𝑘)
+ 𝑢𝑖+2,𝑗

(𝑘)
+ 𝑢𝑖,𝑗−2

(𝑘)
+ 𝑢𝑖,𝑗+2

(𝑘)
) +

𝑟

5
(𝑢𝑖−2,𝑗

(𝑘+1)
− 𝑢𝑖−2,𝑗

(𝑘)
+ 𝑢𝑖,𝑗−2

(𝑘+1)
− 𝑢𝑖,𝑗−2

(𝑘)
) +

𝜔

20
(𝑢𝑖−2,𝑗−2

(𝑘)
+ 𝑢𝑖+2,𝑗−2

(𝑘)
+ 𝑢𝑖−2,𝑗+2

(𝑘)
+ 𝑢𝑖+2,𝑗+2

(𝑘)
) +

𝑟

20
(𝑢𝑖−2,𝑗−2

(𝑘+1)
− 𝑢𝑖−2,𝑗−2

(𝑘)
+ 𝑢𝑖+2,𝑗−2

(𝑘+1)
− 𝑢𝑖+2,𝑗−2

(𝑘)
) +

(1 − 𝜔)𝑢𝑖,𝑗
(𝑘)

. (17)

2.4 Boosted TOR Methods with the 9-Point Laplacian

To obtain the Full-Sweep Boosted TOR using an improved iteration with the new parameter, s,

modifications are made to the Full-Sweep Boosted AOR iterative scheme. Specifically, the terms
𝑟

5
(𝑢𝑖,𝑗−1

(𝑘+1)
− 𝑢𝑖,𝑗−1

(𝑘)
) and

𝑟

20
(𝑢𝑖,𝑗−1

(𝑘+1)
− 𝑢𝑖,𝑗−1

(𝑘)
) are replaced with

𝑠

5
(𝑢𝑖,𝑗−1

(𝑘+1)
− 𝑢𝑖,𝑗−1

(𝑘)
) and

𝑠

20
(𝑢𝑖,𝑗−1

(𝑘+1)
−

𝑢𝑖,𝑗−1
(𝑘)

), respectively. Therefore, the Full-Sweep Boosted TOR can be expressed as follows in Eq. (18),

𝑢𝑖,𝑗
(𝑘+1)

=
𝜔

5
(𝑢𝑖−1,𝑗

(𝑘)
+ 𝑢𝑖+1,𝑗

(𝑘)
+ 𝑢𝑖,𝑗−1

(𝑘)
+ 𝑢𝑖,𝑗+1

(𝑘)
) +

𝑟

5
(𝑢𝑖−1,𝑗

(𝑘+1)
− 𝑢𝑖−1,𝑗

(𝑘)
) +

𝑠

5
(𝑢𝑖,𝑗−1

(𝑘+1)
− 𝑢𝑖,𝑗−1

(𝑘)
) +

𝜔

20
(𝑢𝑖−1,𝑗−1

(𝑘)
+ 𝑢𝑖+1,𝑗−1

(𝑘)
+ 𝑢𝑖−1,𝑗+1

(𝑘)
+ 𝑢𝑖+1,𝑗+1

(𝑘)
) +

𝑟

20
(𝑢𝑖−1,𝑗−1

(𝑘+1)
− 𝑢𝑖−1,𝑗−1

(𝑘)
) +

𝑠

20
(𝑢𝑖+1,𝑗−1

(𝑘+1)
−

𝑢𝑖+1,𝑗−1
(𝑘)

) + (1 − 𝜔)𝑢𝑖,𝑗
(𝑘)

. (18)

A similar procedure is applied by introducing the second acceleration parameter, s to the rotated

9-point iterative scheme, where only half of the total mesh points are considered. Consequently, the
Half-Sweep Boosted TOR (HSBTOR) can be expressed as follows in Eq. (19),

𝑢𝑖,𝑗
(𝑘+1)

=
𝜔

5
(𝑢𝑖−1,𝑗−1

(𝑘)
+ 𝑢𝑖+1,𝑗−1

(𝑘)
+ 𝑢𝑖−1,𝑗+1

(𝑘)
+ 𝑢𝑖+1,𝑗+1

(𝑘)
) +

𝑟

5
(𝑢𝑖−1,𝑗−1

(𝑘+1)
− 𝑢𝑖−1,𝑗−1

(𝑘)
+ 𝑢𝑖+1,𝑗−1

(𝑘+1)
−

𝑢𝑖+1,𝑗−1
(𝑘)

) +
𝜔

20
(𝑢𝑖−2,𝑗

(𝑘)
+ 𝑢𝑖+2,𝑗

(𝑘)
+ 𝑢𝑖,𝑗−2

(𝑘)
+ 𝑢𝑖,𝑗+2

(𝑘)
) +

𝑟

20
(𝑢𝑖−2,𝑗

(𝑘+1)
− 𝑢𝑖−2,𝑗

(𝑘)
+ 𝑢𝑖,𝑗−2

(𝑘+1)
− 𝑢𝑖,𝑗−2

(𝑘)
) + (1 −

𝜔)𝑢𝑖,𝑗
(𝑘)

. (19)

Finally, the Quarter-Sweep Boosted TOR (QSBTOR) method is derived by applying wider spacing

between nodes, involving only a quarter of the total nodes in the mesh points. As illustrated in Figure
3, only the black nodes are utilized in the computation. With the introduction of the new acceleration
parameter, s, the QSBTOR method demonstrates a faster rate of convergence, greater flexibility and
broader applicability compared to similar methods. The proposed QSBTOR formulation is given as
follows in Eq. (20):

𝑢𝑖,𝑗
(𝑘+1)

=
𝜔

5
(𝑢𝑖−2,𝑗

(𝑘)
+ 𝑢𝑖+2,𝑗

(𝑘)
+ 𝑢𝑖,𝑗−2

(𝑘)
+ 𝑢𝑖,𝑗+2

(𝑘)
) +

𝑟

5
(𝑢𝑖−2,𝑗

(𝑘+1)
− 𝑢𝑖−2,𝑗

(𝑘)
) +

𝑠

5
(𝑢𝑖,𝑗−2

(𝑘+1)
− 𝑢𝑖,𝑗−2

(𝑘)
) +

𝜔

20
(𝑢𝑖−2,𝑗−2

(𝑘)
+ 𝑢𝑖+2,𝑗−2

(𝑘)
+ 𝑢𝑖−2,𝑗+2

(𝑘)
+ 𝑢𝑖+2,𝑗+2

(𝑘)
) +

𝑟

20
(𝑢𝑖−2,𝑗−2

(𝑘+1)
− 𝑢𝑖−2,𝑗−2

(𝑘)
) +

𝑠

20
(𝑢𝑖+2,𝑗−2

(𝑘+1)
−

𝑢𝑖+2,𝑗−2
(𝑘)

) + (1 − 𝜔)𝑢𝑖,𝑗
(𝑘)

. (20)

Journal of Advanced Research Design

Volume 132 Issue 1 (2025) 1-14

8

Fig. 3. The computational mesh for quarter-sweep iteration, where
only black points are involved in the computation

Algorithm 1. QSBTOR

1. Set configuration space (obstacles, destination)
2. Set value of ω, r, s
3. Divide the mesh points into three types: black, white circle and white square points
4. Compute black points not including obstacles using Eq. (20)
5. 𝑘 ← 0
6. repeat

𝑢𝑖,𝑗
(𝑘+1)

=
𝜔

5
(𝑢𝑖−2,𝑗

(𝑘)
+ 𝑢𝑖+2,𝑗

(𝑘)
+ 𝑢𝑖,𝑗−2

(𝑘)
+ 𝑢𝑖,𝑗+2

(𝑘)
) +

𝑟

5
(𝑢𝑖−2,𝑗

(𝑘+1)
− 𝑢𝑖−2,𝑗

(𝑘)
) +

𝑠

5
(𝑢𝑖,𝑗−2

(𝑘+1)
− 𝑢𝑖,𝑗−2

(𝑘)
) +

𝜔

20
(𝑢𝑖−2,𝑗−2

(𝑘)
+ 𝑢𝑖+2,𝑗−2

(𝑘)
+ 𝑢𝑖−2,𝑗+2

(𝑘)
+ 𝑢𝑖+2,𝑗+2

(𝑘)
) +

𝑟

20
(𝑢𝑖−2,𝑗−2

(𝑘+1)
− 𝑢𝑖−2,𝑗−2

(𝑘)
) +

𝑠

20
(𝑢𝑖+2,𝑗−2

(𝑘+1)
−

𝑢𝑖+2,𝑗−2
(𝑘)

) + (1 − 𝜔)𝑢𝑖,𝑗
(𝑘)

 (20)

7. 𝑘 ← 𝑘 + 1
8. until 𝜀 is less than the convergence criterion
9. Compute all white square points (rotated) not including obstacles using Eq. (19)

10. 𝑢𝑖,𝑗
(𝑘+1)

=
𝜔

5
(𝑢𝑖−1,𝑗−1

(𝑘)
+ 𝑢𝑖+1,𝑗−1

(𝑘)
+ 𝑢𝑖−1,𝑗+1

(𝑘)
+ 𝑢𝑖+1,𝑗+1

(𝑘)
) +

𝑟

5
(𝑢𝑖−1,𝑗−1

(𝑘+1)
− 𝑢𝑖−1,𝑗−1

(𝑘)
+

 𝑢𝑖+1,𝑗−1
(𝑘+1)

− 𝑢𝑖+1,𝑗−1
(𝑘)

) +
𝜔

20
(𝑢𝑖−2,𝑗

(𝑘)
+ 𝑢𝑖+2,𝑗

(𝑘)
+ 𝑢𝑖,𝑗−2

(𝑘)
+ 𝑢𝑖,𝑗+2

(𝑘)
) +

𝑟

20
(𝑢𝑖−2,𝑗

(𝑘+1)
− 𝑢𝑖−2,𝑗

(𝑘)
+ 𝑢𝑖,𝑗−2

(𝑘+1)
−

𝑢𝑖,𝑗−2
(𝑘)

) + (1 − 𝜔)𝑢𝑖,𝑗
(𝑘)

 (19)

11. Compute all white circle points (standard) not including obstacles using Eq. (18),

Journal of Advanced Research Design

Volume 132 Issue 1 (2025) 1-14

9

12. 𝑢𝑖,𝑗
(𝑘+1)

=
𝜔

5
(𝑢𝑖−1,𝑗

(𝑘)
+ 𝑢𝑖+1,𝑗

(𝑘)
+ 𝑢𝑖,𝑗−1

(𝑘)
+ 𝑢𝑖,𝑗+1

(𝑘)
) +

𝑟

5
(𝑢𝑖−1,𝑗

(𝑘+1)
− 𝑢𝑖−1,𝑗

(𝑘)
) +

𝑠

5
(𝑢𝑖,𝑗−1

(𝑘+1)
− 𝑢𝑖,𝑗−1

(𝑘)
) +

𝜔

20
(𝑢𝑖−1,𝑗−1

(𝑘)
+ 𝑢𝑖+1,𝑗−1

(𝑘)
+ 𝑢𝑖−1,𝑗+1

(𝑘)
+ 𝑢𝑖+1,𝑗+1

(𝑘)
) +

𝑟

20
(𝑢𝑖−1,𝑗−1

(𝑘+1)
− 𝑢𝑖−1,𝑗−1

(𝑘)
) +

𝑠

20
(𝑢𝑖+1,𝑗−1

(𝑘+1)
−

𝑢𝑖+1,𝑗−1
(𝑘)

) + (1 − 𝜔)𝑢𝑖,𝑗
(𝑘)

 (18)

3. Results and Discussion

The simulation was conducted using the Robot 2D Simulator on a Linux system equipped with an

Intel i5 processor running at 2.5 GHz and 8 GB of memory. The execution of the QSBTOR
implementation, based on Eq. (18), (19) and (20), to solve the 2D Laplace’s problem described in Eq.
(1), is outlined in Algorithm 1. In the simulation, the start and goal points are represented by red and
green points, respectively. Two different maps were used in the simulations, with five different sizes
tested. The experimental results for the Full-Sweep (FS), Half-Sweep (HS) and Quarter-Sweep (QS)
Boosted methods, based on the 9-Point Laplacian, are presented in this section. The iteration counts
and CPU times for each algorithm are recorded in Table 1 and 2, respectively.

Table 1
Performance of the methods in terms of the number of
iterations
 N

Map Method 300 600 900 1200 1500

Map 1 FSBSOR 2874 10450 23786 35469 62307

FSBAOR 2317 8428 19327 28647 50524

FSBTOR 2177 7981 18117 26916 47466

HSBSOR 1480 5381 12253 18229 32093

HSBAOR 1179 4343 9899 14706 25994

HSBTOR 1107 4081 9300 13808 24417

QSBSOR 757 2776 6375 9357 16575

QSBAOR 187 2219 5145 8570 13379

QSBTOR 177 2091 4840 7077 12582

Map 2 FSBSOR 2094 7956 19732 32360 45628

FSBAOR 1721 6374 16021 26242 37267

FSBTOR 1634 5991 15188 24602 36683

HSBSOR 1124 4175 9460 16674 23759

HSBAOR 905 3353 7632 13502 19335

HSBTOR 850 3149 7171 12649 18182

QSBSOR 594 2082 4889 8558 12185

QSBAOR 461 1591 3920 6859 10130

QSBTOR 426 1448 3690 6470 9555

Journal of Advanced Research Design

Volume 132 Issue 1 (2025) 1-14

10

Table 2
Performance of the methods in terms of the time of execution
(in seconds)
 N

Map Method 300 600 900 1200 1500

Map 1 FSBSOR 1.602 23.318 123.358 326.31 932.092

FSBAOR 1.497 22.092 120.699 307.958 893.052

FSBTOR 1.43 21.041 109.89 290.711 805.575

HSBSOR 0.533 8.251 44.013 116.616 328.061

HSBAOR 0.493 7.42 39.259 103.669 291.926

HSBTOR 0.479 6.235 33.801 103.172 263.516

QSBSOR 0.219 3.329 17.712 46.912 137.155

QSBAOR 0.187 2.908 16.589 45.593 120.228

QSBTOR 0.177 2.749 14.705 38.442 110.641

Map 2 FSBSOR 1.422 22.837 150.992 345.879 756.108

FSBAOR 1.361 20.787 153.955 322.32 713.486

FSBTOR 1.268 19.366 82.025 300.589 747.515

HSBSOR 0.516 8.019 37.637 119.921 266.421

HSBAOR 0.437 6.585 33.287 105.91 235.898

HSBTOR 0.385 5.906 27.725 88.206 195.977

QSBSOR 0.223 3.117 14.704 46.39 103.631

QSBAOR 0.199 2.578 12.829 40.69 93.254

QSBTOR 0.177 2.324 12.051 38.193 87.587

Figure 4 present graphs illustrating the number of iterations and execution time, respectively,

corresponding to the results summarized in Table 1 and 2. Both figures demonstrate that execution
time increases with the number of iterations. A closer examination of the graphs reveals that the
QSBTOR method outperforms the other proposed approaches in terms of both iteration count and
execution time, as also evident from Table 1 and 2. The results clearly show that the trends in the
graphs for iteration count and execution time align closely. Compared to other methods, the QSBTOR
iterative scheme stands out, offering superior efficiency in terms of both performance time and the
number of iterations.

Fig. 4. Number of iterations (left) and performance time (right) by the tested methods for varying
size of environments

Tables 3 to 5 display the total number of arithmetic operations acquired by all of the methods

assessed, in which M = N2 - P is utilized to denote the number of cell points which are involved during

0

20000

40000

60000

80000

300 600 900 1200 1500N
u

m
b

er
 o

f
it

er
at

io
n

Size of environments

FSBSOR FSBAOR FSBTOR

HSBSOR HSBAOR HSBTOR

QSBSOR QSBAOR QSBTOR

0

200

400

600

800

1000

300 600 900 1200 1500

Ex
xe

cu
ti

o
n

 t
im

e
(i

n
 s

ec
o

n
d

)

Size of environments

FSBSOR FSBAOR FSBTOR

HSBSOR HSBAOR HSBTOR

QSBSOR QSBAOR QSBTOR

Journal of Advanced Research Design

Volume 132 Issue 1 (2025) 1-14

11

the iteration, where N2 is the size of the environment and P represents the number of cell points
occupied by obstacles.

Table 3
Number of arithmetic operations per iteration for algorithms on the
9-Point Laplacian using Boosted SOR methods
Methods ADD/SUB MUL/DIV

FSBSOR 8𝑁2 3𝑁2
HSBSOR 4𝑁2 3

2
𝑁2

QSBSOR 2𝑁2 3

4
𝑁2

Table 4
Number of arithmetic operations per iteration for algorithms on the 9-Point
Laplacian using Boosted AOR methods
Methods ADD/SUB MUL/DIV

FSBAOR 16𝑁2 5𝑁2
HSBAOR 8𝑁2 5

2
𝑁2

QSBAOR 4𝑁2 5

4
𝑁2

Table 5
Number of arithmetic operations per iteration for algorithms on the 9-Point Laplacian
using Boosted TOR methods
Methods ADD/SUB MUL/DIV

FSBTOR 16𝑁2 7𝑁2
HSBTOR 8𝑁2 7

2
𝑁2

QSBTOR 4𝑁2 7

4
𝑁2

The HS and QS algorithms based on the 9-Point iterative scheme employ additional arithmetic

operations to calculate the remaining points after convergence by employing direct methods, as
given in Table 6.

Table 6
Number of additional arithmetic operations for the remaining points for HS Boosted
and QS Boosted methods
Methods ADD/SUB MUL/DIV

SOR AOR/TOR SOR AOR TOR

HS cases 4𝑁2 8𝑁2 3

2
𝑁2

5

2
𝑁2

7

2
𝑁2

QS cases 6𝑁2 12𝑁2 9

4
𝑁2

15

4
𝑁2

21

4
𝑁2

Table 7 presents a comparison of the Boosted AOR, Boosted SOR and Boosted TOR methods,

clearly indicating that the Boosted TOR delivers the best performance in terms of iteration count and
CPU time. The harmonic potentials computed using the proposed methods are utilized in the path
generation process, which employs the Gradient Descent Search (GDS) algorithm. The GDS algorithm
guides path generation by following the gradient of the harmonic potentials, starting from the point

Journal of Advanced Research Design

Volume 132 Issue 1 (2025) 1-14

12

with the highest potential value (the start point) and progressing to lower potential values until the
lowest potential value, representing the goal point, is reached.

Table 7
Reduction percentages in terms of number of iterations and CPU time for HS
Boosted and QS Boosted methods against their corresponding FS Boosted method
Methods Iteration (%) CPU Time (%)

HSBSOR 48.52 66.45
HSBAOR 48.64 68.97
HSBTOR 48.95 71.09
QSBSOR 72.75 86.53
QSBAOR 72.55 87.20
QSBTOR 72.92 87.23

Figure 5 illustrates the paths generated for Map 1 and 2 using the GDS algorithm, based on the

harmonic potentials computed with the aforementioned iterative methods.

 Map 1

 Map 2

Fig. 5. Path creation for various surroundings using various starting locations (green point) and
target places (red point)

The computational complexity of the tested methods is presented in Tables 3 to 5. According to

these tables, the iterative techniques based on the Half-Sweep Boosted methods (HSBSOR, HSBAOR
and HSBTOR) process only half of the node points in a skewed manner during the iteration process.
Consequently, the computational complexity is reduced by approximately 50%. In contrast, the
simulated results for the Quarter-Sweep Boosted methods (QSBSOR, QSBAOR and QSBTOR)
demonstrate significantly better performance, reducing the computational complexity by
approximately 75%.

4. Conclusions

The primary objective of this study is to formulate and develop a method for integrating iterative

approaches with path-finding algorithms to solve the path-planning problem for mobile robots. This

Journal of Advanced Research Design

Volume 132 Issue 1 (2025) 1-14

13

work applies the concepts of Half-Sweep (HS) and Quarter-Sweep (QS) iterations, along with the
computation of Laplacian harmonic potentials using the 9-point Laplacian. These techniques are
employed to address the path-planning problem through the application of relaxation iterative
methods. The overall performance of the path-planning algorithms is evaluated based on three key
criteria: successful path generation, the number of iterations required and time efficiency.

The key contribution of this study, based on the summary of findings, is the introduction of the
Quarter-Sweep Boosted TOR (QSBTOR) method within the 9-Point Laplacian operator framework.
This method employed two acceleration parameters to speed up the convergence rate in computing
the solutions of the Laplace’s equation to obtain the harmonic potentials. The computed harmonic
potentials are subsequently utilized by the Gradient Descent Search (GDS) algorithm to guide the
path-finding process. This approach enables the generation of smooth paths, allowing the robot to
navigate safely within a structured environment from any starting point to a specified goal while
minimizing the risk of collisions.

References
[1] Hamd, Mostafa Mohammed Massoud, Ibrahim, Ahmed Abdellatif Hamed and Atia, Mostafa Rostom Ahmed.

"Selecting Dynamic Path Planning Algorithm Based Upon Ranking Approach for Omni-Wheeled Mobile Robot".
Journal of Advanced Research in Applied Sciences and Engineering Technology 41, no. 2 (2024): 125-138.
https://doi.org/10.37934/araset.41.2.125138

[2] Sánchez-Ibáñez, José Ricardo, Carlos J. Pérez-del-Pulgar and Alfonso García-Cerezo. "Path planning for
autonomous mobile robots: A review." Sensors 21, no. 23 (2021): 7898. https://doi.org/10.3390/s21237898

[3] Panchpor, Aishwarya A., Sam Shue and James M. Conrad. "A survey of methods for mobile robot localization and
mapping in dynamic indoor environments." In 2018 Conference on Signal Processing And Communication
Engineering Systems (SPACES), pp. 138-144. IEEE, 2018. https://doi.org/10.1109/SPACES.2018.8316333

[4] Xiu-xia, Yang, Cao Wei-yi, Zhang Yi, Fang Guo-wei and Yan Xuan. "Mobile robot path planning in complex
environment." In 2019 IEEE International Conference on Unmanned Systems (ICUS), pp. 426-431. IEEE, 2019.
https://doi.org/10.1109/ICUS48101.2019.8996020

[5] Shi, Kunju, Peng Wu and Mingshuai Liu. "Research on path planning method of forging handling robot based on
combined strategy." In 2021 IEEE International Conference on Power Electronics, Computer Applications (ICPECA),
pp. 292-295. IEEE, 2021. https://doi.org/10.1109/ICPECA51329.2021.9362595

[6] Rubio, Francisco, Francisco Valero and Carlos Llopis-Albert. "A review of mobile robots: Concepts, methods,
theoretical framework and applications." International Journal of Advanced Robotic Systems 16, no. 2 (2019):
1729881419839596. https://doi.org/10.1177/1729881419839596

[7] LaValle, Steven M. "Motion Planning." IEEE Robotics & Automation Magazine 18, no. 1 (2011): 79-89.
https://doi.org/10.1109/MRA.2011.940276

[8] Connolly, Christopher I., J. Brian Burns and Rich Weiss. "Path planning using Laplace's equation." In Proceedings.,
IEEE International Conference on Robotics and Automation, pp. 2102-2106. IEEE, 1990.
https://doi.org/10.1109/ROBOT.1990.126315

[9] Faverjon, Bernard and Pierre Tournassoud. "A local based approach for path planning of manipulators with a high
number of degrees of freedom." In Proceedings. 1987 IEEE international conference on robotics and automation,
vol. 4, pp. 1152-1159. IEEE, 1987. https://doi.org/10.1109/ROBOT.1987.1087982

[10] Zelek, John S. and Martin D. Levine. "Local-global concurrent path planning and execution." IEEE Transactions on
Systems, Man and Cybernetics-Part A: Systems and Humans 30, no. 6 (2002): 865-870.
https://doi.org/10.1109/3468.895924

[11] Reif, John H. "Complexity of the mover's problem and generalizations." In 20th Annual Symposium on Foundations
of Computer Science (sfcs 1979), pp. 421-427. IEEE Computer Society, 1979. https://doi.org/10.1109/SFCS.1979.10

[12] Karnik, Madhuri, Bhaskar Dasgupta and Vinayak Eswaran. "A comparative study of Dirichlet and Neumann
conditions for path planning through harmonic functions." Future Generation Computer Systems 20, no. 3 (2004):
441-452. https://doi.org/10.1016/j.future.2003.07.008

[13] Sasaki, S. "A practical computational technique for mobile robot navigation." In Proceedings of the 1998 IEEE
International Conference on Control Applications (Cat. No. 98CH36104), vol. 2, pp. 1323-1327. IEEE, 1998.
https://doi.org/10.1109/CCA.1998.721675

[14] Young, David. "Iterative methods for solving partial difference equations of elliptic type." Transactions of the
American Mathematical Society 76, no. 1 (1954): 92-111. https://doi.org/10.1090/S0002-9947-1954-0059635-7

https://doi.org/10.37934/araset.41.2.125138
https://doi.org/10.3390/s21237898
https://doi.org/10.1109/SPACES.2018.8316333
https://doi.org/10.1109/ICUS48101.2019.8996020
https://doi.org/10.1109/ICPECA51329.2021.9362595
https://doi.org/10.1177/1729881419839596
https://doi.org/10.1109/MRA.2011.940276
https://doi.org/10.1109/ROBOT.1990.126315
https://doi.org/10.1109/ROBOT.1987.1087982
https://doi.org/10.1109/3468.895924
https://doi.org/10.1109/SFCS.1979.10
https://doi.org/10.1016/j.future.2003.07.008
https://doi.org/10.1109/CCA.1998.721675
https://doi.org/10.1090/S0002-9947-1954-0059635-7

Journal of Advanced Research Design

Volume 132 Issue 1 (2025) 1-14

14

[15] Kew, Lee Ming and Norhashidah Hj Mohd Ali. "New explicit group iterative methods in the solution of three
dimensional hyperbolic telegraph equations." Journal of Computational Physics 294 (2015): 382-404.
https://doi.org/10.1016/j.jcp.2015.03.052

[16] Ling, W. K., A. A. Dahalan and A. Saudi. "Autonomous path planning through application of rotated two-parameter
overrelaxation 9-point Laplacian iteration technique." Indones. J. Electr. Eng. Comput. Sci 22 (2021): 1116-1123.
https://doi.org/10.11591/ijeecs.v22.i2.pp1116-1123

[17] Abdullah, Abdul Rahman. "The four point Explicit Decoupled Group (EDG) method: A fast Poisson
solver." International Journal of Computer Mathematics 38, no. 1-2 (1991): 61-70.
https://doi.org/10.1080/00207169108803958

[18] Othman, Mohamed and Abdul Rahman Abdullah. "An efficient four points modified explicit group poisson
solver." International Journal of Computer Mathematics 76, no. 2 (2000): 203-217.
https://doi.org/10.1080/00207160008805020

[19] Santos, J. L., W. S. Yousif and M. M. Martins. "The explicit group TOR method." Neural Parallel and Scientific
Computations 20, no. 3 (2012): 459.

[20] Dahalan, A’Qilah Ahmad, Azali Saudi and Jumat Sulaiman. "Enhancing Autonomous Guided Vehicles with Red-Black
TOR Iterative Method." Mathematics 11, no. 20 (2023): 4393. https://doi.org/10.3390/math11204393

[21] Ali, Norhashidah Mohd. "Reka Bentuk Algoritma Blok Baru Stensil 9-titik dalam Masalah
Sempadan." Matematika (2002): 45-62.

[22] Ling, Sam Teek and Ali, Norhashidah Hj. Mohd. "New High Order Group Iterative Schemes in the Solution of Poisson
Equation". World Academy of Science, Engineering and Technology, International Journal of Mathematical,
Computational, Physical, Electrical and Computer Engineering 7, no. 11 (2013): 1694-1699.
https://doi.org/10.5281/zenodo.1089343

[23] Saudi, Azali and Jumat Sulaiman. "Path planning simulation using harmonic potential fields through four point-
EDGSOR method via 9-point laplacian." Jurnal Teknologi (Sciences & Engineering) 78, no. 8-2 (2016).
https://doi.org/10.11113/jt.v78.9537

[24] Saudi, Azali and Jumat Sulaiman. "Path planning for indoor mobile robot using Half-Sweep SOR via nine-point
Laplacian (HSSOR9L)." IOSR Journal of Mathematics 3, no. 2 (2012): 01-07. https://doi.org/10.9790/5728-0320107

[25] Ling, W. K., A. A. Dahalan and A. Saudi. "Mobile Robot Path Navigation in Static Indoor Environment via AOR 9-
Point Laplacian Iteration Numerical Technique." International Journal of Difference Equations (IJDE) 15, no. 2
(2020): 231-242. https://doi.org/10.37622/IJDE/15.2.2020.231-242

https://doi.org/10.1016/j.jcp.2015.03.052
https://doi.org/10.11591/ijeecs.v22.i2.pp1116-1123
https://doi.org/10.1080/00207169108803958
https://doi.org/10.1080/00207160008805020
https://doi.org/10.3390/math11204393
https://doi.org/10.5281/zenodo.1089343
https://doi.org/10.11113/jt.v78.9537
https://doi.org/10.9790/5728-0320107
https://doi.org/10.37622/IJDE/15.2.2020.231-242

