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This paper presents the study to examine the effectiveness of the application of 
Quarter Sweep Boosted TOR with the 9-Point Laplacian operator using the families of 
relaxation methods in the computation of Laplace equation solutions to obtain the 
harmonic potentials. This work is a continuation from the past study that applied the 
standard application 5-Point Laplacian to solve path planning issue which a mobile 
robot faces because of working in indoor environment. The robot can navigate from a 
given initial position to a goal position by following the safest path, ensuring it avoids 
any obstacles and minimizes the risk of collisions. By utilizing the equation of Laplace 
and computing the potential values’ distribution in the environments which have been 
simulated, the robot can determine the safest path that avoids obstacles which exists 
in the environment. This method ensures that the robot moves along a path where the 
potential for collisions is minimized. The findings confirm that QSBTOR outperforms 
Half Sweep Boosted TOR (HSBTOR) and Full Sweep Boosted TOR (FSBTOR). QSBTOR 
and HSBTOR show 73% and 50% reduction respectively, compared to FSBTOR in terms 
of computational complexity.  
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1. Introduction 
 

Mobile robots are widely used in various industrial fields where they are exposed to hazardous 
conditions such as space research, nuclear industry and the mining industry. Their use is also essential 
for indoor applications, including offices, warehouses, pharmacies and other industrial sectors [1]. 
To find a safe route in a dangerous environment, mobile robots are the most suitable and safe to use 
[2]. One of the difficult issues with moving robots is the problem of route planning [3]. Currently, 
research for mobile robot path planning is increasingly becoming a hot topic among researchers [4,5].  

A robot is an automated machine that can respond to the environment. To achieve such 
automated properties, it is necessary to use techniques from signal processing, control theory and 
artificial intelligence [6]. This technique is accompanied by mechanics, detectors and robot actuators. 
Therefore, designing a robot requires a deep understanding of its interface to the physical world. 
Among the key requirements for building a real automated robot is the capability in planning a route 
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effectively from a starting point to a specified destination point without colliding with objects or 
getting stuck in the path with obstacles it passes through. 

Path planning is a vital component in robotics as it plays a crucial role in enabling robots to 
navigate from a designated starting point to a desired goal location. Especially in the ability to plan 
routes to allow robots to find a smooth path towards their destination. Algorithms for finding the 
safe path are important not only in robotics but also in network routing, video games, etc. Route 
planning requires a map for the purpose of allowing the robot to know its location in the environment 
to avoid getting stuck by any obstacles or walls while in motion. 

In general, path planning strategies for navigation are divided into two categories local methods 
and global methods. The local methods which work in response to input sensors and global methods, 
which involve the creation and execution of action plans [7]. The challenge of keeping the robot in a 
collision-free state is solved using local planning algorithms. These strategies are referred to as local 
since they only assess the robot's immediate environment when determining how it should react. 
Only immediate sensory data is dealt with by the local technique. As a result, it operates extremely 
quickly, allowing it to quickly react to the environment’s changes. However, this speed comes at the 
expense of completeness. In general, a local method follows its specific functions greedily. Therefore, 
it may become stuck in local minimum of the function and fail to reach its destination [8,9]. 

The global methods, however, solve the problem by making a full representation of the 
environment. Moreover, the environment model is a three-dimensional space with several obstacles 
of various shapes, as well as inner and outer borders. When global planners construct a plan, they 
consider the entire environment, which demands a substantial amount of processing power [10]. 
Global path planning, in general, is computationally inflexible. The cost of computing the exact 
solution to a path planning problem grows exponentially as the environment grows larger [11]. The 
real world's dynamic nature is always in motion. Thus, the availability of time for a robot to make 
effective planning is greatly constrained in this dynamic setting. The researchers are challenged by 
the complexity of the computational demands of such planning challenges. To make matters worse, 
data and knowledge about the environment are gathered from noisy sensors, making them 
inaccurate and incomplete. As a result, to deal with incomplete and perhaps erroneous 
representations of the world, path planning algorithms must be reliable and efficient. In this study, 
the exact method used in global manner, that utilize the concept Potential Field, then create the 
Harmonic Potential Fields by solving Laplace’s Equation. They established a global method for path 
finding that used the harmonic potentials to construct a smooth as well as collision-free path [8]. 
Harmonic potentials have been obtained by solving Laplace's Eq. (1), which is defined as: 
 

∇2𝑢 = ∑
𝜕2𝑢

𝜕𝑥𝑖
2

𝑛
𝑖=1 = 0     (1) 

 
where the dimension is n and the i-th Cartesian coordinate is denoted by xi. Consequently, Harmonic 
potentials have been established globally throughout the whole region. Additionally, the solutions 
which are harmonic to Laplace’s Eq. (1) are later employed to figure out the path lines from the 
starting point towards the goal point. Moreover, obstacles have been regarded as current sources, 
while the aim has been regarded as a sink. Dirichlet boundary conditions are used in this case. The 
path to the goal point can be discovered by executing a path search on the harmonic potentials using 
the gradient descent method [12]. 

This study applies the above paradigm to solve path-finding problems, employing the analogies 
of temperature as well as heat flow for the potential as well as path line, accordingly, to characterize 
the solutions of Laplace’s equation. Numerical methods are used in solving Laplace's equation and 
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acquiring the harmonic potential (temperature values) for each node. The obtained temperature 
values are then used in the path-finding process by descending from a starting point (high 
temperature) to the goal point (lowest temperature). 

The fundamental concept of numerical methods is to represent the problem, i.e. Laplace’s Eq. 
(1), in the form of a linear system as in Eq. (2), 
 
𝐴𝑥 = 𝑏  (2) 
 
in which A represents a coefficient matrix, x is a vector which has been given, while b denotes the 
unknown vector to be determined. Although Eq. (2) can be solved using a direct method, the more 
efficient iterative methods have been employed to compute the solutions. This is because its 
application in path-finding problems often results in large linear systems along with sparse coefficient 
matrices [13]. Additionally, iterative methods are mathematical techniques that produce a series of 
improving approximations [14]. These techniques are efficient in terms of memory storage as well as 
computation. 

Traditional iterative methods for solving linear systems have largely relied on the 5-Point 
Laplacian operator. While effective, this approach has certain limitations in terms of computational 
efficiency. Recently, the 9-Point Laplacian operator has gained attention for its ability to address 
these limitations, demonstrating notable success in solving various types of linear systems, as 
reported in prior studies [15,16]. Historically, these iterative methods employed the Full-Sweep (FS) 
iteration technique, which processes computational nodes on a regular fine grid. However, 
advancements such as the Half-Sweep (HS) method, introduced by Abdullah [17] and the Quarter-
Sweep (QS) method, developed by Othman et al., [18], have significantly improved execution times 
by reducing the number of active computational nodes using coarse grids. 

Further enhancements in computation speed were achieved through the application of relaxation 
techniques, including Successive Over-Relaxation (SOR), Accelerated Over-Relaxation (AOR) and 
Two-Parameter Over-Relaxation (TOR) methods [19,20]. These approaches optimized the iterative 
process, offering faster convergence and reduced computational cost. Despite these advances, many 
existing solutions to Eq. (1) remain rooted in the 5-point iterative scheme. 

Building on this foundation, recent research has highlighted the potential of the 9-Point Laplacian 
operator to deliver improved performance in terms of computational efficiency [21,22]. Recognizing 
this, the present work adopts the 9-Point Laplacian operator as a framework for developing enhanced 
iterative methods. These methods, referred to as the family of Boosted iterative schemes, aim to 
leverage the strengths of the 9-point operator to achieve superior performance in solving linear 
systems. 

 
2. Methodology  

 
To ensure the study outcome, this study is structured into four phases to comprehensively cover 

the following aspects: 
i. Environment Setup: In the initial phase, four different environments were designed for path 

generation, varying in sizes: 300 by 300, 600 by 600, 900 by 900, 1200 by 1200 and 1500 by 
1500. This variety of sizes allowed for a comprehensive exploration of path generation across 
different scales. 

ii. Computing the Harmonic Potentials: This process involved the use of numerical iterative 
methods, including full-sweep, half-sweep and quarter-sweep iterations, applied through 
both regular and modified point iterative techniques. These approaches were critical for 
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accurately determining the Harmonic potentials. In particular, the 9-point finite difference 
schemes were employed to ensure computational precision and accuracy. During this phase, 
the proposed QSBTOR method, which is based on Quarter-Sweep iteration, was introduced 
and implemented.  

iii. GDS Algorithm: In this phase, the computed Harmonic Potentials were fed into the Gradient 
Descent Search (GDS) algorithm. The GDS algorithm, starting from a designated point, 
strategically navigated through the environment, identifying the lowest point among its 
neighbouring points. Moreover, this process continued iteratively until the algorithm reached 
the lowest function values, which were recognized as the goal points. The GDS algorithm 
played a pivotal role in optimizing the path-finding process, ensuring efficiency. 

iv. Path Generation: The final phase focused on generating paths using the optimized algorithms 
and displaying them on the simulation platform. Additionally, the simulator provided detailed 
information about the generated paths, including the time taken and the number of iterations 
required. 

 
2.1 Formulation of Iteration Methods with 9-Point Laplacian 

 
The approximation of the 2D Laplacian Eq. (1) based on the 9-point Laplacian is given as in Eq. (3), 

 

∇2𝑓(𝑥, 𝑦) =  
1

6ℎ2 ((4𝑢(𝑥 − ℎ, 𝑦) + 4𝑢 (𝑥 + ℎ, 𝑦) + 4𝑢 (𝑥, 𝑦 − ℎ) + 4𝑢 (𝑥, 𝑦 + ℎ) + 𝑢 ( 𝑥 − ℎ, 𝑦 −

ℎ)  + 𝑢 (𝑥 + ℎ, 𝑦 − ℎ) + 𝑢(𝑥 − ℎ, 𝑦 + ℎ) + 𝑢(𝑥 + ℎ, 𝑦 + ℎ) − 20𝑢(𝑥, 𝑦))        (3) 

 
By rotating the x-y axis clockwise 45֯, the rotated 9-point Laplacian approximation can be written 

as Eq. (4), 
 

∇2𝑓(𝑥, 𝑦) =  
1

12ℎ2 ((4𝑢(𝑥 − ℎ, 𝑦 − ℎ) + 4𝑢 (𝑥 + ℎ, 𝑦 − ℎ) + 4𝑢 (𝑥 − ℎ, 𝑦 + ℎ) + 4𝑢 (𝑥 + ℎ, 𝑦 +

ℎ) + 𝑢 ( 𝑥 − 2ℎ, 𝑦)  + 𝑢 (𝑥 + 2ℎ, 𝑦) + 𝑢(𝑥, 𝑦 − 2ℎ) + 𝑢(𝑥, 𝑦 + 2ℎ) − 20𝑢(𝑥, 𝑦))  (4) 

 
Moreover, by considering he points at grids size 2h, the 9-point approximation can be expressed 

as Eq. (5): 
 

∇2𝑓(𝑥, 𝑦) =  
1

24ℎ2 ((4𝑢(𝑥 − 2ℎ, 𝑦) + 4𝑢 (𝑥 + 2ℎ, 𝑦) + 4𝑢 (𝑥, 𝑦 − 2ℎ) + 4𝑢 (𝑥, 𝑦 + 2ℎ) + 𝑢 ( 𝑥 −

2ℎ, 𝑦 − 2ℎ)  + 𝑢 (𝑥 + 2ℎ, 𝑦 − 2ℎ) + 𝑢(𝑥 − 2ℎ, 𝑦 + 2ℎ) + 𝑢(𝑥 + 2ℎ, 𝑦 + 2ℎ) − 20𝑢(𝑥, 𝑦))  (5) 

 
For the respective full-, half- and quarter-sweep Boosted, Figure 1 and 2 illustrate the 

computational molecules and portion of the computational grids. 
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(a) (b) (c) 

Fig. 1. The 9-point Laplacian approximation computational molecules for the FS, HS and QS Boosted 
operations, respectively 

 

   
(a) (b) (c) 

Fig. 2. The 9-point Laplacian computational grids at (i, j) for (a) FS (b) HS (c) QS Boosted cases, 
respectively 

 
By applying ui,j to approximate f(x, y) and applying the 9-point approximations Eq. (3), (4) and (5) 

for FS, HS and QS, the approximation equations for Eq. (1) may be expressed in a different form as 
Eq. (6) to (8), 
 

4(𝑢𝑖−1,𝑗 + 𝑢𝑖+1,𝑗 + 𝑢𝑖,𝑗−1 + 𝑢𝑖,𝑗+1) + 𝑢𝑖−1,𝑗−1 + 𝑢𝑖+1,𝑗−1 +  𝑢𝑖−1,𝑗+1 + 𝑢𝑖+1,𝑗+1 − 20𝑢𝑖,𝑗 = 0, (6) 

 

4(𝑢𝑖−1,𝑗−1 + 𝑢𝑖+1,𝑗−1 + 𝑢𝑖−1,𝑗+1 + 𝑢𝑖+1,𝑗+1) + 𝑢𝑖−2,𝑗 + 𝑢𝑖+2,𝑗 +  𝑢𝑖,𝑗−2 + 𝑢𝑖,𝑗+2 − 20𝑢𝑖,𝑗 = 0, (7) 

 

4(𝑢𝑖−2,𝑗 + 𝑢𝑖+2,𝑗 + 𝑢𝑖,𝑗+2 + 𝑢𝑖,𝑗+2) + 𝑢𝑖−2,𝑗−2 + 𝑢𝑖+2,𝑗−2 +  𝑢𝑖−2,𝑗+2 + 𝑢𝑖+2,𝑗+2 − 20𝑢𝑖,𝑗 = 0.  (8) 

 
According to the finite difference Eq. (6), (7) and (8), the iterative strategies for the 9-point FS, HS 

and QS instances are defined as follows in Eq. (9) to (11), 
 

𝑢𝑖,𝑗
(𝑘+1)

=
1

5
 (𝑢𝑖−1,𝑗

(𝑘+1)
+ 𝑢𝑖+1,𝑗

(𝑘)
+ 𝑢𝑖,𝑗−1

(𝑘+1)
+ 𝑢𝑖,𝑗+1

(𝑘)
) +

1

20
 (𝑢𝑖−1,𝑗−1

(𝑘+1)
+ 𝑢𝑖+1,𝑗−1

(𝑘+1)
+ 𝑢𝑖−1,𝑗+1

(𝑘)
+ 𝑢𝑖+1,𝑗+1

(𝑘)
), (9) 

 

𝑢𝑖,𝑗
(𝑘+1)

=
1

5
  (𝑢𝑖−1,𝑗−1

(𝑘+1)
+ 𝑢𝑖+1,𝑗−1

(𝑘+1)
+ 𝑢𝑖−1,𝑗+1

(𝑘)
+ 𝑢𝑖+1,𝑗+1

(𝑘)
) +

1

20
 (𝑢𝑖−2,𝑗

(𝑘+1)
+ 𝑢𝑖,+2,𝑗

(𝑘)
+ 𝑢𝑖,𝑗−2

(𝑘+1)
+ 𝑢𝑖,𝑗+2

(𝑘)
)

 (10) 
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𝑢𝑖,𝑗
(𝑘+1)

=
1

5
 (𝑢𝑖−2,𝑗

(𝑘+1)
+ 𝑢𝑖+2,𝑗

(𝑘)
+ 𝑢𝑖,𝑗−2

(𝑘+1)
+ 𝑢𝑖,𝑗+2

(𝑘)
) +

1

20
 (𝑢𝑖−2,𝑗−2

(𝑘+1)
+ 𝑢𝑖+2,𝑗−2

(𝑘+1)
+ 𝑢𝑖−2,𝑗+2

(𝑘)
+ 𝑢𝑖+2,𝑗+2

(𝑘)
).

 (11) 
 
2.2 Boosted SOR Methods with the 9-Point Laplacian 

 
By using the weighted parameter ω and in accordance with Eq. (9), (10) and (11), the 

corresponding 9-point SOR iterative schemes for the Full-Sweep Boosted SOR (FSBSOR) [23], Half-
Sweep Boosted SOR (HSBSOR) [24] and Quarter-Sweep Boosted SOR (QSBSOR) are formulated as 
follows in Eq. (12) to (14), 
 

𝑢𝑖,𝑗
(𝑘+1)

=
𝜔

5
 (𝑢𝑖−1,𝑗

(𝑘+1)
+ 𝑢𝑖+1,𝑗

(𝑘)
+ 𝑢𝑖,𝑗−1

(𝑘+1)
+ 𝑢𝑖,𝑗+1

(𝑘)
) +

𝜔

20
 (𝑢𝑖−1,𝑗−1

(𝑘+1)
+ 𝑢𝑖+1,𝑗−1

(𝑘+1)
+ 𝑢𝑖−1,𝑗+1

(𝑘)
+ 𝑢𝑖+1,𝑗+1

(𝑘)
)  +

 (1 − 𝜔)𝑢𝑖,𝑗
(𝑘)

,   (12) 

 

𝑢𝑖,𝑗
(𝑘+1)

=
𝜔

5
(𝑢𝑖−1,𝑗−1

(𝑘+1)
+ 𝑢𝑖+1,𝑗−1

(𝑘+1)
+ 𝑢𝑖−1,𝑗+1

(𝑘)
+ 𝑢𝑖+1,𝑗+1

(𝑘)
) +

𝜔

20
 (𝑢𝑖−2,𝑗

(𝑘+1)
+ 𝑢𝑖+2,𝑗

(𝑘)
+ 𝑢𝑖,𝑗−2

(𝑘+1)
+ 𝑢𝑖,𝑗+2

(𝑘)
)  +

 (1 − 𝜔)𝑢𝑖,𝑗
(𝑘)

,  (13) 

 

𝑢𝑖,𝑗
(𝑘+1)

=
𝜔

5
 (𝑢𝑖−2,𝑗

(𝑘+1)
+ 𝑢𝑖+2,𝑗

(𝑘)
+ 𝑢𝑖,𝑗−2

(𝑘+1)
+ 𝑢𝑖,𝑗+2

(𝑘)
) +

𝜔

20
 (𝑢𝑖−2,𝑗−2

(𝑘+1)
+ 𝑢𝑖+2,𝑗−2

(𝑘+1)
+ 𝑢𝑖−2,𝑗+2

(𝑘)
+ 𝑢𝑖+2,𝑗+2

(𝑘)
)  +

 (1 − 𝜔)𝑢𝑖,𝑗
(𝑘)

.  (14)  

 
2.3 Boosted AOR Methods with the 9-Point Laplacian 

 
Over the years, the development of the AOR family’s fast iterative schemes has focused on 

exploring the application of this method to such schemes. The AOR approach serves as a two-
parameter generalization of the Successive Over-Relaxation (SOR) method. By fully leveraging these 
two adjustable parameters, it is possible to design iterative methods that are more flexible, widely 
applicable and achieve a faster rate of convergence compared to similar methods. The derivation of 
the Full-Sweep Accelerated Over-Relaxation (FSBAOR) scheme for this approximation is provided by 
Ling et al., [25] and the formulation of FSBAOR is expressed as follows in Eq. (15), 
 

𝑢𝑖,𝑗
(𝑘+1)

=
𝜔

5
(𝑢𝑖−1,𝑗

(𝑘)
+ 𝑢𝑖+1,𝑗

(𝑘)
+ 𝑢𝑖,𝑗−1

(𝑘)
+ 𝑢𝑖,𝑗+1

(𝑘)
) +

𝑟

5
(𝑢𝑖−1,𝑗

(𝑘+1)
− 𝑢𝑖−1,𝑗

(𝑘)
+  𝑢𝑖,𝑗−1

(𝑘+1)
− 𝑢𝑖,𝑗−1

(𝑘)
) +

𝜔

20
(𝑢𝑖−1,𝑗−1

(𝑘)
+ 𝑢𝑖+1,𝑗−1

(𝑘)
+  𝑢𝑖−1,𝑗+1

(𝑘)
+ 𝑢𝑖+1,𝑗+1

(𝑘)
) +  

𝑟

20
(𝑢𝑖−1,𝑗−1

(𝑘+1)
− 𝑢𝑖−1,𝑗−1

(𝑘)
+ 𝑢𝑖+1,𝑗−1

(𝑘+1)
− 𝑢𝑖+1,𝑗−1

(𝑘)
) +

(1 − 𝜔)𝑢𝑖,𝑗
(𝑘)

.  (15) 

 
By rotating the computational mesh by 45 degrees, the rotated 9-point AOR iterative scheme is 

derived. In this scheme, only half of the total mesh points are considered. Consequently, the Half-
Sweep Boosted AOR (HSBAOR) method can be expressed as follows in Eq. (16), 
 

𝑢𝑖,𝑗
(𝑘+1)

=
𝜔

5
(𝑢𝑖−1,𝑗−1

(𝑘)
+ 𝑢𝑖+1,𝑗−1

(𝑘)
+ 𝑢𝑖−1,𝑗+1

(𝑘)
+ 𝑢𝑖+1,𝑗+1

(𝑘)
) +

𝑟

5
(𝑢𝑖−1,𝑗−1

(𝑘+1)
− 𝑢𝑖−1,𝑗−1

(𝑘)
+  𝑢𝑖+1,𝑗−1

(𝑘+1)
−

𝑢𝑖+1,𝑗−1
(𝑘)

) +
𝜔

20
(𝑢𝑖−2,𝑗

(𝑘)
+ 𝑢𝑖+2,𝑗

(𝑘)
+  𝑢𝑖,𝑗−2

(𝑘)
+ 𝑢𝑖,𝑗+2

(𝑘)
) +

𝑟

20
(𝑢𝑖−2,𝑗

(𝑘+1)
− 𝑢𝑖−2,𝑗

(𝑘)
+  𝑢𝑖,𝑗−2

(𝑘+1)
− 𝑢𝑖,𝑗−2

(𝑘)
) + (1 −

𝜔)𝑢𝑖,𝑗
(𝑘)

. (16) 
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When the quarter-sweep iteration is applied to the 9-point AOR iterative scheme, only a quarter 
of the total nodes in the mesh points are involved in the computation. Consequently, the proposed 
Quarter-Sweep Boosted AOR (QSBAOR) cases are formulated as follows in Eq. (17), 
 

𝑢𝑖,𝑗
(𝑘+1)

=
𝜔

5
(𝑢𝑖−2,𝑗

(𝑘)
+ 𝑢𝑖+2,𝑗

(𝑘)
+ 𝑢𝑖,𝑗−2

(𝑘)
+ 𝑢𝑖,𝑗+2

(𝑘)
) +

𝑟

5
(𝑢𝑖−2,𝑗

(𝑘+1)
− 𝑢𝑖−2,𝑗

(𝑘)
+  𝑢𝑖,𝑗−2

(𝑘+1)
− 𝑢𝑖,𝑗−2

(𝑘)
) +

𝜔

20
(𝑢𝑖−2,𝑗−2

(𝑘)
+ 𝑢𝑖+2,𝑗−2

(𝑘)
+  𝑢𝑖−2,𝑗+2

(𝑘)
+ 𝑢𝑖+2,𝑗+2

(𝑘)
) +  

𝑟

20
(𝑢𝑖−2,𝑗−2

(𝑘+1)
− 𝑢𝑖−2,𝑗−2

(𝑘)
+ 𝑢𝑖+2,𝑗−2

(𝑘+1)
− 𝑢𝑖+2,𝑗−2

(𝑘)
) +

(1 − 𝜔)𝑢𝑖,𝑗
(𝑘)

. (17) 

 
2.4 Boosted TOR Methods with the 9-Point Laplacian 

 
To obtain the Full-Sweep Boosted TOR using an improved iteration with the new parameter, s, 

modifications are made to the Full-Sweep Boosted AOR iterative scheme. Specifically, the terms 
𝑟

5
(𝑢𝑖,𝑗−1

(𝑘+1)
− 𝑢𝑖,𝑗−1

(𝑘)
) and 

𝑟

20
(𝑢𝑖,𝑗−1

(𝑘+1)
− 𝑢𝑖,𝑗−1

(𝑘)
) are replaced with 

𝑠

5
(𝑢𝑖,𝑗−1

(𝑘+1)
− 𝑢𝑖,𝑗−1

(𝑘)
) and 

𝑠

20
(𝑢𝑖,𝑗−1

(𝑘+1)
−

𝑢𝑖,𝑗−1
(𝑘)

), respectively. Therefore, the Full-Sweep Boosted TOR can be expressed as follows in Eq. (18), 

 

𝑢𝑖,𝑗
(𝑘+1)

=
𝜔

5
(𝑢𝑖−1,𝑗

(𝑘)
+ 𝑢𝑖+1,𝑗

(𝑘)
+ 𝑢𝑖,𝑗−1

(𝑘)
+ 𝑢𝑖,𝑗+1

(𝑘)
) +

𝑟

5
(𝑢𝑖−1,𝑗

(𝑘+1)
− 𝑢𝑖−1,𝑗

(𝑘)
) +

𝑠

5
(𝑢𝑖,𝑗−1

(𝑘+1)
− 𝑢𝑖,𝑗−1

(𝑘)
) +

𝜔

20
(𝑢𝑖−1,𝑗−1

(𝑘)
+ 𝑢𝑖+1,𝑗−1

(𝑘)
+  𝑢𝑖−1,𝑗+1

(𝑘)
+ 𝑢𝑖+1,𝑗+1

(𝑘)
) +  

𝑟

20
(𝑢𝑖−1,𝑗−1

(𝑘+1)
− 𝑢𝑖−1,𝑗−1

(𝑘)
) +  

𝑠

20
(𝑢𝑖+1,𝑗−1

(𝑘+1)
−

𝑢𝑖+1,𝑗−1
(𝑘)

) + (1 − 𝜔)𝑢𝑖,𝑗
(𝑘)

. (18) 

 
A similar procedure is applied by introducing the second acceleration parameter, s to the rotated 

9-point iterative scheme, where only half of the total mesh points are considered. Consequently, the 
Half-Sweep Boosted TOR (HSBTOR) can be expressed as follows in Eq. (19), 
 

𝑢𝑖,𝑗
(𝑘+1)

=
𝜔

5
(𝑢𝑖−1,𝑗−1

(𝑘)
+ 𝑢𝑖+1,𝑗−1

(𝑘)
+ 𝑢𝑖−1,𝑗+1

(𝑘)
+ 𝑢𝑖+1,𝑗+1

(𝑘)
) +

𝑟

5
(𝑢𝑖−1,𝑗−1

(𝑘+1)
− 𝑢𝑖−1,𝑗−1

(𝑘)
+  𝑢𝑖+1,𝑗−1

(𝑘+1)
−

𝑢𝑖+1,𝑗−1
(𝑘)

) +
𝜔

20
(𝑢𝑖−2,𝑗

(𝑘)
+ 𝑢𝑖+2,𝑗

(𝑘)
+  𝑢𝑖,𝑗−2

(𝑘)
+ 𝑢𝑖,𝑗+2

(𝑘)
) +

𝑟

20
(𝑢𝑖−2,𝑗

(𝑘+1)
− 𝑢𝑖−2,𝑗

(𝑘)
+  𝑢𝑖,𝑗−2

(𝑘+1)
− 𝑢𝑖,𝑗−2

(𝑘)
) + (1 −

𝜔)𝑢𝑖,𝑗
(𝑘)

. (19) 

 
Finally, the Quarter-Sweep Boosted TOR (QSBTOR) method is derived by applying wider spacing 

between nodes, involving only a quarter of the total nodes in the mesh points. As illustrated in Figure 
3, only the black nodes are utilized in the computation. With the introduction of the new acceleration 
parameter, s, the QSBTOR method demonstrates a faster rate of convergence, greater flexibility and 
broader applicability compared to similar methods. The proposed QSBTOR formulation is given as 
follows in Eq. (20): 
 

𝑢𝑖,𝑗
(𝑘+1)

=
𝜔

5
(𝑢𝑖−2,𝑗

(𝑘)
+ 𝑢𝑖+2,𝑗

(𝑘)
+ 𝑢𝑖,𝑗−2

(𝑘)
+ 𝑢𝑖,𝑗+2

(𝑘)
) +

𝑟

5
(𝑢𝑖−2,𝑗

(𝑘+1)
− 𝑢𝑖−2,𝑗

(𝑘)
) +

𝑠

5
(𝑢𝑖,𝑗−2

(𝑘+1)
− 𝑢𝑖,𝑗−2

(𝑘)
) +

𝜔

20
(𝑢𝑖−2,𝑗−2

(𝑘)
+ 𝑢𝑖+2,𝑗−2

(𝑘)
+  𝑢𝑖−2,𝑗+2

(𝑘)
+ 𝑢𝑖+2,𝑗+2

(𝑘)
) +  

𝑟

20
(𝑢𝑖−2,𝑗−2

(𝑘+1)
− 𝑢𝑖−2,𝑗−2

(𝑘)
) +  

𝑠

20
(𝑢𝑖+2,𝑗−2

(𝑘+1)
−

𝑢𝑖+2,𝑗−2
(𝑘)

) + (1 − 𝜔)𝑢𝑖,𝑗
(𝑘)

. (20) 
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Fig. 3. The computational mesh for quarter-sweep iteration, where 
only black points are involved in the computation 

 

Algorithm 1. QSBTOR 

1. Set configuration space (obstacles, destination) 
2. Set value of ω, r, s 
3. Divide the mesh points into three types: black, white circle and white square points 
4. Compute black points not including obstacles using Eq. (20) 
5. 𝑘 ← 0 
6. repeat  

𝑢𝑖,𝑗
(𝑘+1)

=
𝜔

5
(𝑢𝑖−2,𝑗

(𝑘)
+ 𝑢𝑖+2,𝑗

(𝑘)
+  𝑢𝑖,𝑗−2

(𝑘)
+ 𝑢𝑖,𝑗+2

(𝑘)
) +

𝑟

5
(𝑢𝑖−2,𝑗

(𝑘+1)
− 𝑢𝑖−2,𝑗

(𝑘)
) +

𝑠

5
(𝑢𝑖,𝑗−2

(𝑘+1)
− 𝑢𝑖,𝑗−2

(𝑘)
) +

𝜔

20
(𝑢𝑖−2,𝑗−2

(𝑘)
+ 𝑢𝑖+2,𝑗−2

(𝑘)
+  𝑢𝑖−2,𝑗+2

(𝑘)
+ 𝑢𝑖+2,𝑗+2

(𝑘)
) +  

𝑟

20
(𝑢𝑖−2,𝑗−2

(𝑘+1)
− 𝑢𝑖−2,𝑗−2

(𝑘)
) +  

𝑠

20
(𝑢𝑖+2,𝑗−2

(𝑘+1)
−

𝑢𝑖+2,𝑗−2
(𝑘)

) + (1 − 𝜔)𝑢𝑖,𝑗
(𝑘)

                      (20) 

7.       𝑘 ← 𝑘 + 1 
8. until 𝜀 is less than the convergence criterion 
9. Compute all white square points (rotated) not including obstacles using Eq. (19) 

10. 𝑢𝑖,𝑗
(𝑘+1)

=
𝜔

5
(𝑢𝑖−1,𝑗−1

(𝑘)
+ 𝑢𝑖+1,𝑗−1

(𝑘)
+ 𝑢𝑖−1,𝑗+1

(𝑘)
+ 𝑢𝑖+1,𝑗+1

(𝑘)
) +

𝑟

5
(𝑢𝑖−1,𝑗−1

(𝑘+1)
− 𝑢𝑖−1,𝑗−1

(𝑘)
+

 𝑢𝑖+1,𝑗−1
(𝑘+1)

− 𝑢𝑖+1,𝑗−1
(𝑘)

) +
𝜔

20
(𝑢𝑖−2,𝑗

(𝑘)
+ 𝑢𝑖+2,𝑗

(𝑘)
+  𝑢𝑖,𝑗−2

(𝑘)
+ 𝑢𝑖,𝑗+2

(𝑘)
) +

𝑟

20
(𝑢𝑖−2,𝑗

(𝑘+1)
− 𝑢𝑖−2,𝑗

(𝑘)
+  𝑢𝑖,𝑗−2

(𝑘+1)
−

𝑢𝑖,𝑗−2
(𝑘)

) + (1 − 𝜔)𝑢𝑖,𝑗
(𝑘)

                     (19) 

11. Compute all white circle points (standard) not including obstacles using Eq. (18), 
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12. 𝑢𝑖,𝑗
(𝑘+1)

=
𝜔

5
(𝑢𝑖−1,𝑗

(𝑘)
+ 𝑢𝑖+1,𝑗

(𝑘)
+ 𝑢𝑖,𝑗−1

(𝑘)
+ 𝑢𝑖,𝑗+1

(𝑘)
) +

𝑟

5
(𝑢𝑖−1,𝑗

(𝑘+1)
− 𝑢𝑖−1,𝑗

(𝑘)
) +

𝑠

5
(𝑢𝑖,𝑗−1

(𝑘+1)
− 𝑢𝑖,𝑗−1

(𝑘)
) +

𝜔

20
(𝑢𝑖−1,𝑗−1

(𝑘)
+ 𝑢𝑖+1,𝑗−1

(𝑘)
+  𝑢𝑖−1,𝑗+1

(𝑘)
+ 𝑢𝑖+1,𝑗+1

(𝑘)
) +  

𝑟

20
(𝑢𝑖−1,𝑗−1

(𝑘+1)
− 𝑢𝑖−1,𝑗−1

(𝑘)
) +  

𝑠

20
(𝑢𝑖+1,𝑗−1

(𝑘+1)
−

𝑢𝑖+1,𝑗−1
(𝑘)

) + (1 − 𝜔)𝑢𝑖,𝑗
(𝑘)

                     (18) 

 
3. Results and Discussion 

 
The simulation was conducted using the Robot 2D Simulator on a Linux system equipped with an 

Intel i5 processor running at 2.5 GHz and 8 GB of memory. The execution of the QSBTOR 
implementation, based on Eq. (18), (19) and (20), to solve the 2D Laplace’s problem described in Eq. 
(1), is outlined in Algorithm 1. In the simulation, the start and goal points are represented by red and 
green points, respectively. Two different maps were used in the simulations, with five different sizes 
tested. The experimental results for the Full-Sweep (FS), Half-Sweep (HS) and Quarter-Sweep (QS) 
Boosted methods, based on the 9-Point Laplacian, are presented in this section. The iteration counts 
and CPU times for each algorithm are recorded in Table 1 and 2, respectively. 
 

Table 1 
Performance of the methods in terms of the number of 
iterations 
    N 

Map  Method  300 600 900 1200 1500 

Map 1 FSBSOR  2874 10450 23786 35469 62307 

FSBAOR 2317 8428 19327 28647 50524 

FSBTOR 2177 7981 18117 26916 47466 

HSBSOR 1480 5381 12253 18229 32093 

HSBAOR 1179 4343 9899 14706 25994 

HSBTOR 1107 4081 9300 13808 24417 

QSBSOR 757 2776 6375 9357 16575 

QSBAOR 187 2219 5145 8570 13379 

QSBTOR 177 2091 4840 7077 12582 

Map 2 FSBSOR  2094 7956 19732 32360 45628 

FSBAOR 1721 6374 16021 26242 37267 

FSBTOR 1634 5991 15188 24602 36683 

HSBSOR 1124 4175 9460 16674 23759 

HSBAOR 905 3353 7632 13502 19335 

HSBTOR 850 3149 7171 12649 18182 

QSBSOR 594 2082 4889 8558 12185 

QSBAOR 461 1591 3920 6859 10130 

QSBTOR 426 1448 3690 6470 9555 

 
  



Journal of Advanced Research Design 

Volume 132 Issue 1 (2025) 1-14  

10 

Table 2 
Performance of the methods in terms of the time of execution 
(in seconds) 
    N 

Map Method  300 600 900 1200 1500 

Map 1 FSBSOR  1.602 23.318 123.358 326.31 932.092 

FSBAOR 1.497 22.092 120.699 307.958 893.052 

FSBTOR 1.43 21.041 109.89 290.711 805.575 

HSBSOR 0.533 8.251 44.013 116.616 328.061 

HSBAOR 0.493 7.42 39.259 103.669 291.926 

HSBTOR 0.479 6.235 33.801 103.172 263.516 

QSBSOR 0.219 3.329 17.712 46.912 137.155 

QSBAOR 0.187 2.908 16.589 45.593 120.228 

QSBTOR 0.177 2.749 14.705 38.442 110.641 

Map 2 FSBSOR  1.422 22.837 150.992 345.879 756.108 

FSBAOR 1.361 20.787 153.955 322.32 713.486 

FSBTOR 1.268 19.366 82.025 300.589 747.515 

HSBSOR 0.516 8.019 37.637 119.921 266.421 

HSBAOR 0.437 6.585 33.287 105.91 235.898 

HSBTOR 0.385 5.906 27.725 88.206 195.977 

QSBSOR 0.223 3.117 14.704 46.39 103.631 

QSBAOR 0.199 2.578 12.829 40.69 93.254 

QSBTOR 0.177 2.324 12.051 38.193 87.587 

 
Figure 4 present graphs illustrating the number of iterations and execution time, respectively, 

corresponding to the results summarized in Table 1 and 2. Both figures demonstrate that execution 
time increases with the number of iterations. A closer examination of the graphs reveals that the 
QSBTOR method outperforms the other proposed approaches in terms of both iteration count and 
execution time, as also evident from Table 1 and 2. The results clearly show that the trends in the 
graphs for iteration count and execution time align closely. Compared to other methods, the QSBTOR 
iterative scheme stands out, offering superior efficiency in terms of both performance time and the 
number of iterations. 
 

  
Fig. 4. Number of iterations (left) and performance time (right) by the tested methods for varying 
size of environments 

 
Tables 3 to 5 display the total number of arithmetic operations acquired by all of the methods 

assessed, in which M = N2 - P is utilized to denote the number of cell points which are involved during 
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the iteration, where N2 is the size of the environment and P represents the number of cell points 
occupied by obstacles.  
 

Table 3  
Number of arithmetic operations per iteration for algorithms on the 
9-Point Laplacian using Boosted SOR methods 
Methods ADD/SUB MUL/DIV 

FSBSOR 8𝑁2 3𝑁2 
HSBSOR 4𝑁2 3

2
𝑁2 

QSBSOR 2𝑁2 3

4
𝑁2 

 
Table 4 
Number of arithmetic operations per iteration for algorithms on the 9-Point 
Laplacian using Boosted AOR methods 
Methods ADD/SUB MUL/DIV 

FSBAOR 16𝑁2 5𝑁2 
HSBAOR 8𝑁2 5

2
𝑁2 

QSBAOR 4𝑁2 5

4
𝑁2 

 
Table 5 
Number of arithmetic operations per iteration for algorithms on the 9-Point Laplacian 
using Boosted TOR methods 
Methods ADD/SUB MUL/DIV 

FSBTOR 16𝑁2 7𝑁2 
HSBTOR 8𝑁2 7

2
𝑁2 

QSBTOR 4𝑁2 7

4
𝑁2 

 
The HS and QS algorithms based on the 9-Point iterative scheme employ additional arithmetic 

operations to calculate the remaining points after convergence by employing direct methods, as 
given in Table 6. 
 

Table 6 
Number of additional arithmetic operations for the remaining points for HS Boosted 
and QS Boosted methods 
Methods ADD/SUB MUL/DIV 

SOR AOR/TOR SOR AOR TOR 

HS cases 4𝑁2 8𝑁2 3

2
𝑁2 

5

2
𝑁2 

7

2
𝑁2 

QS cases 6𝑁2 12𝑁2 9

4
𝑁2 

15

4
𝑁2 

21

4
𝑁2 

 
Table 7 presents a comparison of the Boosted AOR, Boosted SOR and Boosted TOR methods, 

clearly indicating that the Boosted TOR delivers the best performance in terms of iteration count and 
CPU time. The harmonic potentials computed using the proposed methods are utilized in the path 
generation process, which employs the Gradient Descent Search (GDS) algorithm. The GDS algorithm 
guides path generation by following the gradient of the harmonic potentials, starting from the point 
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with the highest potential value (the start point) and progressing to lower potential values until the 
lowest potential value, representing the goal point, is reached.  
 

Table 7 
Reduction percentages in terms of number of iterations and CPU time for HS 
Boosted and QS Boosted methods against their corresponding FS Boosted method 
Methods Iteration (%) CPU Time (%) 

HSBSOR 48.52 66.45 
HSBAOR 48.64 68.97 
HSBTOR 48.95 71.09 
QSBSOR 72.75 86.53 
QSBAOR 72.55 87.20 
QSBTOR 72.92 87.23 

 
Figure 5 illustrates the paths generated for Map 1 and 2 using the GDS algorithm, based on the 

harmonic potentials computed with the aforementioned iterative methods. 
 

      
  Map 1 
 

       
  Map 2 

Fig. 5. Path creation for various surroundings using various starting locations (green point) and 
target places (red point) 

 
The computational complexity of the tested methods is presented in Tables 3 to 5. According to 

these tables, the iterative techniques based on the Half-Sweep Boosted methods (HSBSOR, HSBAOR 
and HSBTOR) process only half of the node points in a skewed manner during the iteration process. 
Consequently, the computational complexity is reduced by approximately 50%. In contrast, the 
simulated results for the Quarter-Sweep Boosted methods (QSBSOR, QSBAOR and QSBTOR) 
demonstrate significantly better performance, reducing the computational complexity by 
approximately 75%. 
 
4. Conclusions 

 
The primary objective of this study is to formulate and develop a method for integrating iterative 

approaches with path-finding algorithms to solve the path-planning problem for mobile robots. This 
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work applies the concepts of Half-Sweep (HS) and Quarter-Sweep (QS) iterations, along with the 
computation of Laplacian harmonic potentials using the 9-point Laplacian. These techniques are 
employed to address the path-planning problem through the application of relaxation iterative 
methods. The overall performance of the path-planning algorithms is evaluated based on three key 
criteria: successful path generation, the number of iterations required and time efficiency. 

The key contribution of this study, based on the summary of findings, is the introduction of the 
Quarter-Sweep Boosted TOR (QSBTOR) method within the 9-Point Laplacian operator framework. 
This method employed two acceleration parameters to speed up the convergence rate in computing 
the solutions of the Laplace’s equation to obtain the harmonic potentials. The computed harmonic 
potentials are subsequently utilized by the Gradient Descent Search (GDS) algorithm to guide the 
path-finding process. This approach enables the generation of smooth paths, allowing the robot to 
navigate safely within a structured environment from any starting point to a specified goal while 
minimizing the risk of collisions. 
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