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In order to prevent irreversible blindless among adults aged 18-65, it is imperative to 
accurately diagnose and treat diabetic retinopathy (DR) as early as possible. As such, 
the present study endeavoured to compare the efficacy of four deep learning (DL) 
models; namely, convolutional neural networks (CNN), residual networks (ResNet), 
inception architecture (IA), and densely connected convolutional networks 
(DenseNet); at detecting and classifying DR into different levels of disease severity. The 
Kaggle DR Detection dataset was used to assess the classification accuracies while a 
loss function (LF), that combines the loss of cross-entropy with additional penalties for 
classification errors, was introduced to overcome class imbalance issues and improve 
the performance of the four examined DL models. The DenseNet model had the 
highest accuracy, recall, precision, F1-score, and area under the receiver operating 
characteristic curve (AUC-ROC) of the examined models, by scoring 90, 89, 88, 88%, 
and 0.92, respectively. This performance was closely followed by that of the ResNet 
model. The findings indicate that the architecture of the model, especially that of 
models that will be used for medical image classification (MIC), must be taken into 
account when selecting which model to use. Furthermore, the proposed customised 
LFs enhanced the precision and resilience of the examined DL models. Screening tools 
that can accurately diagnose DR early, with limited to no intervention from an 
ophthalmologist, will enable them to treat patiently significantly earlier, thus 
improving patient outcomes. As such, the development of such models is imperative. 
However, various datasets should be used to substantiate the accuracy of these 
models. Their efficacy could also be improved by combining supplemental clinical data 
as well as examining the use of hybrid architectures. 
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1. Introduction 
 

Diabe3c re3nopathy (DR) is the primary cause of irreversible blindness among individuals aged 
18-65 across the globe. According to the World Health Organiza3on (WHO), approximately 33% of all 
diabe3cs worldwide have some form of DR. As such, there is an urgent need to develop screening 
tools that facilitate early detec3on to improve pa3ent outcomes. Diabe3c re3nopathy (DR) ranges in 
severity from non-prolifera3ve diabe3c re3nopathy, which is mild, to prolifera3ve re3nopathy, which 

 
* Corresponding author. 
E-mail address: mmahdi@uowasit.edu.iq 
 
https://doi.org/10.37934/ard.137.1.267277 

https://akademiabaru.com/submit/index.php/ard


Journal of Advanced Research Design 
Volume 137 Issue 1 (2026) 267-277  

268 

is the most severe form. However, regardless of the severity, any form of DR, if not treated early 
enough, may result in significant loss of vision, if not blindness [1]. 

In DR, severe visual impairment can only be side-stepped by detecting the disease early, 
classifying it correctly, and treating it immediately. Nevertheless, current detection techniques 
necessitate the manual examination of retinal pictures by an ophthalmologist, which is labor-
intensive, time-consuming, error-prone, and subject to observer bias. Therefore, it is critical to 
provide an accurate tool that may assist medical practitioners in diagnosing and treating DR at an 
early stage in a reliable and automatic manner[2].  

Medical image classification (MIC) has undergone a revolution thanks to developments in 
artificial intelligence (AI). This is particularly true for deep learning (DL) models, including 
convolutional neural networks (CNN), which excel in object detection, image segmentation, and 
image classification. Since they can automatically extract minute information from raw photos, they 
are especially well-suited to overcome the challenging problems that the MIC sector faces. 

Therefore, the present study endeavoured to examine the ability of several DL models, each with 
their own unique architectures and feature extraction methods, to detect and classify DR[3]. The 
examined models were CNN, residual networks (ResNet), densely connected convolutional networks 
(DenseNet), and inception architecture (IA). A CNN model uses multiple layers to capture the spatial 
hierarchies present in an image while a ResNet model uses residual learning to overcome the issue 
of a vanishing gradient by training deeper networks. Densely connected convolutional networks 
(DenseNet), on the other hand, uses dense connections to enhance the flow of information between 
the layers, thereby, improving its learning accuracy and efficiency. Lastly, IA uses multiple differently-
sized convolutional filters to effectively capture the features that may be present in an image[4].  

Although the findings of multiple extant studies of these models seem promising, a detailed 
comparative analysis has yet to be conducted to determine which DL model can most efficiently 
detect and correctly classify DR. Furthermore, when faced by the inherent issues that the MIC 
industry faces, novel methods, such as loss functions (LFs) that are customised, may further improve 
a model’s performance[5].  

The present study bridges the gap in the existing literature by comparing the abilities of the 
various DL models; namely, ResNet, IA, DenseNet, and CNN; to efficiently detect and classify DR. A 
novel LF that more effectively penalises misclassifications was also proposed in the hopes of 
increasing model precision. Finding the most reliable and accurate DL model for DR detection, 
assessing the novel LF's effects, and offering insights into the real-world applications of using these 
models in clinical settings are the main goals of this research. 

Through the completion of this comparative study, we hope to make a valuable contribution to 
the current efforts aimed at creating automated, dependable, and effective DR diagnostic tools, 
which will ultimately help diabetic patients prevent and detect vision loss early on. 
 
2. Literature Review  
	

Conven3onally, a thorough eye examina3on that includes dilated fundus photography and 
subsequent analysis by qualified ophthalmologists is used to diagnose DR. While 3me-consuming and 
requiring a high level of exper3se, manually inspec3ng re3nal images for haemorrhages, 
microaneurysms, and other lesions sugges3ve of DR is nevertheless an effec3ve method[6]. The 
degree of variability in manual grading accuracy among observers can result in dispari3es in the 
diagnosis and suggested course of treatment[7].  
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Initially, automated systems were created to overcome the drawbacks of manual inspection. 
Early attempts at automated DR detection relied on methods like thresholding, morphological 
operations, and template matching to find features like microaneurysms, blood vessels, and 
exudates in retinal images. While these approaches offered a certain level of automation, their 
dependence on manually defined features and ruled-based algorithms limited their accuracy and 
reliability[8]. 

Automated DR detection saw major progress with the arrival of machine learning (ML). Retinal 
images were classified using ML techniques like random forests and support vector machines, 
which outperformed traditional methods but still heavily relied on the quality of manually created 
features[9]. 

Unlike	traditional	ML	techniques,	DL	models	can	automatically	learn	and	extract	features	
from	raw	images,	thereby,	eliminating	the	need	for	manual	feature	engineering.	Of	the	then	
available	models,	CNN	quickly	became	a	favourite	as	it	could	capture	the	spatial	hierarchies	
in	images[10].	Early	applications	of	CNN	for	DR	detection	showed	promising	results.	As	per	
research,	 a	 CNN	 could	 identify	 referable	 DR	 from	 retinal	 photos	 with	 a	 high	 level	 of	
sensitivity	and	speciIicity	which	was	on	par	with	ophthalmologists.	Large-scale	 labelled	
image	datasets	used	to	train	the	models	exhibited	DL’s	potential	for	precise	and	scalable	
DR	screening.[11]. 

More sophisticated DL architectures were investigated in later research to augment the efficacy 
of DR detection[12]. ResNet introduced residual learning to deal with the vanishing gradient problem, 
allowing deeper networks to be trained and making it a viable alternative for medical image analysis, 
including DR detection. By employing multiple convolutional filters of varying sizes within a single 
layer, the IA developed a novel method that improved the network's capacity to recognise intricate 
patterns in retinal images and allowed it to capture features at multiple scales. Because of its closely 
linked layers, DenseNet allowed for optimal information transfer between them, reducing the issue 
of vanishing gradients and promoting feature reuse, which enhanced the accuracy and efficacy of 
learning. 

 
3. Comparative Studies and Gaps  
 

DL models for DR detection have been compared in a number of research works. For example, 
Pratt et al. [13] emphasised the advantages of deeper networks by comparing the performance of 
several CNN architectures. These studies, however, frequently concentrated on conventional 
measures such as accuracy rather than investigating the effects of cutting-edge methods, like 
customised LFs, on model performance[13]. 

Notwithstanding the advancements, thorough comparative studies that assess several 
cutting-edge models in uniform settings are still required. Moreover, creating and evaluating new LFs 
specifically suited to MIC can offer more information about how to best optimise DL models for DR 
detection[14]. By methodically comparing the effectiveness of various advanced DL models, such as 
ResNet, CNN, IA, and DenseNet, for DR detection and classification, this study seeks to close these 
gaps. We also present a new LF which intends to improve the models’ performances by dealing with 
particular issues pertaining to misclassification and class imbalance. This study intends to ascertain 
the optimal DL for DR detection through an exhaustive comparative analysis and present practical 
recommendations for enhancing automated screening tools. 
 
 
 



Journal of Advanced Research Design 
Volume 137 Issue 1 (2026) 267-277  

270 

4. Methodology 
4.1 Data Collection 

 
The Kaggle Diabetic Retinopathy Detection Training Dataset is a large collection of high-

resolution images of retinas that have been categorised according to DR severity into no DR, mild 
DR, moderate DR, severe DR, and proliferative DR. It is believed that this vast array of images will 
ensure better DL model training and learning. 

The images in the dataset were adjusted before they were used to train the models to ensure 
that the quality of the data was consistent. Firstly, the images were resized to a standard 224 by 224 
pixels to meet the input requirements of most DL models. The pixel values were then normalised to 
a 0-1 range to standardise the data and speed up when convergence occurred during the training. 
Lastly, the images were rotated, flipped horizontally, or vertically, and zoomed in to increase 
inconsistencies in the training data and avoid overfitting. It is believed that these interventions will 
expose the models to a plethora of retinal images and increase the generalisability of their results. 

 
4.2 Model Selection 
 

Four DL models, each with their own unique architectures and features, were compared to 
determine how well they could detect DR in retinal images and classify it. These models were: 

1. CNN: Comprises of several convolutional, max-pooling, and fully-connected layers. It is a 
decent reference model for the purposes of the present study as it can accurately identify 
spatial hierarchies in images. 

2. ResNet: Leverages on residual learning to overcome the problem of the vanishing 
gradient. By skipping one or more layers and using shortcut connections, its architecture 
enables it to effectively train deeper networks. It is a great contender for DR detection 
due to its capacity to continue operating at a high level of performance as the depth 
increases.  

3. IA:  In the same layer, the IA uses several convolutional filters of various sizes. By using a 
multi-scale approach, the model can record features at different resolutions, which 
improves its ability to identify intricate patterns in retinal images. 

4. DenseNet: DenseNet uses dense connections to guarantee optimal information flow 
among layers. Because every layer in DenseNet receives inputs from every layer before it, 
the vanishing gradient issue is alleviated and feature reuse is encouraged, which improves 
learning accuracy and efficacy. 
 

4.3 Training Procedure 
 

To ensure a fair comparison, a uniform procedure was used to train each model. Ten percent 
of the dataset was used for testing, 20 percent was used for validation, and 70 percent was used for 
training. In order to speed up computation, the training process was conducted on GPU-capable 
hardware with well-known DL frameworks like TensorFlow and PyTorch. 

We presented a novel LF that penalises misclassifications more severely in an effort to 
increase classification accuracy. This LF attempts to rectify the class imbalance that is commonly 
observed in medical datasets, wherein some classes (like proliferative and severe DR) are 
underrepresented in comparison to other classes (like no DR). The new LF makes sure that the model 
pays more attention to accurately classifying minority classes by blending standard cross-entropy loss 
with supplementary penalties for misclassified instances. 
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Grid search was used to optimise hyperparameters like batch size, learning rate, and number 
of epochs. A learning rate scheduler was used to modify the learning rate from its initial setting of 
0.001 on the basis of validation results. In order to balance training efficacy with memory limitations, 
a batch size of 32 was selected. To avoid overfitting, the models were trained for 50 epochs with 
early stopping criteria based on validation loss. 
 
4.4 Evaluation Metrics 
 

Several metrics were employed to assess each model's performance in order to produce a 
thorough evaluation: 

- Accuracy: This is the percentage of cases correctly classified relative to all instances. This 
metric provides a broad assessment of the model's effectiveness. 

- Precision: This is the percentage of actual positive forecasts among all positive forecasts. The 
precision of a model is indicative of its ability to prevent false positives. 

- Recall: This is the percentage of real positives that match true positive predictions. Recall 
gauges how sensitive the model is by assessing its capacity to record all pertinent occurrences. 

- F1-score: This is the precision and recall harmonic mean. An impartial assessment of the 
model's performance is offered by the F1-score, which is especially helpful when addressing 
class imbalance. 

- Area under the receiver operating characteristic curve (AUC-ROC): This is the region beneath 
the operating characteristic curve of the receiver. The discriminatory power of the model is 
measured by AUC-ROC, where a higher value denotes superior discriminatory power. 

To guarantee an objective assessment of the models' performance, these metrics were calculated 
on the test set. We sought to capture various facets of the models' classification abilities and offer a 
thorough comparison by utilising an extensive set of evaluation metrics. 

 
Fig. 1. Figure The methodology of the present study 

 
As seen in the above figure, the first step, data collection, entails obtaining the DR detection 

dataset from Kaggle. The retinal images included in this dataset are all that are needed to train and 
assess the models. 

The process then moves on to data pre-processing, which entails a number of crucial 
procedures to get the data ready for model training. To maintain consistency, all images are resized 
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to a standard size of 224 by 224 pixels. In order to normalise the input data and speed up convergence 
during training, pixel values are set to a range of [0, 1]. In order to prevent overfitting and enhance 
model generalisation, additional data augmentation techniques like rotation, flipping, and zooming 
are used to increase the variability of the training data. 

The model selection step encompasses selecting different DL models and comparing their 
performances after pre-processing. ResNet, CNN, IA, and DenseNet are among the models that were 
chosen as they each have their own unique strengths as well as architectures that are best suited for 
MIC. 

During model training, the dataset was split into 70, 20, and 10% for training, validation, and 
testing, respectively. A unique LF, that combines loss of cross-entropy with additional penalties, was 
proposed in the hopes of overcoming class imbalance issues and increasing the accuracy of the 
models’ classifications. The batch size, learning rate, and number of epochs were just some of the 
hyperparameters that were optimised to guarantee that the models performed optimally. 

TensorFlow and PyTorch were used to train the models on GPU-ready systems. Apart from 
that, early stopping, that was conducted based on the results of a loss of validation examination, was 
used to prevent data overfitting. A learning rate scheduler was then used to adjust the learning rate 
and improve the models’ performances. 

Multiple metrics; such as accuracy, F1-score, AUC-ROC, recall, and precision; were used to 
assess how the trained models performed on the test dataset as they yield a comprehensive 
understanding of the functionalities of the models. The End note was used to indicate the conclusion 
of the process as it guarantees that the ability of the various DL models to identify and categorise DR 
has been comprehensively examined. 
 
5. Results 

 
The present study systematically examined the ability of four DL models; namely, ResNet, 

CNN, IA, and DenseNet; to detect and classify DR from images. This section discusses the outcomes 
of the training, validation, and testing of these models. 
 
5.1 Training and Validation Performance 
 

The training and validation capabilities of the models were determined using learning curves 
to plot the loss of training and validation capabilities over the total number of epochs that occurred. 
Learning plots, more specifically, show if a model is overfitting or underfitting the data as well as how 
well it identifies principal patterns in the data. 

- CNN: Its training and validation capabilities increased with every passing epoch. Therefore, it 
did not overfit the data and was able to determine which features were essential for correctly 
identifying DR from images. Its training and validation accuracy were, respectively, 85 and 
82%. 

- ResNet: Due to its deeper architecture and residual connections, its training loss declined 
faster as the number of epochs increased while its validation loss occurred more gradually. 
Therefore, it was able to identify more intricate patterns in the data. As its training and 
validation accuracy were, respectively, 92 and 89%, it was better able to identify DR from 
images than the CNN model. 

- IA: Due to its ability to mine features on multiple scales, its training and validation loss 
consistently decreased with every epoch. Therefore, it could learn very efficiently. As its 



Journal of Advanced Research Design 
Volume 137 Issue 1 (2026) 267-277  

273 

training and validation accuracy were, respectively, 90 and 87%, it performed better than the 
CNN model but not as well as the ResNet model.  

- DenseNet: Due to its densely connected layers, its validation loss and training loss decreased 
almost simultaneously as the number of epochs increased. Therefore, apart from its 
outstanding ability to generalise the data, its training and validation accuracies were the 
highest of the examined DL models; namely, 94 and 91%, respectively. 

 
5.2 Test Performance 
 

As previously mentioned, accuracy, precision, F1-score, recall, and AUC-ROC were used to 
assess the models’ performances on the test dataset. Table 1 provides the results of these tests. 
 
Table 1 
The comparison results of some deep learning-based models 
Model Accuracy Precision Recall F1-score AUC-ROC 

CNN 0.85 0.82 0.84 0.83 0.88 

ResNet 0.89 0.87 0.88 0.87 0.91 

IA 0.88 0.86 0.87 0.86 0.90 

DenseNet 0.90 0.88 0.89 0.88 0.92 

 

- Accuracy:		With	an	accuracy	of	90%,	DenseNet	was	the	most	precise,	followed	by	ResNet	at	
89%,	and	IA	at	88%,	and	CNN	at	85%.	This	shows	that	when	it	came	to	precisely	classifying	
the	instances,	DenseNet	was	the	most	accurate	one.	

- Precision:	 	With	 an	88%	precision	 rate,	DenseNet	 also	had	 the	 lowest	 false	positive	 rate.	
ResNet,	IA,	and	CNN	followed	with	corresponding	precision	scores	of	87%,	86%,	and	82%.	

- Recall:		DenseNet	and	ResNet	exhibited	the	greatest	sensitivity	in	detecting	genuine	positive	
cases	of	drug	resistance	(DR),	with	recall	scores	of	89%	and	88%,	respectively.	IA	and	CNN	
had	recall	scores	of	87%	and	84%.	

- F1-score:	DenseNet	had	the	highest	F1-score	(88%),	followed	by	ResNet	(87%),	IA	(86%),	
and	 CNN	 (83%).	 The	 F1-score	 strikes	 a	 balance	 between	 precision	 and	 recall.	 This	
corroborates	how	well	DenseNet	performs	in	dealing	with	false	positives	and	false	negatives.	

- AUC-ROC:		These	results	were	corroborated	by	the	AUC-ROC	scores,	where	DenseNet	scored	
highest	at	0.92,	followed	by	ResNet	at	0.91,	IA	at	0.90,	and	CNN	at	0.88.	DenseNet	and	ResNet	
have	better	discriminatory	power	 in	differentiating	between	 the	diverse	 classes	 of	DR,	 as	
evidenced	by	their	superior	AUC-ROC	scores.	

 
5.3 Visualisations 
 

Visualising model performance relied on ROC curves and confusion matrices. ROC curves 
depict the trade-off between sensitivity and specificity, plotting the true positive rate versus the false 
positive rate. 

- ROC Curves: DenseNet and ResNet excelled, with their curves consistently highest and 
above the diagonal line. Lower AUC-ROC scores for Inception Architecture (IA) and CNN 
were reflected in their lower curves. 
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- Confusion Matrices:  Confirming the ROC curves, confusion matrices showed the fewest 
misclassifications for DenseNet and ResNet, signifying their accuracy in DR identification 
and categorisation. 

The study's observations show that DenseNet is the most reliable and accurate model for DR 
detection and classification, outperforming the other models in every evaluation metric. As against 
DenseNet, ResNet exhibited slightly inferior performance. DenseNet and ResNet, with their more 
sophisticated architectures, performed better than CNN and IA, in spite of their effectiveness. 

The models' performance was considerably enhanced by the addition of the novel LF, 
especially in managing class imbalance and lowering misclassification rates. The significance of model 
selection and LF design in formulating successful DL solutions for MIC tasks is highlighted by this work. 

In general, the study's conclusions present insightful information regarding the relative 
effectiveness of several DL models for DR identification and categorisation, with DenseNet turning 
out to be the top model. Larger datasets and hybrid models may be the subject of future analyses to 
further improve detection robustness and accuracy. 
 
6. Discussion 
 

For DR detection and classification, the study's observations present an exhaustive 
comparison of four advanced DL models: ResNet, CNN, IA, and DenseNet. The thorough analysis puts 
focus on the advantages and disadvantages of each model and underscores how vital model 
architecture and LF design are for MIC tasks. 
     Model Performance Analysis 

- DenseNet:  By outclassing the other models in every evaluation metric, DenseNet turned 
out to be the most consistent and precise model. DenseNet's densely connected layers 
improve feature reuse and gradient flow efficiency, which propels the network's capacity 
for learning and generalisation. With a 90% final accuracy and an AUC-ROC of 0.92, 
DenseNet is able to discriminate between DR severity levels with satisfactory 
effectiveness. With its high recall (89%) and precision (88%) ratings, DenseNet is a very 
dependable model for clinical applications because of its capability to reduce false 
positives as well as negatives. 

- ResNet:  ResNet performed commendably as well, presenting an 89% accuracy rate and 
an AUC-ROC of 0.91. ResNet can learn intricate patterns in retinal images by utilising 
residual connections to train deeper networks without running into the vanishing gradient 
issue. With an F1-score of 87%, the model's high recall (88%) and precision (87%) scores 
exhibit its efficacy in correctly classifying DR cases while striking a balance between 
sensitivity and specificity. 

- IA: The accuracy and AUC-ROC of the IA model, which is well-known for its multi-scale 
feature extraction, were 88% and 0.90, respectively. Its architecture enables it to capture 
features at diverse scales by integrating multiple convolutional filters of variable sizes in 
the same layer. Although IA did well, DenseNet and ResNet outperformed it by a tiny 
margin, suggesting that deeper and more densely connected networks would be more apt 
for this task. 

- CNN:  Among the four models, the basic CNN model delivered the worst performance, 
showing an accuracy of 85% and an AUC-ROC of 0.88. CNNs do a good job of capturing 
spatial hierarchies in images. However, their performance is limited in more complex 
classification tasks owing to the dearth of advanced architectural features like dense 
layers or residual connections. Its comparatively lower sensitivity and specificity with 
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regards to the other models is further exhibited by the precision (82%) and recall (84%) 
scores. 

 
Impact of Novel Loss Function (LF) 

The models' improved performance was largely due to the addition of a novel LF that 
combines extra penalties for misclassifications with cross-entropy loss. By severely penalising the 
misclassification of minority classes, this customised LF addresses class imbalance and incentivises 
the models to focus more on infrequent but clinically significant DR cases. The impact of this LF is 
apparent in the high recall and precision scores which DenseNet and ResNet attained, showing how 
well it augments model performance. 

Strengths and Limitations 
Strengths: This paper presents a thorough evaluation of the latest DL models for DR detection and 
classification. The work uses a big and diverse dataset, rigorous pre-processing methods, and 
hyperparameter optimization to support the robustness and reliability of the findings. The addition 
of a novel LF and its positive impact on model performance, which offers insights into how 
customized LFs might improve classification accuracy, is a crucial contribution to the field.  
Limitations: This study project has certain shortcomings in addition to its many advantages. Since the 
models were trained and evaluated on a single dataset, the findings might not be as generalizable to 
other datasets or real-world clinical scenarios.  
Moreover, the study merely included image-based features rather than other clinical data which 
might have raised the models' accuracy and robustness, such as patient demographics and medical 
histories. By assimilating more clinical data and corroborating the models across multiple datasets, 
future research works might be able to tackle these limitations. 
 
Practical Implications 
The results of this study have significant applications for the creation of DR screening tools that are 
automated. With its strong performance and high accuracy, DenseNet exhibits great promise for 
clinical setting deployment, helping ophthalmologists accurately classify and detect DR early on. By 
enabling prompt intervention and treatment, the application of advanced DL models can greatly 
lessen the workload of medical staff, increase screening effectiveness, and eventually improve 
patient outcomes. 
 
7. Conclusion 
 

Among working-age adults in particular, DR is a major cause of blindness. Therefore, early 
detection and precise classification are essential for both effective treatment and preventing severe 
vision loss. In order to compare the effectiveness of four sophisticated DL models; namely, ResNet, 
CNN, IA, and DenseNet; in identifying and categorising DR, this study also introduced a novel LF that 
was intended to enhance model performance. 

After a thorough analysis, DenseNet was found to be the most accurate and reliable model 
for both DR detection and classification, outperforming the other models in every important 
performance metric. DenseNet outperformed the other models in terms of accuracy (90%), precision 
(88%), recall (89%), F1-score (88%), and AUC-ROC (0.92). This suggests that DenseNet performs 
better at handling complex patterns in retinal pictures and efficiently distinguishing between 
different degrees of DR severity. Despite its effectiveness, CNN and IA fell short of the more advanced 
systems. Conversely, ResNet outperformed DenseNet, only slightly lagging behind.  
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The new LF was a major contributor to improving the performance of the models; it combines 
additional penalties for misclassifications with cross-entropy loss. Thanks to this customized strategy 
that effectively handled the class imbalance, higher precision and recall scores were obtained, 
particularly for the underrepresented classes. The impact of the innovative LF highlights the need for 
customized techniques in DL applications, especially in MIC tasks where class imbalance is a major 
issue. 
 
The findings of this study have important implications. 

Although this study offers insightful information, there are still some unanswered questions that 
could improve the quality and relevance of the results. Subsequent research endeavours ought to 
verify the models on numerous datasets to guarantee their applicability to diverse populaces and 
imaging scenarios. Incorporating clinical data, such as patient demographics and medical history, 
with image-based features may enhance model accuracy and yield a more thorough evaluation. To 
achieve even better performance, hybrid models that combine the best features of various 
architectures—for example, ResNet and dense connections—should be investigated. Furthermore, 
creating techniques to improve the interpretability and explainability of DL models is essential to 
winning over patients' and physicians' trust and guaranteeing the moral application of AI in 
healthcare. 

This study concludes by highlighting the capability of advanced DL models, specifically DenseNet, 
to enhance the precision and effectiveness of disease recognition and classification. The results 
highlight the significance of LF design and model architecture in attaining high performance, offering 
insightful information for further study and clinical uses. We can get closer to creating trustworthy 
and useful AI tools that assist early detection and intervention in DR, eventually improving patient 
care and outcomes, by carrying out more research and improvement of these strategies. 
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