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Indonesia has various potential renewable energy sources such as solar energy, which 
can generate more than 200 GW. However, this promising energy source tends to be 
utilized in small numbers, i.e., less than 100 MW, compared to the potential energy. 
The solar photovoltaic (PV) systems significantly depend on the location, such as the 
optimal configuration of azimuth and tilt angles, which determine the amount of solar 
irradiance captured by the panels. Even though numerous studies and practical 
applications of PV systems have been investigated globally, unfortunately, there is a 
scarcity of research focusing on PV technology, specifically in the context of South 
Papua, where its usage remains unexplored, for example, in the optimal configuration 
of azimuth and tilt angles. Therefore, this research focuses on optimizing the tilt angle 
and azimuth of PV panels located in coastal areas of South Papua by utilizing PVSyst 
software and annual radiation estimation. Moreover, the elevated solar radiation 
levels in the area establish it as a key site for installing PV systems; on the other hand, 
the distinctive geographical and weather conditions require accurate positioning of 
panels to achieve the best possible efficiency of PV systems. To address this, we 
employed Random Forest (RF) and Support Vector Machine (SVM) models in a Python 
environment to analyse the impact of azimuth and tilt angles on the global collection 
plane of solar panels. The dataset included azimuth angles ranging from 0° to 60° and 
tilt angles from 8° to 45° representing a comprehensive range of possible 
configurations. Our findings indicate that an azimuth angle of 60° and a tilt angle of 8° 
yield the highest global collection plane values, making it the most effective 
configuration for maximizing solar energy capture in this region during the dry season. 
Conversely, in the wet season, the optimal tilt angle shifts to 30° with an azimuth angle 
of 0°. Furthermore, the Random Forest (RF) model outperformed Support Vector 
Machine (SVM) in predictive accuracy, as evidenced by a lower mean squared error. 
This study not only provides valuable insight into the optimization of solar field 
orientation but also highlights machine learning techniques in improving PV system 
performance. By optimizing solar energy capture, this research supports Indonesia’s 
broader goals of transitioning to renewable energy sources, contributing to sustainable 
development and energy security in South Papua, Indonesia.  
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1. Introduction 
 

Indonesia encompasses several potential renewable energy resources, namely, hydropower (94.3 
GW), geothermal (28.5 GW), solar (207.8 GW), wind (60.6 GW) and ocean energy (17.9 GW). 
Although solar energy has the highest potential, its use of energy in producing electricity is still less 
than 100 MW in comparison to more than 200 GW with the efficiency of available Photovoltaic (PV) 
technology [1]. In addition to a planned installed capacity of 3 MW (2019–2028), Indonesia’s most 
significant solar potential is located primarily in West and East Kalimantan and South Sumatera with 
an estimated total of 17–20 GW. In other provinces, such as Papua Province, the achievable capacity 
is roughly 2 GW. Nevertheless, the Provinces’ projected 18% annual population growth rate will lead 
to a rise in energy consumption [2]. The solar radiation in the installation area, the tilt angle and the 
orientation of the solar panels affect how much solar energy is absorbed by photovoltaic (PV) 
modules. Generally, the performance of a PV is directly proportional to its solar radiation level; as 
the solar radiation level rises, it correspondingly increases the specific solar energy produced by the 
PV [3,4]. The efficiency of these systems is influenced predominantly by the optimal configuration of 
solar panels, particularly the azimuth and tilt angles, which directly impact the amount of solar 
irradiance captured. Adjusting these angles to optimize solar energy capture can substantially 
enhance the performance of PV systems, as investigated in Spain. A solar PV system positioned in the 
south is as follows: orientation (γ = 0) and tilt angle (ß) changes vary from 21°–23°, 37°–40° and 37°–
40° and as a result, the percentages of energy losses are 5%, 10%, 15% and 20%, respectively [5]. 
However, in West and Central Africa, a slight movement (up to 20°) from the optimal position and 
tilt is unlikely to provide a substantial impact on the incident solar radiation (irradiation decrease of 
less than 5%) [6]. Other prior studies, for instance [7], assessed the efficiency of a 10 kWp grid-
connected copper indium selenium (CIS) PV system by simulating meteorological variables during 
spring, dry season and winter at a specific latitude, without consideration for the site’s location being 
coastal or lowland. Another investigation conducted a comparative analysis of various PV 
technologies in diverse global regions, particularly in Asian countries like Singapore, Korea, China and 
Iran, while omitting Indonesia from the examination [8]. The impact of dust and shading resulting 
from solar PV conditions and climate was examined by Al-Ibrahim [9], yet the effects of inclination 
and orientation on shading patterns cast on PV panels were not investigated. 

The azimuth orientation angle of a collector (α), denoted as azimuth orientation angle or, 
essentially, as orientation, indicates the angle measured clockwise in the horizontal plane between 
the true south direction (or sometimes the true north, depending on the reference) and the 
projection of the collector’s surface onto the horizontal plane as shown in Figure 1. This angle signifies 
the deviation from the true south, with due south (towards the equator) regarded as an orientation 
of 0° as per convention. The angle of inclination (β), commonly known as the tilt angle or slope, 
measures the angle at which the collector plane intersects with the horizontal plane. In a scenario 
where the collector is in the horizontal plane facing upwards toward the sky, the tilt angle is defined 
as 0°. 
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Fig. 1. Tilt and azimuth angles of the PV panel [10] 

 
In Indonesia, a case in point involves the calculation of the specific energy yield from a rooftop 

PV system situated in Surabaya, Indonesia, with an assumed module tilt of approximately 30° in 
alignment with the typical roof incline of local residences [11]. Findings reveal that the highest 
specific energy output in Surabaya is attained when solar modules are oriented towards the north 
(0° azimuth angle), yielding approximately 1462 kWh/kWp. Conversely, solar panels facing south 
have the lowest specific energy yield, estimated at around 1233 kWh/kWp per month.  

Calculation of tilt angles is typically divided into two distinct groups: calculations based on the 
latitude angle [12] and calculations that are centered on the global irradiation received by the surface 
as implemented in different previous studies [13,14]. The estimation of the total radiation incident 
on an inclined plane can be determined utilizing the Hay, Davies, Klucher, Reindl model (HDKR 
model), which comprises the sum of direct, diffuse and reflected radiation or albedo [15,16]. Previous 
research has demonstrated the application of the Perez Sky model for solar radiation estimation by 
assessing direct normal irradiance (DNI), diffuse horizontal irradiance (DHI) values and global 
horizontal irradiance (GHI). Utilization of this model requires supplementary information regarding 
the solar zenith angle and functions based on the premise of a cloudless sky [17,18]. The Liu and 
Jordan model, as found in previous studies [19,20], serves as a method used to anticipate the mean 
solar irradiance for every month on surfaces positioned directly towards the equator, establishing 
the optimal angle for sloped surfaces by recognizing the point at which total daily solar radiation is 
optimized [21]. However, different system topologies and geographical conditions may result in 
significant optimization of PV performance [22].  

Therefore, this study concerns how to achieve the optimal tilt and azimuth according to the PV 
technology installed in the shore area, while determining the optimal azimuth and tilt angles for solar 
panels in South Papua by employing machine learning techniques. Several earlier studies have 
utilized machine learning for various purposes. For instance, Alghamdi et al., [23] investigated the 
performance prediction of a hybrid solar photovoltaic-thermoelectric (PV-TE) system utilizing various 
crystalline silicon solar cell types by employing deep neural networks (DNN) as an alternative to 
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conventional numerical methods. The research highlights the limitations of traditional numerical 
solvers, which are computationally expensive and time-consuming and proposes DNN as a more 
efficient solution for performance forecasting. Ahad et al., [24] evaluated various machine learning 
classifiers for detecting fraudulent credit card transactions, emphasizing the limitations of 
conventional methods that rely on historical data. The research compared classifiers such as Decision 
Trees, Random Forest, K-Means, Isolation Forest, Neural Networks (NN) and the proposed Threshold 
Mahalanobis Distance classifier. The study concludes that TMD is a robust and efficient model for 
fraud detection, recommending its implementation for enhanced financial security. Also, Aburashed 
et al., [25] propose a machine learning-based framework for SQL injection detection, leveraging 
algorithms such as Random Forest (RF), Gradient Boosting, Support Vector Machine (SVM) and 
Artificial Neural Networks (ANN). The study ranked ANN as the most effective, followed by Gradient 
Boosting and Random Forest. Nevertheless, the authors emphasize the importance of selecting 
appropriate machine learning models based on accuracy, computational efficiency and adaptability 
to evolving attack patterns. The study concludes that machine learning classifiers, particularly ANN, 
offer a promising approach to improving the detection and mitigation of SQL injection attacks in web 
applications. In our investigation, we utilize RF and SVM models to evaluate the impact of azimuth 
and tilt angles on the overall solar panel collection plane. Using these models, our objective is to 
identify configurations that maximize solar energy generation, thereby offering insight into optimal 
practices for PV system installation in South Papua. This study contributes to enhancing the efficiency 
of solar energy systems and aligns with Indonesia’s broader initiatives towards transitioning to 
renewable energy sources.  

 
2. Methodology  
2.1 Study Site 

 
The designated location for this research was situated inside the University, close to the shore 

area in Merauke Regency (137°38'52.9692" E–141°0'13.3233" E and 6°27'50.1456" S–9°10'1.2253" 
S) as presented in Figure 2. The latitude and longitude of the University are −8.49 (south) and 140.39 
(east), respectively. Geographically, the Regency shares its borders directly with Papua New Guinea 
and Australia, featuring an average temperature of approximately 27 degrees Celsius, complemented 
by a humidity level of approximately 81% [26].  
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Fig. 2. Study location 

 
2.2 Experimental Design 

 
The Perez Sky model is employed for the estimation of solar radiation distribution on inclined 

surfaces featuring diverse angles and orientations. To determine the azimuth and tilt angles at a 
specific time and location, a comprehension of the sun’s position is necessary, along with an 
appreciation of how the Perez Sky model accommodates diffuse radiation. Therefore, the procedures 
were arranged as follows: 
 

i. Determine location coordinates, i.e., at Universitas Musamus, positioned as displayed in 
Figure 2 above. 

ii. Calculate solar declination angle (δ): 
 

δ = (𝟐𝟑. 𝟒𝟓°) 𝐱 𝐬𝐢𝐧
𝟑𝟔𝟎

𝟑𝟔𝟓
 𝐱 (𝒅 − 𝟖𝟏))           (1) 

 
Where, d is the day of the year (1 for January 1) as implemented in the previous study [27].  
 

iii. Calculate the hour angle (H) that indicates the sun’s position relative to the meridian as 
written by Kaddoura et al., [28]: 

 
𝑯 = 𝟏𝟓° 𝐱 (𝐥𝐨𝐜𝐚𝐥 𝐭𝐢𝐦𝐞 − 𝟏𝟐)           (2) 
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iv. Calculate the zenith angle (θz), which represents the angle between the vertical and the sun’s 
position, where L is latitude: 

 
𝜽𝒛 =  𝐬𝐢𝐧(𝑳)𝐱 𝐬𝐢𝐧(𝜹) + 𝐜𝐨𝐬(𝑳)𝐱 𝐜𝐨𝐬(𝜹)𝐱 𝐜𝐨𝐬(𝑯)          (3) 
 

v. Calculate solar azimuth angle (γs); the solar azimuth angle indicates the sun’s direction relative 
to the north: 

 

𝛄𝐬 =
−𝐜𝐨𝐬(𝛅)𝐱 𝐬𝐢𝐧(𝑯)

𝐜𝐨𝐬 𝛉𝐳
             (4) 

 
vi. Calculate the azimuth angle for the PV panel (γ) in the southern hemisphere; PV panels 

typically face north for optimal exposure. The optimal azimuth angle for a PV panel can be 
derived as follows:  

 

𝛄 = 𝟏𝟖𝟎° −
𝟏𝟖𝟎°

𝛑
𝐱 𝐚𝐭𝐚𝐧𝟐(𝐅𝟏𝟏 𝐱 𝐜𝐨𝐬(𝛉𝐳) , 𝐅𝟏𝟐 𝐱 𝐬𝐢𝐧(𝛉𝐳))        (5) 

 
vii. Calculate tilt angle (ß). Tilt angle represents the panel’s inclination from the horizontal plane. 

Using the zenith angle, the tilt angle is generally calculated as ß = 90°−Ɵ.                 
 
The investigation also deployed Liu Jordan models according to the procedures as follows: 

 
i. identify the latitude and longitude of the study field. 
ii. estimate solar declination: 

 

𝛅 = 𝟐𝟑. 𝟒𝟓 𝐱 𝐬𝐢𝐧(
𝟑𝟔𝟎

𝟑𝟔𝟓
 𝐱 (𝑵 + 𝟐𝟖𝟒))          (6) 

 
Where, N is the day of the year [29].     
 

iii. calculate the hour angle: 
 
𝑯 = 𝟏𝟓 𝐱 (𝐥𝐨𝐜𝐚𝐥 𝐬𝐨𝐥𝐚𝐫 𝐭𝐢𝐦𝐞 − 𝟏𝟐)           (7) 
 

iv. calculate solar zenith and azimuth angles: 
 
𝐜𝐨𝐬(𝜽𝒛) = 𝐬𝐢𝐧(∅) 𝐱 𝐬𝐢𝐧(𝜹) + 𝐜𝐨𝐬(∅)𝐱 𝐜𝐨𝐬(𝜹)𝐱 𝐜𝐨𝐬(𝑯)         (8) 
 

v. The solar azimuth angle 𝜸 can be derived as: 
 

𝐬𝐢𝐧(𝜸𝒔) =
−𝐜𝐨𝐬(𝜹)𝐱 𝐬𝐢𝐧 𝑯

𝐬𝐢𝐧 𝜽𝒛
            (9) 

 
and 

 

𝐜𝐨𝐬(𝜸𝒔) = (
𝐬𝐢𝐧(𝛅)−𝐬𝐢𝐧(𝛉𝐳 ) 𝐱 𝐬𝐢𝐧(∅))

(𝐜𝐨𝐬 ( 𝛉𝐳)𝐱 𝐜𝐨𝐬(∅))
                     (10) 

A consistent intensity referred to as the solar constant, GSC = 1367 W/m2, signifies the solar energy 
received per unit area of a surface perpendicular to the direction of its propagation at this average 
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distance. Nevertheless, variations in the Sun-Earth distance caused by Earth’s movement lead to 
changes in the extraterrestrial radiation incident on a plane perpendicular to the radiation, denoted 
as Gext, which is calculated as: 

 

𝐆𝐞𝐱𝐭 = 𝐆𝐬𝐜𝐱(𝟏 + 𝟎. 𝟎𝟑𝟑𝐱 𝐜𝐨𝐬(𝟑𝟔𝟎𝐱
𝐧

𝟑𝟔𝟓
))                    (11) 

 
Where, Gsc is a solar constant [30].  

 
2.3 Data Processing 

 
The simulation datasets were acquired from Meteonorm 8.1 (2016 to 2021), which was gathered 

based on the geographical location of the study site, as presented in Figure 3. These datasets 
encompass global and diffuse irradiance measured on the horizontal plane, global irradiance 
recorded on tilted planes oriented at 8, 20-, 30-, 40- and 45-degrees due south, as well as global 
irradiance data obtained from west and east-oriented surfaces tilted at 0, 20, 45 and 60 degrees of 
standalone PV system. Then, the simulation data was recorded and analysed using the PV solar 
software named PVsyst.  

 

 
Fig. 3. Monthly weather data from the study location 

 
The dataset used in this study, as shown in Figure 3, provides crucial environmental parameters 

relevant to optimizing PV energy conversion in South Papua. The dataset includes monthly records 
of GHI, ranging from 146.1 to 188.2 kWh/m², which helps to assess solar energy potential throughout 
the year. Additionally, HDI values, spanning from 63.0 to 92.8 kWh/m², offer insights into 
atmospheric scattering effects that influence PV performance. The recorded temperature fluctuates 
between 25.3 °C and 28.7 °C, impacting panel efficiency due to thermal effects, while wind velocity, 
ranging from 2.30 to 3.70 m/s, contributes to panel cooling and energy efficiency. The dataset also 
includes the Linke turbidity factor, indicating atmospheric clarity, with values varying between 3.315 
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and 5.547 and relative humidity levels from 78.7% to 84.4%, which can affect panel performance 
through condensation and dirt accumulation. The preprocessing of the dataset involved key steps to 
ensure data quality and readiness for model training. First, data collection was conducted from the 
Meteonorm 8.1 database (2016–2021) and then, data cleaning addressed the missing values using 
interpolation and removed outliers with the Z-score method. Therefore, feature engineering entailed 
deriving solar energy potential indices and categorizing azimuth and tilt angles. Normalization and 
scaling were applied using min-max normalization for irradiation and humidity and Z-score 
standardization for temperature and wind speed. Finally, the dataset was split into 80% training and 
20% testing. After preprocessing, the next step in this study involved applying RF and SVM models to 
predict the optimal azimuth and tilt angles for solar panels. The dataset is split into training (80%) 
and testing (20%) subsets to effectively train and validate the models. The RF model, with 100 
estimators, captures nonlinear relationships in the data. The SVM model with an RBF kernel is applied 
to handle complex patterns in solar energy prediction. Model evaluation is executed using key 
performance metrics, including Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean 
Absolute Error (MAE) and R² to assess the models’ accuracy and generalization ability. Additionally, 
a CV score is performed to validate the model robustness and prevent overfitting. The results are 
visualized through 3D scatter plots comparing actual vs. predicted values, providing insight into the 
effectiveness of each model in both wet and dry seasonal conditions. Finally, the best-performing 
model is selected based on the evaluation results, guiding optimal solar panel positioning for 
enhanced energy yield. 

 
2.4 Prediction Models 

 
A RF represents a supervised machine-learning model that employs ensemble learning to address 

regression and classification tasks. Initially introduced by Leo Breiman and Adele Cutler in 2006, it 
was an extension of the work by Tim Kam Ho in 1995. The RF method functions by generating 
numerous decision trees during the training phase. It randomly selects samples from the training 
dataset with replacements and combines these trees using techniques such as bagging and boosting. 
This approach enhances diversity and reduces correlation among the ensemble of decision trees. The 
forecast generated by the RF model varies depending on the problem’s characteristics; for regression 
tasks, the forecast is calculated from the average of all decision trees in the ensemble, while for 
classification tasks, the predicted class is determined by the majority vote of the most frequent 
categorical class. The primary procedures for RF can be outlined as follows: 
 

i. Initiate the process by considering a specified set of training data denoted as 𝑋 = 𝑥1…, 𝑥𝑛 

along with corresponding responses 𝑌 = 𝑦1…, 𝑦𝑛  
ii. A series of random samples 𝑋𝑏, 𝑌𝑏 comprising n training instances is chosen N times while 

ensuring replacement, where b ranges from 1 to N 
iii. Each random sample 𝑋𝑏 , 𝑌𝑏 undergoes the fitting and training of a regression tree denoted as 

𝑓𝑏 

iv. Subsequently, the final estimation of regression 𝑓 for unseen sample 𝑥′ is determined by 
averaging the predictions from all individual regression trees on 𝑥′, using the equation as 
follows: 

 

𝑓 =
1

𝑁
∑ 𝑓𝑏

𝑁1
𝑏=1 (𝑥′)                       (12) 

SVM effectively utilizes kernel functions to transform data from a lower to a higher dimensional 
feature space. Consequently, linear solutions within the higher dimensional feature space are 
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equivalent to nonlinear solutions in the original lower dimensional state. The Kernel function, 
referred to as 𝑘(𝑥, 𝑥′), is a symmetrical function that effectively illustrates the similarity between 
observations based on their feature attributes; the variable 𝑥 denotes the input space, while 𝑥′ 
describes the vector of computed features for the training or test samples. The predictive 
computation of an SVM can be mathematically expressed as: 

 

𝑦 = ∑ (𝑁
𝑖=1 𝑐𝑖𝑘(𝑥, 𝑥′) + 𝑏 ))                                  (13) 

 
3. Results  
3.1 Optimum Tilt and Azimuth Angles 

 
PVSyst simulation software was used to perform a PV array of 700 Wp Si-mono twin half-cell 

bifacial module with a Maximum Power Point Tracking (MPPT) converter. Different tilt angles were 
positioned from 0°–60° in the site location, i.e., the Electrical Department of Musamus University 
within a latitude of −8.5344° S, longitude of 140.4152°E and an altitude of about 32 m. Two seasons 
were selected: dry or summer (Oct–Mar) and wet (Apr–Sept). Tilt and azimuth angles were 
configured for fixed tilted planes, as shown in Figure 4.  

 

 
Fig. 4. Tilt and azimuth angles (°) settings in winter 

 
The optimal tilt (ß) and azimuth angles (γ) were determined by the point at which the highest 

power output is achieved. Further, the power output was defined through the global collector plane 
(Gcp). This experimental work involved four ranges of tilt and azimuth angles, as demonstrated in 
Figure 5. In the wet season, the optimal azimuth is 0°; the tilt angle reaches peak irradiation at 30° 
and continues to decrease at 45°. The 20° azimuth ranked second in collecting the amount of solar 
irradiance. Conversely, a low irradiation was captured through the azimuth of 60°.  
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(a) (b) 

Fig. 5. Tilt and azimuth angles (°) vs max glob coll plane (kWh/m2) in (a) winter or wet season (b) summer 
or dry season 

 
However, in the dry season, as displayed in Figure 5(b), lower tilts (8°) and azimuths closer to 60° 

optimize energy output, capturing more direct sunlight due to the sun’s higher position in the sky.  
 

 
Fig. 6. Tilt and azimuth angles (°) settings in the dry season 

 
The variability in the maximum total solar irradiance captured on an inclined surface is 

determined by the module’s azimuth angle and latitude. This changeability highlights the importance 
of the orientation of solar PV modules at specific latitudes for optimizing the received solar irradiance 
[31,32]. This simulation work found that the tilt angle tends to be higher in the winter or wet season, 
i.e., about 30 degrees (Figure 5(a)), compared to the tilt angle in the summer or dry season, i.e., 8 
degrees (Figure 5(b)). This is because the sun is lower in the sky during the wet season. Meanwhile, 
more tilt is required on the panels to maximize solar radiation. However, since the sun is higher in 
the sky during the summer or dry season, the panels require less tilting to maximize solar energy 
capture. These findings are analogous to relevant studies in China [33,34].  
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A previous study stated that the optimum fixed azimuth angle is determined by subtracting the 
absolute latitude angle from the longitude angle and the ideal fixed tilt angle is roughly equal to the 
location’s latitude [35]. Nevertheless, this study did not investigate the circumstances that explained 
the limitation of the experimental work. The annual optimal tilt angle of solar panels may differ based 
on geographical location and the computational system utilized, for instance, optimum tilt angles 
vary from 0 to 59 degrees in Libya [36].  

Previous studies in Türkiye indicated that the tilt angles of panels could range from −9.9 degrees 
to 59.2 degrees with an average annual angle of 32 degrees [37]. However, this study revealed a tilt 
angle of 8 degrees during the dry season and 30 degrees in the wet season, which also differs from 
the global tilt angle observed by numerous studies [38,39]. 

 
3.2 Performance Ratio 

 
Figure 7 presents performance ratios (PR) at a tilt angle of 8 degrees and an azimuth of 60 degrees 

(Figure 7(a)) and a tilt angle of 30 degrees and an azimuth of 0 degrees (Figure 7(b)). As can be seen, 
PV performance with a tilt of 30 degrees and an azimuth of 0 degrees is slightly higher than a tilt 
angle of 8 degrees and an azimuth of 60 degrees. Nevertheless, this experimental study highlights 
some considerations in PR estimation, such as temperature effects. Actual energy output decreases 
with higher module temperatures, as investigated in several earlier studies [40,41]. Systems losses 
due to shading or dirt influenced actual energy output calculations [42-44]. Another concern is data 
quality for both actual energy output and plane of array irradiance. Therefore, some further 
refinement based on multiple data resources is suggested.  
 

  
(a) (b) 

Fig. 7. Performance ratio of PV module 

 
3.3 Model Performance 

 
Implementing SVM and RF models to predict the optimal azimuth and tilt angles for solar panel 

installations in the shore area of South Papua, Indonesia, has provided significant insight into solar 
energy optimization. These models were trained using comprehensive datasets that included various 
combinations of tilt and azimuth angles and meteorological data to maximize the global collection 
plane as a measure of solar energy output. The dataset used in this study contains solar irradiance. 
Each performance metric serves a critical role in assessing the effectiveness of the models in the 
context of PV optimization (Table 1). 
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Table 1  
Metrics used in this study 
Metrics Description 

Mean Squared Error 
(MSE) 

MSE measures the average squared difference between actual and predicted values. Lower 
MSE values indicate better predictive accuracy. For PV optimization, minimizing MSE ensures 
reliable energy yield forecasts. 

R² (Coefficient of 
Determination) 

R2 evaluates how well the model explains the variance in the data. A higher R² value indicates 
a strong correlation between predicted and actual solar energy outputs, which is essential for 
precise system adjustments. 

Mean Absolute Error 
(MAE) 

MAE quantifies the average absolute error between predicted and actual values, providing 
an easy-to-interpret measure of accuracy. Lower MAE values signify more accurate energy 
predictions. 

Root Mean Squared 
Error (RMSE) 

RMSE measures the standard deviation of prediction errors, emphasizing larger errors more 
than MAE. It provides valuable insight into the reliability of PV system performance estimates. 

Cross-Validation 
Score (CV) 

CV helps assess the generalizability of the model by evaluating its performance across 
different subsets of data. A less negative CV score suggests better adaptability to unseen data. 

 
The results are shown in Figure 8. The graphs depict the performance of the RF and SVM in 

predicting the Global Collection Plane (Gcp) through azimuth and tilt angles during the wet and dry 
seasons. The horizontal axes represent the azimuth and tilt angles and the vertical axis denotes the 
Gcp, denoted in a color scale that ranges from dark purple (lower Gcp values) to yellow (higher Gcp 
values). The graphs show the actual Gcp in each season with the performance identified through 
mean squared error (MSE), mean absolute error (MAE), root mean squared error (RMSE) and cross-
validation score (CV). A red circle explains the actual value and the prediction value is represented by 
a blue triangle.  
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Fig. 8: RF and SVM models for analysing azimuth and tilt angles in (a-b) wet 
season, (c-d) dry season 

 
In the wet season, the RF prediction graph describes the actual Gcp values as closely aligned with 

the predicted values across most azimuth and tilt angle combinations, as shown in Figure 8(a). This 
indicates the RF model’s ability to generalize effectively and capture underlying patterns in the data. 
The RF model achieved a mean squared error (MSE) of 86.84, mean absolute error (MAE) of 6.21, 
root mean squared error (RMSE) of 9.32, while a cross-validation (CV) score of −346.82 and R2 of 0.93 
reflecting the model’s effectiveness in predicting the Gcp during the wet season. The relatively high 
R2 value suggests that the RF model explains a significant portion of the variance in the Gcp. However, 
the SVM model reveals a less accurate prediction, as indicated by a MSE of 1145.16, MAE of 28.06 
and a RMSE of 33.84, CV score of −1776.01 and an R2 of 0.10, which suggests that the SVM model 
was unable to capture underlying patterns in the data during the wet season. The superior 
performance of RF can be attributed to its ensemble learning approach, which effectively captures 
the complex interactions between input variables, i.e., tilt, azimuth and weather conditions. 
Nevertheless, the SVM models struggle to accurately predict the Gcp across different azimuth and 
tilt angles, specifically in the presence of nonlinear relationships in the data during the wet season. It 
can also be explained through CV results for each model across seasons. For example, a CV score of 
−1776, the significantly larger negative CV score suggests that the SVM model struggles to generalize 
effectively for wet season data. This poor performance may be due to the model’s inability to 
efficiently capture the nonlinear relationships between azimuth, tilt and solar irradiance. A high 
negative score implies overfitting training data, resulting in poor adaptability to new data.  
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During the dry season, the RF model outperformed the SVM model, throughout the metric 
evaluation. The Random Forest model obtained an MSE of 128.36, MAE of 8.82, RMSE of 11.33, CV 
of −368.84 and an R2 of 0.98, which is a slight drop in performance compared to the wet season but 
still indicates a reasonably good fit. The SVM model’s performance worsened in the dry season, with 
an MSE of 8491.13, MAE of 79.30, RMSE of 92.15, CV of −8126.08 and an R2 of −0.02. The substantial 
increase in MSE and the highly negative R2 value for the SVM model suggest it was unable to model 
the relationship between the input features and the global collection plane effectively during the dry 
season. The graphs for the dry season show that the RF model’s predictions still maintain a close 
alignment with actual data points. However, the SVM model displays a greater discrepancy between 
predicted and actual values, particularly in lower global collection planes, leading to its poor 
performance metrics. While potent in certain scenarios, SVM may struggle with larger datasets or 
more complex relationships without appropriate kernel selection and parameter tuning. This 
limitation was evident in this study’s higher MSE observed during dry and wet seasons. 

The primary difference between the RF and SVM models in both seasons is their capacity to 
generalize and capture the relationship between the input variables, namely azimuth and tilt angles 
and the target variable, i.e., the global collection plane. RF, being an ensemble learning method, 
leverages multiple decision trees to model complex interactions between variables. This inherent 
flexibility allows RF to perform well in varying seasonal conditions [45]. In contrast, SVM’s reliance 
on finding the optimal hyperplane in a transformed feature space may struggle in nonlinear and 
complex datasets, as evidenced by its poor performance, particularly in the dry season.  

Numerous earlier studies have employed various MLAs, as explained in the section introduction, 
for instance, gradient boosting machines (GBM) and neural networks (NN) offer competitive 
performance which often requires extensive hyperparameter tuning, larger datasets and the need 
for interpretability. Moreover, Neural networks, although powerful, may suffer from overfitting with 
smaller datasets and require significant training time and computational power, as experimented in 
[46,47], which is not always practical in resource-limited settings.  

Our findings showed that RF and SVM are well-suited for capturing complex, nonlinear 
relationships between input variables, such as azimuth and tilt angles and the output variable, i.e., 
the global collection plane of solar panels. RF, in particular, is an ensemble learning method that 
reduces overfitting through averaging multiple decision trees, making it robust against noise and 
variability in meteorological data. SVM is effective in high-dimensional spaces and provides a clear 
boundary for classification tasks, making it suitable for analysing diverse environmental conditions. 
Nonetheless, as presented in our study, RF demonstrated superior predictive accuracy, with a lower 
MSE compared to SVM. This further validated the choice of RF as an effective model for predicting 
optimal solar panel configurations. The SVM model provided valuable insight into the general trends 
but showed limitations in handling highly nonlinear patterns in the data, reinforcing the advantage 
of ensemble approaches like RF. The comparison of model performance is presented in Figure 9 
below. 
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Fig. 9. The MSE, R2, MAE, RMSE and CV score of each predictor 

 
The findings in our study align with the results by Scott et al., [48], whose study also investigated 

the use of machine learning to predict PV energy generation in an operational university campus in 
Manchester, UK. The result demonstrated that Random Forest achieved the lowest average RMSE of 
32, outperforming Support Vector Machine (32.3 RMSE), Linear Regression (36.5 RMSE) and Neural 
Network (38.9 RMSE), even with a small dataset. Our findings also reveal that the choice of MLAs 
depends on the dataset characteristics and forecast requirements, with RF proving to be a reliable 
choice for PV forecasting due to its lower computational requirements and higher accuracy when 
compared to SVM. The findings emphasize the importance of selecting an appropriate MLA based on 
accuracy, usability and computational efficiency for real-world applications in energy management 
systems. 

 
4. Conclusions 

 
This study investigated the prediction of PV energy output using RF and SVM models, focusing on 

varying azimuth and tilt angles during wet and dry seasons. The Random Forest model identified that 
a tilt angle of 8° combined with an azimuth angle of 60° in the dry season provided the highest energy 
output, aligning well with the sun’s trajectory during these months. This configuration maximizes 
direct solar irradiance capture, as shown by the close match between actual and predicted values. 
During the wet season, the RF model indicated that a tilt angle of 30° and an azimuth of 0° were 
optimal, reflecting the need to capture diffuse solar radiation more effectively due to increased cloud 
cover. The SVM model also demonstrated its effectiveness in capturing the complex, nonlinear 
relationships between azimuth, tilt angles and solar energy output. The model confirmed the 
Random Forest results, with the dry season’s optimal configuration being a tilt angle of 8° and an 
azimuth of 60° and the wet season’s optimal being a tilt angle of 30° and an azimuth of 0°.  

The RF achieved lower MSE and higher R2 values, indicating a better fit and more accurate 
predictions. In the wet season, RF’s performance was notably strong, with an MSE of 86.84 and R2 of 
0.93, compared to SVM’s MSE of 1145.16 and a small R2 value of 0.10, indicating poor model 
performance. Similarly, in the dry season, Random Forest achieved an MSE of 128.36 and an R2 of 
0.98, while SVM showed significantly reduced performance with an MSE of 8491.13 and an R2 of 
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−0.02. The study revealed that RF, as an ensemble method, is better suited to handle the complex 
interactions between azimuth, tilt angles and Gcp, specifically under varying seasonal conditions. 
Conversely, SVM, based on finding the optimal hyperplane in a transformed feature space, struggles 
to model these relationships effectively, particularly in the dry season.  

Our findings underscore the potential of machine learning models to improve solar energy 
optimization, supporting the broader adoption of renewable energy technologies in diverse 
environmental contexts. Therefore, various environmental factors, cloud cover, albedo and shading 
in different climatic and geographic areas in South Papua need to be taken into account, as well as 
providing a comprehensive and relevant dataset for further study. 
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