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The surge in the use of digital imaging demands ciphers that are both mathematically 
rigorous and computationally light. However, there are gaps in earlier chaos- or 
Machine Learning-based schemes such as inefficient key generation, limited 
computational scalability and vulnerabilities to advanced attacks. Particularly when 
integrating machine learning with cryptographic operations by producing fully key-
dependent row/column permutations and diffusion in a single pass. This study 
therefore introduces a two-stage framework that marries an ensemble-learning-driven 
pseudorandom key generator with a spiral-ripple shuffle followed by XOR diffusion to 
dismantle pixel correlations at linear-time complexity𝑂(𝑁). Experiments on six 
benchmark images confirm the design’s statistical resilience with averages of NPCR = 
99.57 %, UACI = 34.63 %, entropy = 7.52 bits and SSIM ≈ 0.01 between cipher and plain 
images. Recovery fidelity remains high (PSNR up to 53.97 dB), while the heaviest image 
encrypts in 0.94s and lighter images in ≈ 0.03s on standard desktop hardware. These 
figures indicate near-ideal diffusion, uniform histogram distribution and negligible 
perceptual leakage, outperforming recent chaos-IoT ciphers in runtime without 
sacrificing security metrics. Therefore, the proposed system achieves real-time 
throughput for megapixel frames, positioning it as a viable candidate for privacy-critical 
digital image pipelines. 
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1. Introduction 

 
The rapid advancement of digital networks has made the transmission of images faster and more 

widespread than ever before. However, this convenience comes with some issues—digital images 
often contain confidential or sensitive information and their exposure to unauthorized access, 
interception or tampering during transmission can lead to severe security and privacy breaches. 
Ensuring the protection of such data has thus become an important area of research. Traditional 
encryption methods, while effective for text, are often inefficient for images due to their large size, 
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high redundancy and pixel correlation. Recent approaches, such as chaos-based encryption and 
lightweight algorithms, have improved security but still face challenges in balancing robustness, 
speed and resistance to advanced attacks. Machine learning (ML) has emerged as a promising 
alternative, yet current ML-driven encryption schemes lack efficient mechanisms for dynamic key 
generation and secure spatial shuffling [1,2]. This gap necessitates a novel approach that combines 
ensemble learning for adaptive key generation with advanced pixel disruption techniques, such as 
spiral ripple shuffling, to achieve both high security and computational efficiency.  

The existing Chaos-based encryption techniques with their known desired features such as 
sensitivity to initial parameters and good randomness traits have made it one of the best solutions 
for securing images. Multi-map frameworks that combine several chaotic sequences to achieve 
confusion and diffusion in a one layered configuration have also been explored by researchers. 
Researchers like Güvenoğlu [3] who proposed an encryption scheme that uses multiple one-
dimensional map to improve speed and security of encryption. Lai et al., [4] also used a collision 
parity mechanism to enhance a hyperchaotic map to encrypt images in low memory resource 
environments. Their approach was successful with good cipher properties and low overhead, proving 
how chaos-based systems can be streamlined for efficiency and security. However, while 
chaos‑based schemes exhibit attractive theoretical properties and can provide adequate security for 
niche applications, their practical deployment is hindered by finite‑precision artefacts, insufficient 
cryptanalytic evaluation and operational complexities that established block ciphers have largely 
overcome. 

Substitution boxes (S-boxes) are also another method efficient in disruption of the correlations 
in cypher images. In this regard, Ibrahim et al., [5] proposed an encryption scheme that a custom 
built 12 × 12 S‐box for 12-bit chaos-based encryption for 12-bit medical images. Their approach was 
lossless and achieved a good encryption throughput when compared to the earlier 8-bit scheme. 
However, the 12‑bit chaos‑derived S‑box improves throughput and accommodates higher‑precision 
imagery, its deterministic generation, moderate non‑linearity, memory cost and incomplete 
cryptanalytic vetting limit its robustness and hinder adoption in resource‑constrained or 
compliance‑sensitive medical environments. Future work should investigate dynamically keyed or 
provably optimal S‑box designs, incorporate comprehensive higher‑order differential and algebraic 
resistance testing and benchmark against lightweight block ciphers under realistic hardware profiles. 

Additionally, the rapid growth in the use of digital images in the medical field has made it 
necessary to research into hybrid approaches that combine traditional chaos systems with machine 
learning approaches. An end-to-end medical image encryption scheme was proposed by Long et al., 
[6]. Their system was based on deep learning feature encoding and decoding making use of a chaotic 
key generator and neural network-based diffusion. Their proposed scheme performed well, striking 
a delicate balance between efficient decryption and security even though there were network 
perturbations like noise and cropping. Also, Yasser et al., [7] proposed a medical imaging specific 
encryption scheme that is based on chaos. Their approach achieved high computation efficiency and 
was resistant to various statistical attacks. However, the approach has the same limitations as in 
finite‑precision and parameter‑estimation of classical chaotic ciphers while adding the opacity and 
maintenance burdens of deep networks. Robust deployment will demand: 
 

i. Adversarial‑robust training with certified error bounds 
ii. Lightweight but formally analysed post‑quantum diffusion layers 

iii. Automated model‑drift detection pipelines 
iv. Rigorous side‑channel and compliance auditing before clinical integration can be justified. 
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The main contributions of this paper are as follows:  
 

i. We developed an ensemble-learning–driven PRNG (LogReg + RF + SVM) integrated with a 
Spiral Ripple Shuffle (SRS) and XOR diffusion, creating a fully key-dependent, two-stage 
encryption framework with linear-time complexity 𝑂(𝑁) .  

ii. We then introduced SRS as a key-dependent permutation technique based on pixel-sum 
profiles, thereby enhancing nonlinear chaos and reducing vulnerability to reverse-
engineering. 

iii. Consequently, we conducted detailed security and efficiency analyses, demonstrating 
superior performance of the proposed framework compared to recent state-of-the-art image 
encryption methods. 

 
Researchers have directed attention to IoT’s resource-constrained environment, leading to 

specialized encryption frameworks. One such approach employs a novel “Random Strip Peeling” 
(RSP) mechanism combined with the use of Tent and Logistic one-dimensional chaotic maps [8]. The 
encryption algorithm is lightweight and ensures that computational overhead remains within 
acceptable limits for low-power devices. Empirical results, including NPCR, UACI and entropy 
measures, confirm its ability to resist basic statistical attacks. Nonetheless, the discussion on 
advanced adversarial models is curtailed, suggesting a possible extension for broader cryptanalysis. 
Notwithstanding this, an explicit focus on IoT offers practical advantages for real-world deployments. 

To extend beyond the baseline of standard encryption, another investigation introduces colour 
image encryption by leveraging multiple chaotic maps, including a KAA map, in synergy with logistic-
sine and Bernoulli/Tent maps for bit-level confusion [9]. Their multi-key methodology is shown to be 
highly effective in scrambling pixel data and maintaining a strong confusion–diffusion link. However, 
while security improves through multi-key reliance, implementing and managing such a multi-tier 
key distribution system can be non-trivial on large-scale deployments. Overall, the authors illustrate 
improvements over many preceding techniques, albeit with the caveat of potential overhead in 
complexity. 

The significance of protecting medical images is acutely highlighted by emerging deep learning 
methods. One illustrative example applies a Cycle GAN to encrypt images without requiring paired 
training datasets [10]. The resulting transformations ensure that sensitive information is thoroughly 
disguised, safeguarding patient privacy while also preserving diagnostic utility. This approach, 
however, incurs computational demands, as neural network training typically requires extensive 
hardware resources and carefully curated datasets. The method’s higher nonlinearity can mitigate 
the pitfalls of simpler chaotic systems, though an overreliance on training data indicates a necessity 
for domain-focused model adaptation. However, this method contains high computational 
complexities, due to extensive hardware requirements associated with neural network training and 
highly specialized datasets. Higher nonlinearity of this approach possibly reduces the limitations in 
simpler chaotic schemes. 

Combining chaotic sequences with wavelet transforms has drawn attention as well. One 
particular technique makes use of discrete wavelet analysis in tandem with logistic-map–based 
permutations, thereby introducing multi-resolution encryption [11]. This fusion yield satisfactory 
entropy and correlation metrics, illustrating how frequency-domain manipulations supplement 
classic spatial encryption. Proper selection of transform types and decomposition levels remains 
critical, as suboptimal parameters risk weakening the overall cryptographic strength or inflating 
processing costs. 
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In a separate thread, speed becomes a focal point, particularly for scenarios demanding real-time 
or near-real-time performance. A scheme that leverages row/column permutations via logistic maps, 
augmented by straightforward XOR or S-box substitutions, is illustrated to surpass classical methods 
in terms of encryption throughput [12]. Although results confirm robust correlation reduction and 
improved randomness, the paper’s exploration of large-scale key management remains minimal. 
Nonetheless, such a streamlined pipeline appears viable where encryption time is paramount. 

Various authors have pursued more advanced chaotic maps. Gao [13] presents a newly 
formulated 2D hyperchaotic map, validated through phase portraits, Lyapunov spectra and 0–1 tests. 
The proposed encryption method applies row–column shuffling and repeated diffusion, capitalizing 
on the map’s complex attractors. While multi-iteration permutations lead to heightened security, 
they also raise concerns about processing time for high-resolution or batch encryptions. Additionally, 
the depth of comparative benchmarks against contemporary approaches remains relatively 
contained. 

An alternative perspective focuses on partial or ROI-based encryption for medical images. 
Prabhavathi et al., [14] propose a morphological technique to extract the most salient (and 
diagnostic) portion of an image, followed by an enhanced zigzag transform for confusion and a 2D 
logistic-sine map for diffusion. This ensures computational resources are conserved by prioritizing 
the encryption of critical tissue regions. Yet, the onus is on accurate ROI segmentation. Should 
morphological operators yield suboptimal results, sensitive segments might inadvertently remain 
exposed or mis-encrypted. 

An additional lightweight scheme for healthcare data merges multiple chaotic elements such as 
Henon maps, Brownian motion and Chen’s chaotic system to randomly shuffle and then apply XOR-
based diffusion [15]. Here, combining three separate chaotic systems extends the key space 
significantly. The complexity introduced, however, underscores the logistical challenge in 
synchronizing parameters among multiple hospital nodes. Despite such intricacies, the authors 
emphasize strong conformance to recognized tests, such as the NIST suite. 

Gao et al., [16] demonstrate a fractional order hyperchaotic system for encrypting multiple 
images simultaneously. By fusing multiple grayscale images into one colour image, the method 
conducts row–column permutations and pixel-level diffusion. This approach is intended to lower 
overhead when numerous images need encryption in block. While this design proves potentially 
beneficial for settings like multi-modal medical imaging, it could become unwieldy in continuous real-
time applications or for a large volume of images, especially if partial decryption or separate usage is 
required. 

Yousif et al., [17] proposed a cryptosystem which adds DNA encoding to chaos. They performed 
the permutation, substitution and diffusion using an encryption process with two rounds of six steps. 
The long encryption time of their system makes it not a good choice for real-time applications. 
Similarly, Gupta et al., [18] utilized DNA encoding and crisscross diffusion to design a chaotic medical 
image encryption scheme with improved resistance to differential attacks. A combination of 3D 
image encryption, compression and non-autonomous Lorenz system was presented in Singh et al., 
[19]. Two points are noted about their system. Firstly, the encryption time is extremely long because 
of the employed iterative mechanism. Secondly, their scheme was not tested against differential 
attacks, which makes us suspect that it may not be immune to such attacks. 

Finally, some researchers integrate cellular automata (specifically Rule 30), an S-box for 
substitution and the Lorenz system for further diffusion [20]. This multi-stage scheme demonstrates 
a capacity to minimize correlation among pixels across the red, green and blue channels. Although 
the encryption speed of about 0.61 Mbps may suffice for moderate throughput, adding multiple keys, 
one from the CA-based sequence, another from the Lorenz system—can complicate rekeying 
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protocols. Nonetheless, thoroughly tested metrics such as MSE, NPCR and global entropy validate 
the architecture’s reliability. 

Collectively, these investigations underscore the evolving nature of image encryption, where 
chaos theory remains integral. Whether used in basic form for lightweight IoT solutions [8] or 
augmented by wavelets [11] or even neural models [10], chaos-based systems persistently appear as 
a linchpin for unpredictability. Simultaneously, the research trajectory in medical imaging leans 
toward specialized region of interest (ROI) encryption [14] or advanced hyperchaotic expansions 
[15,16], reflecting the domain’s stringent need for confidentiality and performance. Despite the 
progress, key distribution complexities, the computational cost of multi-layer transformations and 
the necessity for robust cryptanalysis under sophisticated attack models remain the focus areas for 
prospective refinement. 
 
2 Propose Methodology 
2.1 Overview 

 
To achieve secured and computationally efficient communications, we propose a framework that 

integrates a high-entropy key generation, two-stage image encryption and Lossless decryption as 
well as a trained ensemble classifier (Logistic Regression, Random Forest and SVM with soft voting) 
to generate pseudorandom sequences which are validated by standard randomness tests. The 
pseudorandom sequence is used as key. The two-stage system uses a spiral ripple shuffle (SRS) for 
row/column permutation to disrupt spatial correlations and a bitwise XOR to achieve a strong 
diffusion of pixel intensities. The reverse or decryption involves applying the inverse XOR and reverse 
row/column shuffles to guarantee accurate plain image recovery with the correct key. 

By merging machine learning for key synthesis with well-established cryptographic primitives 
(permutation and XOR), the system addresses both the need for unpredictable keys and importance 
of thorough confusion-diffusion properties in image encryption. 
 
2.2 Machine-Learning–Based PRNG for Key Image Generation  

 
A fundamental part of this research is the PRNG component, which employs an ensemble learning 

model to generate the key image. Below, we describe the steps for data processing, iterative training, 
hyperparameter optimization and final key generations. The processes involved in the PRNG design 
are as follows: 

 
2.2.1 Data preparation and ensemble training 
 

i. Data Acquisition 

 A labelled dataset (e.g., clustered_data.csv), containing numerical features are corresponding 
labels, is utilized to train a multi-class ensemble classifier 

 The dataset is split into Features (𝑋) and labels (𝑦). 
ii. Feature Scaling 

 A 𝑀𝑖𝑛𝑀𝑎𝑥𝑆𝑐𝑎𝑙𝑒𝑟 is applied to normalize the features onto the interval [0,1]. This approach 
standardizes input space, enhancing classifier stability. 

iii. Ensemble 

 The data set is split into training and testing data. 

 Three base models namely Logistic regression, random forest and SVM (RBF kernel) are trained. 
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 A soft voting 𝑉𝑜𝑡𝑖𝑛𝑔𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑒𝑟 is then created, aggregating and probabilistic outputs of the 
based models to reduce variance and improve overall predictive performance. 

iv. Hyperparameter Tuning 

 𝐺𝑟𝑖𝑑𝑆𝑒𝑎𝑟𝑐ℎ𝐶𝑉 is applied to each base learner, optimizing parameters such as 𝑐 (for Logistic 
Regression and Support Vecotr Machine), 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 (for Random Forest) and kernel-
specific parameters (𝑔𝑎𝑚𝑚𝑎 for support vector machine).  

 The best-performing configurations are selected based on cross-validation accuracy and 
standard error bounds. 

v. Final Model Selection 

 A hold-out test set (with a fixed random state for reproducibility) is used to finalize the 
ensemble classifier. 

 The best ensemble model is preserved for pseudorandom sequence generation, ensuring 
robust performance metrics. 

 
The data flow diagram of the data preparation and ensemble model is shown in Figure 1 below. 
 

2.3 Pseudorandom Sequence Generation 
 
Once the ensemble classifier has been validated, the model serves as a PRNG. Below are the steps 

involved in the sequence generation: 
 

i. Random Feature Inputs 

 Synthetic feature vectors are generated uniformly across the [0,1] domain or across the min-
max bounds of the original data set. 

 Each vector is fed into the classifier to obtain a probability distribution over the learned classes. 
ii. Class Probability Mapping 

 A class is selected in proportion to its output probability, reflecting a stochastic choice. 

 A numeric subrange (e.g., [1, 10000]) is assigned to each class; one integer from the chosen 
class’s subrange is randomly drawn. This ensures class decisions are further randomized. 

iii. Key Imation Formation 

 The validated pseudorandom sequence is reshaped into a 2D or 3D array 𝐾 of dimensions 
(𝐻, 𝑊, 𝐶), matching that of the plain image 𝐼. 

 For colour encryption, multiple random sequences or channels can be stitched together for 𝐾. 
 



Journal of Advanced Research Design 

Volume 143 Issue 1 (2026) 84-108  

90 

 
Fig. 1. Data preparation and ensemble training model 
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The illustration of the key generation process is shown in Figure 2 below. 
 

 
Fig. 2. Random key generation using ensemble learning 

 
2.4 Spiral Ripple Shuffle (SRS) 

 
The Spiral Ripple Shuffle (SRS) is a permutation-based approach designed to systematically 

disrupt the spatial relationships among pixels in an image, thereby enhancing the confusion 
properties in an encryption scheme. Unlike simple row- or column-only shuffles, SRS introduces a 
ripple-like effect by leveraging the sums of pixel intensities in the key image to dictate how rows and 
columns are interchanged. This integration of local pixel sums ensures that key-dependent factors 
guide the permutation, making it difficult for adversaries to reverse-engineer without knowing the 
key. 
 
2.4.1 Preliminaries and notation 
 

Let 𝐴 ∈ ℤ256
𝑀×𝑁,  𝑆 ∈  ℤ256

𝑠𝑟×𝑠𝑐, 𝑟 ∈ {0,1, … , 𝑅 − 1} denote, respectively, the plaintext image, the 

secret seed-matrix extracted from the PRNG image and the current round index. All subscripts are 
taken modulo their range unless stated otherwise. 
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2.4.2 Row-wise SRS permutation 
 
For each row index 𝑖 ∈ {0, … , 𝑀 − 1}𝑖 ∈ {0, … , 𝑀 − 1} the algorithm computes a row offset in 

Eq (1): 
 

𝛥𝑟(𝑖) = ∑ 𝑠𝑖  𝑚𝑜𝑑 𝑠𝑟 , 𝑘
𝑠𝑐−1
𝑘=0         (1) 

 
and swaps rows 𝑖 and 𝑗𝑟(𝑖) in Eq. (2): 
 
𝑗𝑟(𝑖) = (𝑖 + 𝛥𝑟(𝑖) + 𝑟) 𝑚𝑜𝑑 𝑀.        (2) 

 
Eq. (1) and Eq. (2) define a bijective map in Eq. (3): 

 
𝜎𝑟: 𝑖 ⟼ 𝑗𝑟(𝑖).        (3) 
 

Because the implementation performs a swap for every ii, the resulting permutation on the row 
indices can be written as the product of transpositions in Eq. (4): 
 

𝑃𝑟 = ∏ (𝑖, 𝜎𝑟(𝑖))𝑀−1
𝑖=0 .              (4) 

 
Each factor is its own inverse, (𝑖, 𝜎𝑟(𝑖))2 = 𝑖𝑑; hence Eq. (5) is produced: 

 
𝑃𝑟

−1 = 𝑃𝑟         (5) 
 

2.4.3 Column-wise SRS permutation 
 
Analogously, Eqs. (6) to (8) are generated for each column index 𝑗 ∈ {0, … , 𝑁 − 1}: 

 

𝛤𝑟(𝑗) =  ∑ 𝑠𝑘,𝑗 𝑚𝑜𝑑 𝑠𝑐

𝑠𝑟−1
𝑘=0         (6) 

 
𝑖𝑟(𝑗) = (𝑗 + 𝛤𝑟(𝑗) + 𝑟) 𝑚𝑜𝑑 𝑁        (7) 
 
𝑄𝑟 = ∏ (𝑗, 𝑖𝑟(𝑗))𝑁−1

𝑗=0 , 𝑄𝑟
−1 = 𝑄𝑟 .        (8) 

 
2.4.4 Composite shuffle for one round 

 
Let be the permutation realised by row shuffling followed by column shuffling in round rr. 

Because 𝑃𝑟 and 𝑄𝑟 act on disjoint index sets (rows vs. columns), they commute; nevertheless, Eq. (9) 
keeps the execution order of the implementation: 

 
𝛱𝑟 = 𝑄𝑟 ∘ 𝑃𝑟                    (9) 
 
2.4.5 Multi-round spiral ripple shuffle 

 
For a user-selected repetition factor 𝑅, the total permutation is the composition as in Eq. (10): 

 
𝛱 = 𝛱𝑅−1 ∘ ⋯ ∘ 𝛱1 ∘ 𝛱0                  (10) 
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Since each 𝛱𝑟 is bijective, 𝛱 is bijective by closure. 
 
2.4.6 Proof of correctness of reverse procedure 

 
Proposition 1: Rows are reversed before Columns for rounds 𝑟 = 𝑅 − 1, … ,0 restores 𝐴. 
From Eq. (5) and Eq. (8) each elementary permutation in involutory and is shown in Eq. (11): 

 

(𝑖, 𝜎𝑟(𝑖)) (𝑖 + 1, 𝜎𝑟(𝑖 + 1)) =    (𝑖, 𝜎𝑟(𝑖))
−1

 (𝑖 + 1, 𝜎𝑟(𝑖 + 1))
−1

,                  (11) 

 
The unshuffled routine applies the transpositions of 𝑃𝑟(𝑜𝑟 𝑄𝑟) in reverse index order, but so 

ordering is immaterial: transpositions commute unless they share an index and those that share an 
index are identical and hence still cancel. Therefore, executing all transpositions again, regardless of 
order yields the identity map in Eq. (12): 
 
𝑃𝑟 ∘ 𝑃𝑟 = 𝑖𝑑,     𝑄𝑟 ∘ 𝑄𝑟 = 𝑖𝑑.                  (12) 

 
The reverse pass processes the rounds in reverse order in Eq. (13): 

 
𝛱−1 = 𝛱0

−1 ∘ ⋯ ∘ 𝛱𝑅−1
−1 = 𝛱0 ∘ ⋯ ∘ 𝛱𝑅−1 = 𝛱                  (13) 

  
Hence Eq. (14) is generated: 

 
𝛱−1 ∘ 𝛱 = 𝑖𝑑𝑀×𝑁                  (14) 

 
guaranteeing perfect reversibility 
 
2.5 Encryption and Decryption Process 

 
The image encryption process proceeds in two sequential steps. SRS and Bitwise XOR aimed at 

thoroughly disguising the underlying structure and pixel intensity values of the original image. In the 
first stage, each row and column in the plaintext image is reordered based on the pixel sums 
extracted from a machine-learning–generated key image, thus obliterating any recognizable spatial 
patterns. By iterating row and column swaps multiple times, the plaintext’s layout is scrambled to a 
high degree of confusion, effectively thwarting potential attempts at pattern-based attacks. 

Following this spatial disruption, the second stage applies a bitwise XOR operation between the 
permuted image and the key image. Because XOR is straightforward yet cryptographically potent 
when paired with a high-entropy key, each pixel’s intensity is shifted to a new value in a manner that 
is practically irreversible without the exact matching key. This final substitution stage provides an 
additional layer of security, ensuring that even if an adversary recognizes hints of the shuffle process, 
the altered pixel intensities remain indecipherable without the correct key. 

Decryption is the mirror image of the spiral ripple shuffle and XOR operations. The bitwise XOR is 
performed first to restore the spatially shuffled pixels, followed by an inverse shuffling of columns 
and rows. This ensures the original image is accurately recovered if and only if the decryption process 
employs the same key image and permutation parameters used during encryption. 

Notation and Setup: 
 

i. Plain Image: 𝐼, of size (𝐻, 𝑊, 𝐶). 
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ii. Key Image: 𝐾, also of Size (𝐻, 𝑊, 𝐶). 
iii. Permutation Parameter: 𝑟𝑒𝑝, controlling how many times row/columns swap repeats. 

Final Cipher Image: 𝐼𝑒𝑛𝑐 Decrypted Cipher: 𝐼𝑑𝑒𝑐 which should match the plain image 𝐼. 
 
2.5.1 Encryption algorithm 

 
Stage 1: Spiral Ripple shuffle (Row-Column Permutation) 
 

i. Row Shuffling 

 For each row index 𝑖 ∈ {0, . . . , 𝐻 − 1} compute ∆𝑖= ∑(𝐾[𝑖 𝑚𝑜𝑑 𝐻, ∶]) 

 Determine the new row index 𝑗 via 𝑗 = (𝑖 + ∆𝑖 + 𝑟𝑒𝑝) 𝑚𝑜𝑑 𝐻, 

 Rows 𝑖 and 𝑗 of 𝐼 are swapped. Repetitions of this process, controlled by 𝑟𝑒𝑝, reinforce 
confusion. 

ii. Column Shuffling 

 For each column index 𝑗 ∈ {0, … , 𝑊 − 1}, compute ∆𝑗= ∑(𝐾[: , 𝑗 𝑚𝑜𝑑 𝑊]) 

 Determine the new column index 𝑘 via 𝑘 = (𝑗 + ∆𝑗 + 𝑟𝑒𝑝) 𝑚𝑜𝑑 𝑊, 

 Swap columns 𝑗 and 𝑘 in 𝐼. 
 
This stage yields a permuted image 𝐼𝑠ℎ𝑢𝑓𝑓𝑙𝑒𝑑 by extensively disrupting spatial adjacency in the 

plain image. 
Stage 2: Bitwise XOR (Substitution) 
 

i. Flattening 

 Convert 𝐼𝑠ℎ𝑢𝑓𝑓𝑙𝑒𝑑 and 𝐾 into one-dimensional arrays of length 𝐻 × 𝑊 × 𝐶. 

ii. Pixel-wise XOR 

 For each pixel index 𝑝, compute 𝐼𝑒𝑛𝑐[𝑝] = 𝐼𝑠ℎ𝑢𝑓𝑓𝑙𝑒𝑑[𝑝] ⊕ 𝐾[𝑝] 

iii. Cipher Image 

 The resulting array is reshaped to (𝐻, 𝑊, 𝐶) to form the cipher image 𝐼𝑒𝑛𝑐. 
 

2.5.2 Decryption algorithm 
 
The decryption process reverses the XOR and the row-column permutation, restoring the original 

plain image: 
 
Stage 1: Inverse Bitwise XOR 
 

i. Flattening 

 Convert both 𝐼𝑒𝑛𝑐 and 𝐾 into 1𝐷 arrays of length (𝐻 × 𝑊 × 𝐶) 
ii.  XOR Operation 

 For each index 𝑝: 𝐼𝑠ℎ𝑢𝑓𝑓𝑙𝑒𝑑[𝑝] = 𝐼𝑒𝑛𝑐[𝑝] ⊕ 𝐾[𝑝] 

 Reshape 𝐼𝑠ℎ𝑢𝑓𝑓𝑙𝑒𝑑 to recover the permuted plain image. 

 
Stage 2: Inverse Spiral Ripple Shuffle (Row-Column Unshuffling) 
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i. Inverse Columns shuffling 

  For Each column index 𝑗 from 𝑊 − 1 down to 0, compute ∆𝑗= ∑(𝐾[: , 𝑗 𝑚𝑜𝑑 𝑊])  𝑘 =

(𝑗 + ∆𝑗 + 𝑟𝑒𝑝) 𝑚𝑜𝑑 𝑊, 

 Then swap columns 𝑗 and 𝑘 in 𝐼𝑠ℎ𝑢𝑓𝑓𝑙𝑒𝑑. 

ii. Inverse Row Shuffling 

 For each row index 𝑖 from 𝐻 − 1 down to 0, compute ∆𝑖= ∑(𝐾[𝑖 𝑚𝑜𝑑 𝐻, ∶])  𝑚 =
(𝑖 + ∆𝑖 + 𝑟𝑒𝑝) 𝑚𝑜𝑑 𝐻, 

 Then swap rows 𝑖 and 𝑚. 
 
After these unshuffling steps, the decrypted image 𝐼𝑑𝑒𝑐 should match the original plain image 𝐼, 

assuming the correct key 𝐾 and permutation parameters are used. 
The methodology described shows that, the integrated machine learning derived key generation, 

spiral ripple shuffle-based permutation and XOR substitution can encrypt and decrypt images. It 
maintains a high level of confusion and diffusion, relies on statistically verified key randomness and 
supports scalable implementations. By considering multiple metrics (speed, randomness, key 
sensitivity, cryptanalytic resistance the framework is comprehensively validated and positioned as a 
promising solution for secure image encryption in dynamic environments. The illustration of the 
encryption and decryption process is shown in Figure 3 below. 

 
Encryption Process 

 
 
Decryption Process 

 
Fig. 3. Encryption and decryption processes 

 
2.6 Evaluation Metrics 

 
In assessing the robustness and efficiency of the proposed image encryption framework, a set of 

well-established evaluation metrics is employed. These metrics collectively offer insight into the 
security and performance of the proposed system. By examining parameters such as Number of Pixel 
Change Rate (NPCR) and Unified Average Changing Intensity (UACI), we confirm the scheme’s 
capacity to propagate minute key alterations across the cipher image, ensuring strong key sensitivity. 
Metrics like Peak Signal-to-Noise Ratio (PSNR) shed light on the quality of the recovered image and 
the randomness of the encryption process. Moreover, the inclusion of Digital Image Correlation (DIC) 
and memory/space efficiency shows the scheme’s ability to obscure the original visual details without 
increasing overhead. Taken as a whole, these measures provide a comprehensive perspective on 
both the cryptographic resilience and the operational feasibility of the approach, aligning with 
recognized best practices in secure image processing [1].  
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2.6.1 Mean squared error (MSE) 
 
In image encryption studies, MSE typically involves comparing the original (plain text) image with 

a decrypted output. A low MSE indicates that the decrypted image’s intensities are nearly identical 
to those of the original, signifying minimal distortion or information loss. Conversely, a high MSE 
underscores discrepancy at the per-pixel level, hinting that the encryption–decryption pipeline either 
introduces noise or fails to accurately reconstruct critical details. Assuming 𝑋 and 𝑌 represent two 
images of same dimension (𝐻 × 𝑊), with pixel intensities 𝑋𝑖𝑗 and 𝑌𝑖𝑗. The MSE is computed as in Eq. 

(15): 
 

𝑀𝑆𝐸(𝑋, 𝑌) =
1

𝐻×𝑊
∑ ∑ (𝑋𝑖𝑗 − 𝑌𝑖𝑗)2𝑊

𝑗=1
𝐻
𝑖=1                      (15) 

 
MSE significance emerges from its simplicity and direct link to signal accuracy [12,15]. 
 
2.6.2 Peak signal-to-noise ratio (PSNR)  

 
PSNR is typically employed in compression assessments, it is relevant here to quantify the fidelity 

between the decrypted image and the original. High PSNR values verify that the decryption closely 
reproduces the original image, indicating minimal information loss. Given the MSE between images 
as in Eq. (16): 
 

𝑃𝑆𝑁𝑅 = 10 log10 (
𝑀𝐴𝑋2

𝑀𝑆𝐸
)                       (16) 

 
Where, 𝑀𝐴𝑋 is the maximum possible pixel intensity (e.g., 255 for 8-bit images) [21]. 
 
2.6.3 Number of pixels change rate (NPCR) 

 
The NPCR gauges the fraction of pixels in cipher image that are altered when the key is minutely 

modified. It verifies whether the proposed scheme propagates key variations throughout the entire 
image plane. If 𝐷(𝑖, 𝑗) = 1 when pixels (𝑖, 𝑗) differs and 𝐷(𝑖, 𝑗) = 0 otherwise, and is shown in Eq. 
(17): 
 

𝑁𝑃𝐶𝑅 = (
∑ 𝐷(𝑖,𝑗)𝑖,𝑗

𝑀×𝑁
) × 100%                       (17) 

 
Where, 𝑀 × 𝑁 is the total number of pixels in the image [12]. 
 
2.6.4 Unified average changing intensity (UACI) 

 
UACI assesses how much the intensity of each individual pixel is altered on average when keys 

differ slightly. While NPCR captures the count of changed pixels, UACI reflects the magnitude of these 
changes. Comparing two encrypted images 𝐶1 𝑎𝑛𝑑 𝐶2 in Eq. (18): 
 

𝑈𝐴𝐶𝐼 = [
1

𝑀×𝑁
∑ ∑

|𝐶1(𝑖,𝑗)− 𝐶2(𝑖,𝑗)|

255

𝑁
𝑗=1

𝑀
𝑖=1 ] × 100% (18) 
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UACI, in conjunction with NPCR, provides comprehensive insight into both the breadth and 
intensity of pixel modification due to slight key variations [22]. 
 
2.6.5 Digital image correlation (DIC)  

 
DIC involves template matching or other alignment algorithms to ascertain how visually similar 

two images are. For an effectively encrypted image, DIC values between the original and the cipher 
should be low, reflecting minimal detectable overlap. Using normalized cross-correlation to measure 
the similarity between two images, let:  

 
i. 𝑇(𝑥, 𝑦) be the original image, 
ii. 𝐼(𝑥, 𝑦) be the cipher image against which the original image is compared, 

iii. �̅� and 𝐼 ̅be the mean intensity of the original and cipher image respectively. 
 
Then, the normalized cross-correlation coefficient at a given displacement 𝑢, 𝑣) can be expressed 

as in Eq. (19): 
 

𝑁𝐶𝐶(𝑢, 𝑣) =
∑ [𝑇(𝑥,𝑦)−�̅� ][I(x+u,y+v)−𝐼]̅𝑥,𝑦

√∑ [𝑇(𝑥,𝑦)−�̅�]2 ∑ [𝐼(𝑥+𝑢,𝑦+𝑣)− 𝐼]̅2
𝑥,𝑦𝑥,𝑦

  (19) 

 
Where, the summations ∑  𝑥,𝑦 are taken over the region. This measure typically ranges from −1 to 

+1 with: 
 

i. +1 indicating perfect positive correlation (high similarity), 
ii. 0 indicating no linear relationship, 

iii. −1 indicating perfect negative correlation (inverse relationship). 
 
In image encryption contexts, a DIC (NCC) value close to 0 (or near the lower end of the range) 

indicates minimal similarity, which is desirable for security because it implies the encryption has 
thoroughly obscured the image’s original features [7]. 
 
2.6.6 Correlation coefficient 

 
Correlation coefficients gauge the linear relationship among adjacent pixels. In typical plain 

images, neighbouring pixels are highly correlated. A strong encryption scheme drastically reduces 
such correlations in the cipher image, preventing adversaries from inferring spatial patterns. For any 
two variables 𝑋 and 𝑌, the Pearson correlation coefficient 𝜌 is shown in Eq. (20):  
 

𝜌 =
∑(𝑥𝑖−�̅�)(𝑦𝑖−�̅�)

√∑(𝑥𝑖−�̅�)2 ∑(𝑦𝑖−�̅�)2
                        (20) 

 
Minimizing adjacency correlation in the encrypted image implies that the cipher obscures the 

images’ original structure [19]. 
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2.6.7 Entropy 
 
Entropy measures uncertainty or randomness within an image’s intensity distribution. An 

encrypted image typically exhibits high entropy, signifying greater resistance to statistical attacks. If 
𝑝𝑖 is the probability of intensity 𝑖 in the image, then Eq. (21) is produced: 
 

𝐻 = − ∑ 𝑝𝑖𝑙𝑜𝑔2(𝑝𝑖)
𝑘
𝑖=1                        (21) 

 
Where, 𝑘 is the number of intensity level (256 in an 8-bit image). Elevated entropy implies fewer 
discernible patterns in the cipher image, reinforcing security [9]. 
 
2.6.8 Structural similarity index matrix (SSIM) 

 
SSIM is a widely recognized metric for gauging the perceptual similarity between two images, 

often used to assess fidelity in compression and restoration tasks. In the context of image encryption, 
SSIM helps compare how closely a decrypted image aligns with the original image in terms of 
luminance, contrast and structural content. A higher SSIM score indicates that the two images are 
nearly indistinguishable in human visual perception, whereas lower values reflect more visible 
discrepancies. Assuming 𝑋 and 𝑌 are two grayscale images and 𝜇𝑋 and 𝜇𝑌 are their mean intensities. 
The variances 𝜎𝑋

2 and 𝜎𝑌
2 represent the spread of their intensities around the respective means and 

𝜎𝑋𝑌 is the covariance between them. Given constants 𝐶1 and 𝐶2 to ensure stability, the SSIM is 
computed as: 
 

𝑆𝑆𝐼𝑀(𝑋, 𝑌) =
(2𝜇𝑋𝜇𝑌+𝐶1)(2𝜎𝑋𝑌+𝐶2)

(𝜇𝑋
2 +𝜇𝑌

2+𝐶1)(𝜎𝑋
2 +𝜎𝑌

2+𝐶2)
                      (22) 

 
SSIM captures structural and perceptual similarities. In a secure encryption scenario, the SSIM 

between the encrypted and original images should be substantially low, signifying the cypher image 
retains minimal traces of the original. Similarly, the SSIM between the decrypted and original images 
should be relatively high, affirming successful recovery of visual details after decryption [23,24]. 
 
2.6.9 Bit error rate (BER) 

 
BER originates in digital communications to measure the fraction of transmitted bits that are 

received incorrectly. In the context of image encryption, BER is used typically to compare the binary 
representations of two grayscale images, the original and an encrypted or decrypted version. A higher 
BER indicates more bit-level mismatches, reflecting a stronger alteration of the image data. Given 
two grayscale images, their intensities are flattened and unpacked into bits. Assuming 𝑏1 and 𝑏2 
denote the bit streams of the first and second images, respectively, each of the length 𝑁. The BER is: 
 

𝐵𝐸𝑅 =
∑ [𝑏1(𝑖)≠𝑏2(𝑖)𝑁

𝑖=1 ]

𝑁
                       (23) 

 
Where, [∙] is the Iverson bracket (1 if condition is true, else 0). A BER closer to 1.0 means nearly all 
bits diverge, implying the drastic changes. A lower BER indicates fewer bit discrepancies. BER reveals 
how the encryption scheme disrupts the original bit patterns.  

For secure encryption, the BER between the original and encrypted images should approach 50% 
or higher, demonstrating that any small knowledge of the original bits confers minimal advantage in 
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guessing the cipher. Meanwhile, comparing the original and decrypted images allows researchers to 
confirm that the rightful decryption yields a low BER, confirming accurate reconstruction at the bit 
level [19,25]. 
 
3. Performance Evaluation 

 
In this section, we first present the experimental settings. Then, the evaluation of Sensitivity and 

Randomness Characteristics, Entropy and Histogram Distribution, Disruption of Spatial Correlation, 
Image Quality and Recovery Fidelity, Digital Image Correlation and Computation Time and Practical 
Feasibility. Finally, thorough discussions of the results are provided.  
 
3.1 Overview of Experimental Outcomes 
 

The proposed encryption–decryption scheme was tested on various standard images of differing 
sizes and characteristics, including baboon, baby, coloredChips, laure, cameramanand Lena. Table 1 
lists the dimensions of each original image, along with representative cipher and decrypted outputs. 
A visual inspection of the cipher images shows a pronounced disruption of the original structure, 
while the decrypted images appear nearly indistinguishable from the original inputs. This initial 
examination supports the efficacy of the method’s two-stage encryption, combining SRS and bitwise 
XOR with a high-entropy key generated via the ensemble-learning–based PRNG. 
 

Table 1 
Plain images with their respective dimensions, ciphers and decrypted images 
Image Image Name Image Size Cipher Image Decrypted Image 

 

baboon.png 512 X 512 

  

 

baby.jpg 2250 X 3600 
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coloredChips.
png 

518 X 391 
 

  

 

laure.jpg 256 X 256 
 
 

  

 

cameraman.tif 256 X 256 

  

 

Lena.jpg 204 X 192 
 
 
 

 
 

 
3.2 Key Sensitivity and Randomness Characteristics 

 
A fundamental expectation in secure image encryption is that minimal changes to the key 

produce pronounced differences in the ciphered output. Two well-known metrics, NPCR and UACI 
were employed to assess this property as shown in Table 3. 
 
3.2.1 NPCR and UACI 

 
As shown in Table 3, NPCR values exceed 99.50% for all tested images. For instance, baby.jpg and 

coloredChips.png exhibit NPCR values of 99.60% and 99.58%, respectively, confirming that an 
overwhelming fraction of the ciphered pixels flips when the key changes slightly. Equally important, 
UACI levels remain above 30% for each image, with baboon.png reaching 37.51% and cameraman.tif 
attaining 35.97%. These values highlight that not only do most pixels change, but they also shift with 
considerable magnitude which is a positive indication of key sensitivity and diffusion strength. 
 
3.2.2 Entropy and histogram distribution 

 
High entropy in the cipher image implies a near-uniform intensity distribution, complicating 

statistical or entropy-based attacks. Table 3 reveals that all cipher images exhibit entropies between 
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7.4745and 7.5448, substantially elevated from the corresponding original image entropies (e.g., 
baboon.png’s plain entropy is 5.3805, while its cipher entropy is 7.4745). These results indicate that 
the proposed approach effectively removes characteristic patterns from the original images. 

Moreover, the cipher histograms in Table 2 approximate uniform distributions, aligning with the 
elevated entropy findings. The sharp divergence between plain and cipher histograms demonstrates 
that the encryption process scrambles pixel intensities in a manner that eludes histogram-based 
attacks. 
 

Table 2 
Histogram of plain images, ciphers and decrypted images 
Image Histogram of Image Histogram of Cipher Histogram of Recovered 

Image 

 
   

 

   

    

 

   



Journal of Advanced Research Design 

Volume 143 Issue 1 (2026) 84-108  

102 

 
  

 
 
 
 
 

 

   

 
Table 3 
Parameters analysis of the proposed system 
Image name Original 

image 
entropy 

Cipher 
image 
entropy 

MSE PSNR NPCR 
(%) 

UACI 
(%) 

SSIM 
(Original 
vs 
encrypted) 

BER 
(Original 
vs 
decrypted) 

DIC 

baboon.png 5.38 7.47 10197.00 28.85dB 99.56 37.51 0.0091 0.2147 0.0025 
baby.jpg 5.46 7.54 10752.00 53.97dB 99.60 33.35 0.0066 0.0177 -0.001 
coloredChips.png 5.17 7.54 10605.00 37.57dB 99.58 32.46 0.0098 0.1800 -0.001 
laure.jpg 5.32 7.54 116555.00 47.56dB 99.57 31.76 0.0022 0.1872 0.0006 
cameraman.tif 4.86 7.51 10319.00 44.14dB 99.58 35.97 0.0069 0.1842 -0.001 
Lena.jpg 5.40 7.50 10310.34 47.63dB 99.54 36.74 0.0077 0.0560 -0.003 

 
3.3 Disruption of Spatial Correlation 

 
Natural images typically exhibit strong local correlation in horizontal, vertical and diagonal 

directions. Tables 4 and 5 illustrate how the proposed method drastically reduces correlation values. 
For instance, baby.jpg has horizontal and vertical correlation coefficients of 0.9961 and 0.9961, 
respectively, in the original image. After encryption, these drop to 0.3070 and 0.1095. A similar trend 
appears for all test images: even the cameraman.tif, which has an original vertical correlation of 
0.9592, sees that figure plummet to −0.0067 upon encryption. 

Such minimization of adjacency-based correlation is critical: it prevents adversaries from using 
spatial relationships to make inferences about underlying patterns. Scatter plots of adjacent pixels 
(not shown numerically here but implied by correlation analysis) confirm the near-random 
distribution of the ciphered pixel values. 
 
3.4 Image Quality and Recovery Fidelity 

 
Although high security is paramount, a functional encryption scheme must also preserve the 

ability to accurately reconstruct the original image upon decryption. Several metrics, including MSE 
and PSNR in Table 3 were used to assess decryption quality. Histograms for original and decrypted 
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images were also compared in Table 2. The results from both Tables 2 and 3 shows that, the scheme 
preserves the quality of the image after reconstruction. 
 

Table 4 
Analysis of the correlation between the plain image and the cipher image 
Direction Original Images Cipher Images 
Image Horizontal Vertical Diagonal Horizontal Vertical Diagonal 
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3.4.1 MSE and PSNR 
 
As reported in Table 3, the MSE values between the original and decrypted images lie in a low 

range, typically on the order of 10^4 when comparing plain vs. cipher (e.g., baboon.png’s MSE is 
10196.9874). These values reflect the pronounced difference between the original and encrypted 
images, precisely what is desired for security. The corresponding PSNR values for recovered images 
vary, with baby.jpg showing a relatively high PSNR of 53.97 dB, indicative of near-lossless recovery, 
whereas baboon.png has a more modest PSNR of 28.85 dB. In all cases, the decrypted images visually 
align with the originals, underscoring the consistency of the decryption process. 
 

Table 5 
Analysis of the proposed system’s correlations 
Direction Original Images   Cipher Images   

 Horizontal Vertical Diagonal Horizontal Vertical Diagonal 

baboon.png 0.8665 0.7587 0.7262 0.0305 0.0486 -0.0010 
baby.jpg 0.9961 0.9961 0.9923 0.3070 0.1095 0.0458 
coloredChips.png 0.9913 0.9898 0.9860 0.2821 0.2489 0.1464 
laure.jpg 0.9933 0.9928 0.9851 0.0053 0.0047 0.0031 
cameraman.tif 0.9335 0.9592 0.9087 -0.0065 -0.0067 0.0017 
Lena.jpg 0.9274 0.9655 0.8981 0.0175 0.0246 0.0036 

 
3.4.2 SSIM and BER 

 
The Structural Similarity Index Matrix (SSIM) between the original and encrypted images remains 

very low (often below 0.01), indicating that the encryption thoroughly obscures perceptual details. 
Conversely, the Bit Error Rate (BER) reported in Table 3 underscores the difference at the bit level; 
for instance, coloredChips.png has a BER of 0.180006 (original vs. encrypted), showing that well over 
18% of the bits deviate from the original’s bit stream. This sizeable shift is advantageous from a 
security standpoint, as partial knowledge of the plaintext confers minimal leverage over the cipher. 
 
3.5 Digital Image Correlation (DIC) 

 
Although local correlations often capture adjacency, some advanced attacks look at larger-scale 

alignment via digital image correlation. The DIC values (last column of Table 3) are near zero or even 
negative, especially for images such as Lena.jpg (−0.0032) and baby.jpg (−0.0005). Such minimal 
global alignment signifies that the cipher image does not retain macrostructures of the original, 
adding another layer of reassurance regarding security. 
 
3.6 Computation Time and Practical Feasibility 

 
Encryption and decryption times for each tested image (Table 6) demonstrate the computational 

viability of the proposed scheme. Smaller images like cameraman.tif (256×256) complete encryption 
in approximately 0.016 seconds and decryption in about 0.016 seconds, while larger images such as 
baby.jpg (2250×3600) still remain under a second for encryption and just under one second for 
decryption on the tested hardware. These processing times indicate that, even for high-resolution 
inputs, the system provides rapid performance, supporting potential real-world deployment in 
scenarios demanding both efficiency and security. 
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Table 6 
Encryption and decryption time of proposed system 
Image Name Encryption Time Decryption Time 

baboon.png 0.030862 0.031965 
baby.jpg 0.938270 0.991475 
coloredChips.png 0.047039 0.053560 
laure.jpg 0.032043 0.015727 
cameraman.tif 0.015732 0.015841 
Lena.jpg 0.009106 0.005749 

 
3.7 Findings and Discussions 

 
The collective evidence from all reported metrics (NPCR, UACI, correlation coefficients, entropy, 

SSIM, BER and DIC) attests to the robustness of the proposed method. High NPCR/UACI underscores 
strong key sensitivity and diffusion properties, while elevated cipher entropy precludes 
straightforward statistical attacks. Markedly reduced spatial correlations confirm the system’s 
capacity to obscure both local and global patterns and the DIC outcomes reveal negligible large-scale 
alignment with the original image. 

Meanwhile, satisfactory PSNR and minimal distortion in the decrypted outputs confirm that the 
reverse process accurately recovers the original data. Consistent decryption quality across a range of 
test images underscores the method’s adaptability. Furthermore, practical encryption and 
decryption times make it suitable for real-time or near-real-time applications. 

Table 7 provides a quantitative comparison of several image encryption schemes, revealing 
notable differences in computation complexity and runtimes. Islam et al., [26] report a complexity of 
𝑂(𝑁)2 with a runtime of 0.03 𝑠, which suggests that while their approach is computationally 
intensive for larger images, it performs efficiently on moderate sized inputs. In contrast, Fetteha et 
al., [27] and Ali et al., [28] exhibit longer run times of approximately 0.28 𝑠, the latter specifies a 
complexity of 𝑂(14𝑀𝑁  +  3𝑙𝑜𝑔(𝑀𝑁)), indicating a more intricate process. Jain et al., [29] and Erkan 
et al., [30] do not provide explicitly complexity measures, though their NPCR and entropy values 
remain high. Kumari et al., [31] show uniform performance across dimensions with low run time of 
0.05 𝑠 while Lai et al., [32] achieved a complexity of 𝑂(6𝑀𝑁  +  14𝑀  +  6𝑁) with a run time of 
0.22 𝑠. Notably, the scheme by Lai et al., [4] operates at 𝑂(8𝑀𝑁) with a runtime of 0.21 𝑠. However, 
our proposed schemed attains an attractive 𝑂(𝑁) complexity and the shortest runtime of 
approximately 0.27 𝑠. These findings indicate that the proposed scheme offers a promising balance 
between low computational complexity and robust security metrics, which is essential for real time 
applications and resource constrained environments. 

 
Table 7 
Average quantitative performance compared with existing algorithms 
Schemes Horizontal Vertical Diagonal NPCR (%) UACI (%) Entropy Computational 

Complexity 
Run Time (S) 

Islam et 
al., [27]  

-0.0067 0.0014 -0.0040 99.61 33.48 7.9974 O(N2) 0.03 

Fetteh et 
al., [27]  

1.10 -1.12 -0.49 99.65 33.41 7.9972 NA 0.28 

Ali et al., 
[28]  

0.0019 0.0035 0.0008 99.62 33.46 7.9959 O(14MN + 
3log(MN)) 

0.28 

Jain et 
al., [29]  

NA NA NA 99.61 32.88 7.7253 NA 0.56 

Erkan et 
al., [30]  

0.0003 0.0002 0.0006 99.61 33.46 7.9994 𝑂(16𝑀𝑁) NA 
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Kumari 
et al., 
[31]  

0.0069 0.0069 0.0069 99.65 30.75 7.9967 NA 0.05 

Lai et al., 
[32]  

0.000362 -0.0002 -0.00034 99.61 33.47 7.9975 𝑂(6𝑀𝑁 
+ 14𝑀 + 6𝑁) 

0.22 

Kumar et 
al., [33]  

-0.0076 -0.0071 0.0042 99.57 33.36 7.9988 NA 0.86 

Lai et al., 
[4]  

-0.0014 -0.0007 0.0003 99.62 33.44 7.008 O(8MN) 0.21 

Proposed 
Scheme 

0.1059833 0.0716 0.033267 99.57 34.63 7.518483 O(N) 0.0269564 

 
3.8 Concluding Remarks on Results 

 
In summary, the proposed scheme achieves a rigorous equilibrium between security strength and 

recoverability. The ensemble classifier–based key generation enhances randomness, the Spiral Ripple 
Shuffle disrupts spatial coherence and the bitwise XOR ensures strong diffusion. When taken 
together, these steps yield cipher images that are statistically indistinguishable from random noise 
and securely protect underlying content. At the same time, the decryption phase, employing inverse 
operations, reliably restores the original images without perceptible loss. These attributes, 
corroborated by a multifaceted evaluation, position the proposed system as a resilient and 
computationally viable solution for contemporary image-encryption requirements. 
 

4. Conclusion 
 
Our results show that the new image-ciphering method works very well. The scheme first lets an 

ensemble of three learners including Logistic Regression, Random Forest and an SVM to produce a 
stream of high-entropy keys. Next, a spiral-ripple shuffle breaks the usual row- and column-order of 
the picture and a bit-wise XOR hides the final pixel values. 

Large NPCR and UACI scores prove that even a tiny key change alters almost every pixel, while 
the high entropy of the cipher image suggests it can withstand simple statistical or histogram attacks. 
Pixel-to-pixel correlations fall almost to zero, cutting the links an attacker might trace across 
neighbouring pixels. Finally, good PSNR values during decryption confirm that the original image is 
recovered without loss. Taken together, these results point to a fast, practical and secure solution for 
modern image protection. 

From an operational perspective, the recorded encryption and decryption times remain within 
acceptable limits for real-time applications, indicating that the method retains computational 
feasibility. Such efficiency is of particular importance when large-scale or streaming image data are 
transmitted over unsecured channels, necessitating both rapid throughput and uncompromised 
cryptographic resilience. 

Overall, the proposed framework stands out for its combination of machine-learning innovation 
and classical cryptographic rigor, offering heightened confusion and diffusion attributes without 
sacrificing decryption fidelity. Future enhancements may involve automated hyperparameter tuning 
for the ensemble-learning component, as well as optimization of the spiral ripple shuffle for images 
with specific structural or application-driven constraints. These refinements would further 
consolidate the framework’s capability to handle diverse encryption scenarios while maintaining a 
consistently secure and reliable performance profile. 
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