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Energy intensity optimization in water treatment plants (WTPs) is essential for ensuring 
sustainable operations and cost-effective resource management. In Malaysia, WTPs 
consume substantial energy to maintain water treatment and distribution, yet 
inefficiencies in energy usage remain a concern. This study integrates Exploratory Data 
Analysis (EDA) and Univariate Time Series (UTS) forecasting to analyze and predict 
energy intensity trends at four WTPs in Northern Kedah Region One. The primary 
objective is to enhance energy efficiency by identifying consumption patterns and 
selecting the most suitable forecasting model for energy intensity prediction. The 
methodology involved data collection on electricity consumption and water 
production from January 2021 to October 2023, followed by EDA to detect patterns, 
anomalies, and relationships in energy usage. Several UTS models, including Naïve, 
Moving Average, Simple Exponential Smoothing, and ARIMA, were applied to forecast 
energy intensity. The results highlight significant variations in energy intensity among 
the WTPs, with Jenun Baru exhibiting the lowest energy intensity, indicating greater 
efficiency, while Jeneri recorded the highest. Furthermore, findings demonstrate that 
no single forecasting model is universally optimal, as performance varies based on data 
characteristics. This study underscores the importance of incorporating EDA in 
forecasting to improve forecasting model accuracy and support informed decision-
making in WTP operations. The insights derived from this research can guide 
policymakers and industry practitioners in implementing energy-saving strategies and 
optimizing water treatment processes. Future research should explore multivariate 
time series models that incorporate external factors such as weather conditions and 
operational changes to enhance forecasting precision and energy efficiency. 
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1. Introduction 
 

Malaysia is one of Asia’s highest energy per capita consumers in terms of total consumption and 
intensity. The country’s final energy consumption rose from 13 million tons of oil equivalent (toe) in 
1990 to approximately 41 million in 2010, reflecting an average annual growth rate of 6%. Rahman 
et al., [1] explained that despite aggressive energy efficiency initiatives over the past 20 years, 
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Malaysia has not significantly improved energy consumption and conservation. Ritchie et al., [2] 
describe that according to Our World in Data, Malaysia has improved energy efficiency, but progress 
has been slow. The country faces challenges in terms of energy consumption and conservation. 
Rahman et al., [1] identified that the lower-than-expected results from previous energy efficiency 
programs prompted the Malaysian government to launch the National Energy Efficiency Action Plan 
(NEEAP) for the 2016-2025 period, considering socio-cultural, policy, financial, and administrative 
barriers. 

By looking at this fact, each level and sector in Malaysia should support the agenda together since 
it is not only about money but also sustainability and environmental responsibility. According to the 
study by Pakharuddin et al., [3], water treatment plants (WTPs) play a vital role in providing safe 
drinking water to communities by improving water quality. They process raw water from rivers, lakes, 
or groundwater to remove impurities and contaminants. The treatment involves coagulation, 
filtration, disinfection, and pH adjustment. Then, treated water is distributed through pipes to homes 
and businesses for domestic and non-domestic usage. Since the WTPs’ role is very significant in all 
aspects of life, the management of operation WTPs should take note of monitoring procedures to 
ensure efficient and safe operation. 

Although one of the monitoring procedures in WTPs is forecasting activities, inaccurate, 
incomplete, and anomalous data will make the results meaningless and cause high forecasting errors. 
Ismail et al., [4] explained that Exploratory Data Analysis (EDA) is the systematic, thorough data 
analysis to find significant patterns, relationships, and insights. Hence, the EDA is the best option for 
the preprocessing stage in forecasting. Furthermore, EDA bridges raw data, meaningful information, 
and actionable knowledge in WTPs. 

The study by Tukey [5] described that EDA constitutes a fundamental phase in research analysis. 
Since Tukey’s groundbreaking research in 1977, Komorowski et al. [6] explained that EDA has grown 
significantly in popularity for data set analysis. Examining the data for distribution, anomalies, and 
outliers is the primary goal of EDA, which helps guide the hypothesis’s specific testing and as prior 
knowledge before further analysis. EDA seeks to support the analyst’s ability to recognize natural 
patterns. Hence, some researchers in previous studies applied EDA in their data research profiling to 
show the significance of EDA’s role in their studies, such as in energy profiling for university buildings 
by Usman et al., [7], in wastewater study by Xiao et al. [8] and in electricity load demand by Ismail et 
al., [4]. Therefore, this aligns with the initial step of univariate time series forecasting procedures: 
plot data and identify the existence of the time series components described by Bowerman et al. [9] 
based on data patterns.  

Time series forecasting predicts the future value(s) based on historical data. Univariate time 
series forecasting only considers the time factor in its analysis. The time series data is the data value 
in sequence time. Maciel [10] and Mansor et al., [11] explained that the data could be in interval-
valued time series (ITS), fuzzy-valued time series (FTS) and point-valued time series (PTS). Since the 
data in this study is numeric or crisp data from the WTP, this study applied the forecasting method 
suitable with PTS done by Mansor and Zaini [12].  

However, the research by Othman et al., [13], Biswas and Yek [14] and Labo [15] stated there are 
some other issues in WTPs, such as issues in energy consumption measuring and monitoring data 
and energy-saving technologies. The study by Biswas and Yek [14] revealed that water treatment 
plants consume large amounts of energy to operate the treatment process, which can contribute to 
greenhouse gas emissions and operational costs. Moreover, Labo [15] clarified that energy intensity 
optimization is essential for WTPs because of increased energy costs. The optimization of energy 
intensity will be accomplished by integrating energy recovery from the WTPs process and energy-
saving technologies.  
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Despite numerous studies on energy intensity and efficiency in various sectors, including solar 
energy [16], energy-water efficiency [13], and the cement industry [17], limited research has 
specifically focused on integrating EDA with univariate time series forecasting to optimize energy 
intensity at water treatment plants (WTPs). Most existing studies primarily address energy 
consumption measurement or energy-saving [13-15] without providing a comprehensive approach 
to predicting and optimizing energy intensity using historical data patterns. Additionally, while some 
studies focus on energy efficiency strategies and technologies, the specific integration of EDA and 
univariate time series models in WTPs remains underexplored [18]. 

Therefore, this study aims to bridge this gap by developing an integrated forecasting model that 
utilizes EDA and univariate time series methods, offering a novel approach to decision-making and 
planning in WTP operations. By addressing this gap, the study contributes to enhancing energy 
efficiency, reducing operational costs, and promoting sustainable practices within the water 
treatment sector. 

This study presents Exploratory Data Analysis (EDA) and Univariate Time Series (UTS) forecasting 
results for four water treatment plants (WTPs) in Northern Kedah Region One, Kedah state, providing 
comprehensive insights into energy-water efficiency. In Malaysia, WTPs are managed at the state 
level, with each state having its water authority responsible for managing, operating, and maintaining 
WTPs. These authorities adhere to national standards set by the Ministry of Natural Resources, 
Environment, and Climate Change (NRECC) and the National Water Services Commission (SPAN). 
They implement management practices such as water quality monitoring, process optimization, and 
energy efficiency initiatives to align with Malaysia’s sustainability goals. In Kedah, Syarikat Air Darul 
Aman (SADA) manages water treatment and supply, managing 36 WTPs across six regions: Northern 
Kedah Region One, Northern Kedah Region Two, Central Region, East Region, Southern Region, and 
Langkawi Region. This study focuses on the WTPs in Northern Kedah Region One; Jenun Baru, Jenun 
Lama, Jeneri, and Pokok Sena. 

As outlined in Figure 1, the research methodology was systematically applied to each WTP in 
Northern Kedah Region One from Phase 1 to Phase 4. In Phase 1, data on electricity consumption 
(EC) and water production (WP) were collected from January 2021 to October 2023 to establish a 
foundational dataset for the analysis. Phase 2 included EDA to analyze energy intensity (EI) trends 
over the same period. In Phase 3, the research involved partitioning the data, modelling using data 
from January 2021 to December 2022 and evaluating the models with 10 data points from January 
2023 to October 2023. 

Various UTS forecasting models were used, such as Simple Average, Naive, Moving Models (MA3, 
MA4, MA5), Exponential Smoothing (SES), and Box-Jenkins Model. Finally, Phase 4 involved 
evaluating model performance, identifying the best UTS forecasting model and forecasting energy 
intensity for 10 months. Figure 1 shows the connection between all the phases by integrating EDA 
and UTS forecasting. The following subsection explains each phase. 
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Fig .1. Research methodology 
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2.1. Phase 1: Collecting the data 
 

The study’s first phase involves gathering electricity consumption (EC) and water production (WP) 
data from the Department of Mechanical and Electrical and the Department of Production at SADA. 
The dataset covers January 2021 to October 2023, focusing on the relationship between EC and WP 
as primary inputs for calculating energy intensity (EI). This phase establishes a strong data foundation 
for subsequent analysis by collecting comprehensive and accurate records from relevant 
departments. 
 
2.2. Phase 2: Exploring the data  
 

Next, from the data in Phase 1, data EI (EI value) was created from data on EC and WP. EDA was 
conducted by grouping the data into three analyses. Then, EDA was executed from these three data 
sets. The role of EDA in this study is to give a clear picture of the time series data by showing the 
trend and movement pattern and the summary statistics like maximum and minimum values, central 
tendency measures, and measures of dispersion. Also, any significant differences in the pattern were 
investigated.  

Majid et al., [19] described that the EI value is obtained by dividing the energy consumption by 
the total water production. Kilowatt-hours per cubic metre (kWh/m3) are standard energy intensity 
units expressing the energy used to produce one water unit. Othman et al. [13] and Liu et al. [20] 
explained that the EI can be represented as in Eq. (1) 
 
𝐸𝑛𝑒𝑟𝑔𝑦	𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 = !"#$%&	()"*+,-./)"	(123)

25.#$	6$)7+8./)"	(,!)
																																									                                                   (1) 

 
and can be simply by Eq. (2) 
 
𝐸𝐼 = !(

26
																																																																																																																											                                       (2) 

 
 

2.3. Phase 3: Identifying the Best Univariate Time Series (UTS) model 
 

Phase 3 focuses on the EI data set only. A few univariate EI forecasting models are suggested for 
the UTS analysis under the time series pattern discovered in Phase 2. In this phase, the data has been 
divided into modelling and evaluation parts before determining the optimal model. When performing 
UTS forecasting analysis, identifying the time series components, whether trend, seasonality, cyclic 
patterns, and residuals, should be based on the modelling part of the data. For some reason, in Phase 
2 findings, the data points for modelling and evaluation will be presented in the findings section soon. 

The role of data partition in this phase is that the data in the modelling part is used to build the 
forecasting. By analyzing the time series components in the modelling part, we ensure that the model 
captures the underlying patterns and structures in the historical data. Identifying and understanding 
these components accurately is crucial for developing a reliable model. Since the results from Phase 
2 show no trend in the modelling part of the data, which is no significant up or down trend movement 
and no significant seasonality, the suitable UTS forecasting models are presented in Table 1. Models 
1 to 6 were executed using calculations in Microsoft Excel and Model 7 using RStudio. The steps in R 
studio are presented in Table 2. 
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Table 1 
List of univariate time series forecasting models 
No. Model Forecasting model 
1 Naïve 𝐸𝐼"#$ = 𝑦" 
2 Recursive Simple Average (RSA) 

𝐸𝐼"#$ =
∑(𝑎𝑙𝑙	𝑑𝑎𝑡𝑎	𝑣𝑎𝑙𝑢𝑒𝑠)

𝑡  

3 Moving Average (MA3) 
𝐸𝐼"#$ =

∑(𝑚𝑜𝑠𝑡	𝑟𝑒𝑐𝑒𝑛𝑡	3	𝑑𝑎𝑡𝑎	𝑣𝑎𝑙𝑢𝑒𝑠)
3  

4 Moving Average (MA4) 
𝐸𝐼"#$ =

∑(𝑚𝑜𝑠𝑡	𝑟𝑒𝑐𝑒𝑛𝑡	4	𝑑𝑎𝑡𝑎	𝑣𝑎𝑙𝑢𝑒𝑠)
4  

5 Moving Average (MA5) 
𝐸𝐼"#$ =

∑(𝑚𝑜𝑠𝑡	𝑟𝑒𝑐𝑒𝑛𝑡	5	𝑑𝑎𝑡𝑎	𝑣𝑎𝑙𝑢𝑒𝑠)
5  

6 Simple Exponential Smoothing (SES) 𝐸𝐼"#$ = 𝛼𝑦" + (1 − 𝛼)𝐹" ,   			0 ≤ 𝛼 ≤ 1 
7 Box-Jenkins ARIMA(p,d,q) 𝜙%(𝐵)(1 − 𝐵)&𝐸𝐼" = 𝑐 + 𝜃'(𝐵)𝜀" 

 
Meanwhile, the data is reserved for validating the UTS models’ performance in the evaluation 

part. It acts as a hold-out set to assess how well the model can predict unseen data. Competition of 
four forecasting errors of measurements was executed as a statistical tool to evaluate the UTS 
forecasting model performance. The error measurements that were used were mean absolute error 
(MAE), mean squared error (MSE), root mean squared error (RMSE) and mean absolute percentage 
error (MAPE). The model exhibiting the lowest forecasting error across these metrics was designated 
the most accurate and declared the best EI forecasting model in this study. 
 

Table 2 
Steps to apply the ARIMA model in Rstudio 
Step Process Code 
1 Read the data from the EXCEL file >library(readxl)  

>xls.file <- file.path("your_file_path.xlsx")  
>EI <- read_excel(xls.file) 
 >View(EI) 

2 Transform the data into time series data >ts_EI <- ts(EI, start = c(2021,1), end = c(2022,12), frequency 
= 12) 

3 Check Autocorrelation of the time series 
data 

>library(ggplot2) 
>library(fpp) 
>library(forecast) 
>ggAcf(ts_EI) + ggtitle("ACF OF EI at WTP ") 
>ggPacf(ts_EI) + ggtitle("PACF OF EI at WTP ") 

4 Check stationary of the time series data 
using ADF test 

>adf.test(ts_EI)  
Note:  
H0 is rejected if p-value < α (0.05), the data series is stationary 
 
H0 is not rejected if p-value > α (0.05), the data series is non-
stationary. 

5 Differencing is required when the time 
series data is non-stationary, and check 
again the ADF test after differencing  

>EI_diff1 <- diff(ts_EI, differences = 1, lag = 1) 
>EI_diff1 
>adf.test(EI_diff1) 

6 Generate ARIMA model and select the 
best model automatically 

>EImodel <- auto.arima(ts_EI, seasonal = FALSE, ic = "aic", 
trace = TRUE) 

7 Generate the fitted value based on the 
best ARIMA model 

fit_EI <- arima(ts_EI, order = (0,0,0)) 
> fitted(fit_EI) 

8 Forecast the values based on the best 
ARIMA model 

>EIForecast = forecast(EImodel, level = c(95), h = 1*10) 
 

 
 



Journal of Advanced Research Design 
Volume 143 Issue 1 (2026) 182-198  

188 

2.4. Phase 4: Forecasting 12 Months Ahead of Energy Intensity 
 

In the final phase, the best-performing UTS model forecasts energy intensity (EI) from November 
2023 to October 2024. The forecast results will inform strategic energy management decisions at the 
Jenun Baru Water Treatment Plant. By optimizing energy usage, the study aims to enhance the plant’s 
overall energy-water efficiency, contributing to cost savings and supporting broader sustainability 
goals in water resource management. 

 
3. Findings and Discussion 
 

Since this study’s primary analysis is EDA and UTS forecasting, this section is divided into two 
sections: one focused on EDA and the other on UTS forecasting results. 

 
3.1 Exploratory Data Analysis (EDA) Results 
 

Table 3 and Figure 2 show the statistical values and graphical representation of electricity 
consumption across the four water treatment plants (WTPs) in Northern Kedah Region One, revealing 
significant variations in usage patterns. Jenun Baru WTP exhibits the highest electricity consumption, 
with an average of 850,699 kWh and the highest recorded maximum and minimum consumption 
levels, suggesting a consistently high demand. However, in contrast, Jeneri WTP has the lowest 
average electricity consumption (304,102 kWh) and the smallest range, indicating more stable and 
lower energy usage. The coefficients of variation values show that all WTPs have relatively stable 
consumption patterns, with variations below 4%. The time series graph confirms these findings, 
showing that Jenun Baru and Jenun Lama WTPs have consistently higher consumption trends. At the 
same time, Jeneri and Pokok Sena WTPs operate at comparatively lower levels. The observed trends 
and variations highlight potential opportunities for optimizing energy efficiency, particularly at high-
consumption plants like Jenun Baru. 
 

Table 3 
Summary of electricity consumption at WTPs in Northern Kedah Region One 
Statistics Jenun Baru Jenun Lama Jeneri Pokok Sena 
Max 891375 624683 315190 494032 
Min 724820 542681 275674 437395 
Mean 850698.8235 588500.1765 304101.5588 470017.5294 
Median 855786.5 594829 306849 470370.5 
Range 166555 82002 39516 56637 
Standard Deviation 32854.5880 21460.4132 9689.6863 14605.3505 
Coefficient of Variation 3.86% 3.65% 3.19% 3.11% 
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Fig. 2. Electricity consumption (kWh) movement by month at WTPs in Northern Kedah Region One 

 
Table 4 and Figure 3 show the statistical analysis and graphical trends of water production, 

revealing that Jenun Baru WTP consistently produces the highest volume of water, with an average 
production of 2,253,292 m³ and the largest range, indicating significant fluctuations in production 
levels. In contrast, Jeneri WTP has the lowest mean water production (540,099 m³) and the smallest 
range, suggesting a more stable but lower output. The coefficients of variation values for all WTPs 
remain below 3.6%, demonstrating relatively consistent production patterns over time. The time 
series graph further illustrates that Jenun Baru maintains the highest production levels, followed by 
Jenun Lama, Pokok Sena, and Jeneri. These findings highlight the substantial variation in production 
capacity among the WTPs, emphasizing the need for optimized resource allocation and operational 
efficiency, particularly at high-production facilities like Jenun Baru. 
 

Table 4 
Summary of water production at WTPs in Northern Kedah Region One 
Statistics Jenun Baru  Jenun Lama  Jeneri  Pokok Sena 
Max 2351277 1264682 567932 1048696 
Min 2047237 1089133 486035 923452 
Mean 2253292.2941 1196623.3382 540098.8953 1007923.3824 
Median 2264584.5 1201578 545552.5 1018494 
Range 304040 175549 81897 125244 
Standard Deviation 2253292.2941 1196623.3382 540098.8953 1007923.3824 
Coefficient of Variation 3.09% 3.54% 3.50% 3.02% 

 

 
Fig. 3. Water production movement by month at WTPs in Northern Kedah Region One 
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The results presented in Table 5 and Figure 4 provide an in-depth analysis of energy intensity 
across four water treatment plants (WTPs) in Northern Kedah Region One. The statistical values in 
summary indicate that Jeneri WTP has the highest average energy intensity (0.56317 kWh/m³), 
followed by Jenun Lama  (0.49189 kWh/m³), Pokok Sena (0.46635 kWh/m³), and Jenun Baru (0.37747 
kWh/m³). Notably, Jenun Baru WTP exhibits the lowest energy intensity values, suggesting greater 
energy efficiency in water production than other WTPs. Additionally, the coefficients of variation 
values, ranging from 1.34% to 2.08%, indicate relatively low variability in energy intensity over time, 
implying stable operational efficiency at each WTP. 

The time series analysis in Figure 4 further illustrates monthly fluctuations in energy intensity, 
highlighting the trends and variations across the WTPs from January 2021 to September 2023. Jeneri 
WTP consistently demonstrates the highest energy intensity, exceeding the average of all WTP in 
Region One, 0.47472 kWh/m³, suggesting a higher energy requirement per cubic meter of water 
produced. Conversely, Jenun Baru WTP consistently operates below the energy intensity average in 
Region One WTPs, reinforcing its position as the most energy-efficient facility among the four. The 
fluctuations observed in Jenun Lama and Pokok Sena WTPs indicate potential operational 
adjustments, seasonal effects, or external factors impacting energy consumption. 

These findings significantly affect energy management and optimization in water treatment 
operations. The relatively stable energy intensity values suggest consistent performance; however, 
the variations across WTPs indicate opportunities for improvement. Adopting energy-efficient 
technologies, optimizing pump operations, and implementing real-time monitoring could help 
enhance energy efficiency, particularly for high-energy-consuming WTPs like Jeneri. Future research 
could further investigate the factors contributing to energy intensity differences, including plant 
design, water source quality, and operational protocols, to develop targeted interventions for 
reducing energy consumption while maintaining water production efficiency. 
 

Table 5 
Summary of energy intensity at WTPs in Northern Kedah Region One 
Statistics Jenun Baru Jenun Lama  Jeneri  Pokok Sena  
Max 0.38463 0.51342 0.58269 0.48174 
Min 0.35405 0.47024 0.55013 0.45340 
Mean 0.37747 0.49189 0.56317 0.46635 
Median 0.37833 0.49418 0.56142 0.46653 
Range 0.03059 0.04318 0.03255 0.02834 
Standard Deviation 0.00554 0.01024 0.00886 0.00626 
Coefficient of Variation 1.47% 2.08% 1.57% 1.34% 

 

 
Fig. 4. Monthly energy intensity movement at WTPs in Northern Kedah Region One 
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3.2 Univariate Time Series Forecasting 
 

This section’s results focus only on selecting the best energy intensity univariate time series 
forecasting model.  
 
3.2.1 Jenun Baru WTP 
 

Table 6 and Table 7 show the results from the model performance evaluation for the Jenun Baru 
WTP, indicating the ARIMA (3,0,0) model consistently outperforms others based on forecasting error 
measures, including Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Generalized RMSE 
(GRMSE), Mean Absolute Percentage Error (MAPE), and Mean Absolute Deviation (MAD). The 
ranking analysis in Table 6 further supports this conclusion, as ARIMA (3,0,0) attains the lowest total 
rank, signifying its superior predictive accuracy. The results suggest that the ARIMA model is robust 
and reliable for capturing the underlying patterns in energy intensity data at the Jenun Baru WTP, 
making it suitable for short- and medium-term forecasting. 

Meanwhile, the graphical representation in Figure 5 confirms that the ARIMA model successfully 
captures fluctuations in energy performance while maintaining consistency with historical trends. 
The alignment between actual, fitted, and forecasted values further validates the model’s 
effectiveness. Given its ability to produce precise forecasts with minimal error, the ARIMA (3,0,0) 
model is recommended for energy performance forecasting at Jenun Baru WTP over the next 12 
months. 

 
Table 6 
Jenun Baru WTP’s forecasting models performance based on the evaluation part of the data  
Model MSE RMSE GRMSE MAPE MAD 
Naïve 7.88336E-05 6.21473E-09 0.002500359 1.559542111 0.004697804 
SES 7.39611E-05 5.47024E-09 0.002799733 1.546789084 0.004618383 
SA 7.24236E-05 5.24518E-09 0.002174912 1.331995068 0.000297836 
MA3 6.43373E-05 4.13929E-09 0.001760306 1.559170082 0.004306377 
MA4 6.87058E-05 4.72048E-09 0.003359110 1.639138239 0.004228836 
MA5 7.37036E-05 5.43222E-09 0.002220925 1.699094235 0.004043294 
ARIMA (3,0,0) 6.30609E-05 3.97667E-09 0.002125014 1.251786036 0.000673090 

 
Table 7 
Total performance rank for each Jenun Baru WTP’s forecasting model  
Model MSE RMSE GRMSE MAPE MAD Total Rank 
Naïve 7 7 5 5 7 31 
SES 6 6 6 3 6 27 
SA 4 4 3 2 1 14 
MA3 2 2 1 4 5 14 
MA4 3 3 7 6 4 23 
MA5 5 5 4 7 3 24 
ARIMA (3,0,0) 1 1 2 1 2 7 
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Fig. 5. Forecast values of energy intensity at Jenun Baru WTP 

 
3.2.2 Jenun Lama WTP 
 

The evaluation of forecasting models for the Jenun Lama Water Treatment Plant (WTP) in Table 
8 and the ranking of models in Table 9 demonstrate that the Naïve model consistently outperforms 
the others across most error measures, achieving the best rankings in MSE, RMSE, GRMSE, and MAPE, 
with a total rank of 11. The SES model also shows strong performance, particularly in MSE and RMSE, 
securing the second-best total rank of 14. In contrast, the ARIMA (0,1,0) model performs poorly 
across all metrics, resulting in the highest (worst) total rank of 27. The remaining models, including 
SA, MA3, MA4, and MA5, exhibit moderate performance with total ranks ranging from 17 to 24. 
These findings indicate that simpler models like the Naïve and SES approaches may provide better 
forecasting accuracy for this specific dataset, suggesting that model complexity does not always 
correlate with improved performance in forecasting water treatment plant data. 

Figure 6 shows the energy performance (kWh/m³) at Jenun Lama WTP from January 2021 to 
September 2024 using the Naïve model, which was identified as the best-performing model. The 
actual and fitted values align closely, demonstrating the Naïve model’s strong ability to capture 
trends in the historical data. The forecasted values remain stable from November 2023 onward, 
reflecting the Naïve model’s characteristic of projecting the most recent observed value forward, 
suggesting a consistent energy performance prediction for the next year. 
 

Table 8 
Model performance in the evaluation part of data of Jenun Lama WTP 
Model MSE RMSE GRMSE MAPE MAD 
Naïve 3.41599x10-05 1.1669x10-09 0.002283388 0.762077890 0.007218521 
SES 3.42203x10-05 1.1710x10-09 0.002387421 0.782550458 0.007027391 
SA 8.53528x10-05 7.28511x10-09 0.004833000 1.617653934 0.001454915 
MA3 4.24106x10-05 1.79866Ex10-09 0.003097700 1.008064037 0.005617362 
MA4 5.03547x10-05 2.53559x10-09 0.004886312 1.220180968 0.004775290 
MA5 5.51967x10-05 3.04667x10-09 0.005746474 1.344089451 0.004026547 
ARIMA (0,1,0) 0.000112806 1.27252x10-08 0.004320566 1.784897380 0.003059562 
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Table 9 
Total ranking for each error measure based on the models in Jenun 
Lama WTP 
Model MSE RMSE GRMSE MAPE MAD Total Rank 
Naïve 1 1 1 1 7 11 
SES 2 2 2 2 6 14 
SA 6 6 5 6 1 24 
MA3 3 3 3 3 5 17 
MA4 4 4 6 4 4 22 
MA5 5 5 7 5 3 25 
ARIMA (0,1,0) 7 7 4 7 2 27 

 

 
Fig. 6. Forecast values of energy intensity at Jenun Lama WTP 

 
3.2.3 Jenari WTP 
 

The performance evaluation of models for the Jeneri Water Treatment Plant (WTP) data, as 
shown in Tables 10 and 11, reveals that the Simple Average (SA) model performs best among all 
models, achieving the lowest overall total rank of 9. The SA model ranks first across multiple error 
measures, including Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Generalized RMSE 
(GRMSE), Mean Absolute Percentage Error (MAPE), and Mean Absolute Deviation (MAD). The Naïve 
model, on the other hand, ranks the lowest with a total rank of 31, suggesting it is the least effective 
model for forecasting energy performance at Jeneri WTP. 

The graph in Figure 7 depicts the actual, fitted, and forecasted energy performance values at 
Jeneri WTP. The fitted values (purple dashed line) closely follow the actual energy performance (grey 
line) during the actual period, indicating a good model fit. The forecasted values demonstrate a stable 
energy performance trend from November 2023 to September 2024, suggesting consistent energy 
efficiency at the Jeneri WTP. 
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Table 10 
Model performance in the evaluation part of data of Jeneri WTP 
Model MSE RMSE GRMSE MAPE MAD 
Naïve 4.32553E-05 1.87102E-09 0.003365079 0.941204166 0.003348295 
SES 3.82266E-05 1.46127E-09 0.002766663 0.866673058 0.003085001 
SA 1.51630E-05 2.29916E-10 0.001948176 0.50106597 0.000119461 
MA3 2.14641E-05 4.60707E-10 0.001026281 0.558675451 0.002089332 
MA4 2.20014E-05 4.84063E-10 0.001840002 0.575292179 0.001834129 
MA5 2.03188E-05 4.12855E-10 0.001527988 0.567291851 0.001549863 
ARIMA (0,1,0) 7.48387E-05 5.60082E-09 0.007226013 0.144336113 0.008245380 

 
Table 11 
Total ranking for each error measure based on the models in Jeneri WTP 
Model MSE RMSE GRMSE MAPE MAD Total Rank 
Naïve 6 6 6 7 6 31 
SES 5 5 5 6 5 26 
SA 1 1 4 2 1 9 
MA3 3 3 1 3 4 14 
MA4 4 4 3 5 3 19 
MA5 2 2 2 4 2 12 
ARIMA (0,1,0) 7 7 7 1 7 29 

 

 
Fig. 7. Forecast values of energy intensity at Jeneri WTP 

 
3.2.4 Pokok Sena WTP 
 

The performance of forecasting models in the evaluation part of the data for Pokok Sena Water 
Treatment Plant (WTP) is presented in Tables 12 and 13. According to Table 12, the Moving Average 
model with a 4-period (MA4) consistently achieved the lowest error values across multiple metrics, 
including MSE, RMSE, GRMSE, MAPE, and MAD. The overall ranking in Table 13 further emphasizes 
the superiority of MA4 with a total rank of 13, outperforming all other models. The Naïve model, 
while showing decent performance in MSE and RMSE, ranked relatively low overall, with a total rank 
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of 23, indicating that it was not the best choice for this dataset. The Simple Average (SA) model had 
the highest total rank of 26, reflecting weaker performance across the evaluation metrics. 

The graph in Figure 8 illustrates the forecasted energy performance values at the Pokok Sena 
WTP. The fitted values closely follow the trend of the actual energy performance up until the forecast 
period. The forecast values remain relatively stable from November 2023 to September 2024, 
suggesting a steady energy performance projection for the upcoming year. 
 

Table 12 
Model performance in the evaluation part of data of Pokok Sena WTP 
Model MSE RMSE GRMSE MAPE MAD 
Naïve 2.98512E-05 8.91093E-10 0.004110754 1.059115109 0.00490736 
SES 3.02351E-05 9.14162E-10 0.003015721 1.041311055 0.004733165 
SA 4.42487E-05 1.95795E-09 0.003634927 1.173411981 0.00072991 
MA3 3.55971E-05 1.26716E-09 0.00318190 1.052627944 0.003851459 
MA4 2.79646E-05 7.82021E-10 0.003691837 0.981256741 0.003855224 
MA5 3.1552E-05 9.95526E-10 0.003235215 0.97787381 0.003894832 
ARIMA (1,0,0) 3.69801E-05 1.36753E-09 0.003845884 1.100105909 0.001373633 

 
Table 13 
Ranking for each error measure based on the models in Pokok Sena WTP 
Model MSE RMSE GRMSE MAPE MAD Total Rank 
Naïve 2 2 7 5 7 23 
SES 3 3 1 3 6 16 
SA 7 7 4 7 1 26 
MA3 5 5 2 4 3 19 
MA4 1 1 5 2 4 13 
MA5 4 4 3 1 5 17 
ARIMA (1,0,0) 6 6 6 6 2 26 

 
Overall, Figure 9 highlights the varying energy intensity patterns among the Northern Kedah 

Region One WTPs.Jeneri exhibits the highest energy intensity, indicating lower efficiency, while Jenun 
Baru maintains the lowest, suggesting higher operational efficiency. Jenun Lama and Pokok Sena 
show moderate energy intensity with fluctuations. The forecasted values (red markers) suggest 
stable trends across all WTPs, emphasizing the need for tailored energy management strategies to 
optimize energy consumption 
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Fig. 8. Forecast values of energy intensity at Pokok Sena WTP 

 

 
Fig. 9. Energy intensity in Northern Region One Kedah WTPs 

 
4. Conclusions 
 

This study has demonstrated the integration of Exploratory Data Analysis (EDA) and Univariate 
Time Series (UTS) forecasting models in evaluating and predicting energy intensity at four water 
treatment plants (WTPs) in Northern Kedah Region One. The findings provide valuable insights into 
energy consumption patterns, water production efficiency, and the overall energy-water intensity 
trends at these facilities. Through systematic data exploration and forecasting, the study highlights 
opportunities for optimizing energy usage, thereby contributing to cost savings and sustainable 
resource management in water treatment operations. 

A key takeaway from this study is that there is no single "best" forecasting model applicable to 
all datasets. Different models perform optimally depending on the characteristics of the data, 
including trends, seasonality, and variability. For instance, the ARIMA model yielded superior 
predictive accuracy for Jenun Baru WTP, while the Naïve model was the best choice for Jenun Lama 
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WTP. Similarly, the Simple Average model performed optimally for Jeneri WTP, whereas the Moving 
Average model (MA4) was most suitable for Pokok Sena WTP. These results reinforce the necessity 
of model selection based on data-specific attributes rather than relying on a one-size-fits-all 
approach. 

The study also underscores the importance of rigorous exploratory data analysis before model 
selection and forecasting. By examining data distributions, trends, and anomalies, EDA serves as a 
crucial preliminary step in ensuring the effectiveness of forecasting models. The integration of EDA 
with time series forecasting enables a more data-driven and systematic approach to energy 
management at WTPs, enhancing operational efficiency and sustainability. The comparative results 
from this study show that different forecasting models yield varying levels of accuracy depending on 
the dataset's characteristics, emphasizing the need for careful model selection tailored to specific 
energy intensity patterns at different WTPs. 

Furthermore, the comparative analysis of energy intensity (EI) among Jenun Baru, Jenun Lama, 
Jeneri, and Pokok Sena WTPs reveals significant variations in energy efficiency across the facilities. 
Jenun Baru WTP exhibited the lowest energy intensity, indicating greater efficiency in converting 
electricity into water production, whereas Jeneri WTP had the highest EI, suggesting higher energy 
consumption per unit of water treated. These differences highlight the impact of operational factors, 
infrastructure, and management practices on energy performance. Understanding these variations 
is crucial for implementing targeted energy-saving strategies at each facility, ensuring optimal 
resource utilization and improved sustainability. 

Future research can explore the incorporation of multivariate time series models that consider 
additional external factors influencing energy intensity, such as weather conditions, operational 
changes, and policy interventions. Furthermore, machine learning-based forecasting techniques may 
provide alternative approaches for improving predictive accuracy and robustness in energy efficiency 
studies. By continuously refining forecasting methodologies and leveraging advanced analytics, the 
optimization of energy consumption at water treatment plants can be further enhanced, aligning 
with broader sustainability and energy conservation objectives. 
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