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integrates Exploratory Data Analysis (EDA) and Univariate Time Series (UTS)
forecasting to analyze and predict energy intensity trends at four WTPs in Northern
Kedah Region One. The primary objective is to enhance energy efficiency by
identifying consumption patterns and selecting the most suitable forecasting model
for energy intensity prediction. The methodology involved data collection on
electricity consumption and water production from January 2021 to October 2023,
followed by EDA to detect patterns, anomalies, and relationships in energy usage.
Several UTS models, including Naive, Moving Average, Simple Exponential
Smoothing, and ARIMA, were applied to forecast energy intensity. The results
highlight significant variations in energy intensity among the WTPs, with Jenun Baru
exhibiting the lowest energy intensity, indicating greater efficiency, while Jeneri
recorded the highest. Furthermore, findings demonstrate that no single forecasting
model is universally optimal, as performance varies based on data characteristics.
This study underscores the importance of incorporating EDA in forecasting to
improve forecasting model accuracy and support informed decision-making in WTP
operations. The insights derived from this research can guide policymakers and
industry practitioners in implementing energy-saving strategies and optimizing
water treatment processes. Future research should explore multivariate time series
models that incorporate external factors such as weather conditions and
operational changes to enhance forecasting precision and energy efficiency.
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1. Introduction

Malaysia is one of Asia’s highest energy per capita consumers in terms of total consumption and
intensity. The country’s final energy consumption rose from 13 million tons of oil equivalent (toe) in
1990 to approximately 41 million in 2010, reflecting an average annual growth rate of 6%. Rahman
et al. [1] explained that despite aggressive energy efficiency initiatives over the past 20 years,
Malaysia has not significantly improved energy consumption and conservation. Ritchie et al. [2]
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describe that according to Our World in Data, Malaysia has improved energy efficiency, but progress
has been slow. The country faces challenges in terms of energy consumption and conservation.
Rahman et al. [1] identified that the lower-than-expected results from previous energy efficiency
programs prompted the Malaysian government to launch the National Energy Efficiency Action Plan
(NEEAP) for the 2016-2025 period, considering socio-cultural, policy, financial, and administrative
barriers.

By looking at this fact, each level and sector in Malaysia should support the agenda together since
it is not only about money but also sustainability and environmental responsibility. According to the
study by Pakharuddin et al. [3], water treatment plants (WTPs) play a vital role in providing safe
drinking water to communities by improving water quality. They process raw water from rivers, lakes,
or groundwater to remove impurities and contaminants. The treatment involves coagulation,
filtration, disinfection, and pH adjustment. Then, treated water is distributed through pipes to homes
and businesses for domestic and non-domestic usage. Since the WTPs’ role is very significant in all
aspects of life, the management of operation WTPs should take note of monitoring procedures to
ensure efficient and safe operation.

Although one of the monitoring procedures in WTPs is forecasting activities, inaccurate,
incomplete, and anomalous data will make the results meaningless and cause high forecasting errors.
Ismail et al. [4] explained that Exploratory Data Analysis (EDA) is the systematic, thorough data
analysis to find significant patterns, relationships, and insights. Hence, the EDA is the best option for
the preprocessing stage in forecasting. Furthermore, EDA bridges raw data, meaningful information,
and actionable knowledge in WTPs.

The study by Tukey [5] described that EDA constitutes a fundamental phase in research analysis.
Since Tukey’s groundbreaking research in 1977, Komorowski et al. [6] explained that EDA has grown
significantly in popularity for data set analysis. Examining the data for distribution, anomalies, and
outliers is the primary goal of EDA, which helps guide the hypothesis’s specific testing and as prior
knowledge before further analysis. EDA seeks to support the analyst’s ability to recognize natural
patterns. Hence, some researchers in previous studies applied EDA in their data research profiling to
show the significance of EDA’s role in their studies, such as in energy profiling for university buildings
by Usman et al. [7], in wastewater study by Xiao et al. [8] and in electricity load demand by Ismail et
al., [4]. Therefore, this aligns with the initial step of univariate time series forecasting procedures:
plot data and identify the existence of the time series components described by Bowerman et al. [9]
based on data patterns.

Time series forecasting predicts the future value(s) based on historical data. Univariate time
series forecasting only considers the time factor in its analysis. The time series data is the data value
in sequence time. Maciel [10] and Mansor et al. [11] explained that the data could be in interval-
valued time series (ITS), fuzzy-valued time series (FTS) and point-valued time series (PTS). Since the
data in this study is numeric or crisp data from the WTP, this study applied the forecasting method
suitable with PTS done by Mansor and Zaini [12].

However, the research by Othman et al. [13], Biswas and Yek [14] and Labo [15] stated there are
some other issues in WTPs, such as issues in energy consumption measuring and monitoring data
and energy-saving technologies. The study by Biswas and Yek [14] revealed that water treatment
plants consume large amounts of energy to operate the treatment process, which can contribute to
greenhouse gas emissions and operational costs. Moreover, Labo [15] clarified that energy intensity
optimization is essential for WTPs because of increased energy costs. The optimization of energy
intensity will be accomplished by integrating energy recovery from the WTPs process and energy-
saving technologies.
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Despite numerous studies on energy intensity and efficiency in various sectors, including solar
energy [16], energy-water efficiency [13], and the cement industry [17], limited research has
specifically focused on integrating EDA with univariate time series forecasting to optimize energy
intensity at water treatment plants (WTPs). Most existing studies primarily address energy
consumption measurement or energy-saving [13-15] without providing a comprehensive approach
to predicting and optimizing energy intensity using historical data patterns. Additionally, while some
studies focus on energy efficiency strategies and technologies, the specific integration of EDA and
univariate time series models in WTPs remains underexplored [18].

Therefore, this study aims to bridge this gap by developing an integrated forecasting model that
utilizes EDA and univariate time series methods, offering a novel approach to decision-making and
planning in WTP operations. By addressing this gap, the study contributes to enhancing energy
efficiency, reducing operational costs, and promoting sustainable practices within the water
treatment sector.

2. Methodology

This study presents Exploratory Data Analysis (EDA) and Univariate Time Series (UTS) forecasting
results for four water treatment plants (WTPs) in Northern Kedah Region One, Kedah state, providing
comprehensive insights into energy-water efficiency. In Malaysia, WTPs are managed at the state
level, with each state having its water authority responsible for managing, operating, and maintaining
WTPs. These authorities adhere to national standards set by the Ministry of Natural Resources,
Environment, and Climate Change (NRECC) and the National Water Services Commission (SPAN).
They implement management practices such as water quality monitoring, process optimization, and
energy efficiency initiatives to align with Malaysia’s sustainability goals. In Kedah, Syarikat Air Darul
Aman (SADA) manages water treatment and supply, managing 36 WTPs across six regions: Northern
Kedah Region One, Northern Kedah Region Two, Central Region, East Region, Southern Region, and
Langkawi Region. This study focuses on the WTPs in Northern Kedah Region One; Jenun Baru, Jenun
Lama, Jeneri, and Pokok Sena.

As outlined in Figure 1, the research methodology was systematically applied to each WTP in
Northern Kedah Region One from Phase 1 to Phase 4. In Phase 1, data on electricity consumption
(EC) and water production (WP) were collected from January 2021 to October 2023 to establish a
foundational dataset for the analysis. Phase 2 included EDA to analyze energy intensity (EI) trends
over the same period. In Phase 3, the research involved partitioning the data, modelling using data
from January 2021 to December 2022 and evaluating the models with 10 data points from January
2023 to October 2023.

Various UTS forecasting models were used, such as Simple Average, Naive, Moving Models (MA3,
MA4, MAS), Exponential Smoothing (SES), and Box-Jenkins Model. Finally, Phase 4 involved
evaluating model performance, identifying the best UTS forecasting model and forecasting energy
intensity for 10 months. Figure 1 shows the connection between all the phases by integrating EDA
and UTS forecasting. The following subsection explains each phase.
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2.1. Phase 1: Collecting the data

The study’s first phase involves gathering electricity consumption (EC) and water production (WP)
data from the Department of Mechanical and Electrical and the Department of Production at SADA.
The dataset covers January 2021 to October 2023, focusing on the relationship between EC and WP
as primary inputs for calculating energy intensity (El). This phase establishes a strong data foundation
for subsequent analysis by collecting comprehensive and accurate records from relevant
departments.

2.2. Phase 2: Exploring the data

Next, from the data in Phase 1, data El (El value) was created from data on EC and WP. EDA was
conducted by grouping the data into three analyses. Then, EDA was executed from these three data
sets. The role of EDA in this study is to give a clear picture of the time series data by showing the
trend and movement pattern and the summary statistics like maximum and minimum values, central
tendency measures, and measures of dispersion. Also, any significant differences in the pattern were
investigated.

Majid et al. [19] described that the El value is obtained by dividing the energy consumption by
the total water production. Kilowatt-hours per cubic metre (kWh/m?3) are standard energy intensity
units expressing the energy used to produce one water unit. Othman et al. [13] and Liu et al. [20]
explained that the El can be represented as in Eq. (1)

Energy Consumption (kWh)

E Int ity = 1
nergy fntensity Water Production (m3) M
And can be simply by Eq. (2)
El = 2% @)
- wPp

2.3. Phase 3: Identifying the best univariate time series (UTS) model

Phase 3 focuses on the El data set only. A few univariate El forecasting models are suggested for
the UTS analysis under the time series pattern discovered in Phase 2. In this phase, the data has been
divided into modelling and evaluation parts before determining the optimal model. When performing
UTS forecasting analysis, identifying the time series components, whether trend, seasonality, cyclic
patterns, and residuals, should be based on the modelling part of the data. For some reason, in Phase
2 findings, the data points for modelling and evaluation will be presented in the findings section soon.

The role of data partition in this phase is that the data in the modelling part is used to build the
forecasting. By analyzing the time series components in the modelling part, we ensure that the model
captures the underlying patterns and structures in the historical data. Identifying and understanding
these components accurately is crucial for developing a reliable model. Since the results from Phase
2 show no trend in the modelling part of the data, which is no significant up or down trend movement
and no significant seasonality, the suitable UTS forecasting models are presented in Table 1. Models
1 to 6 were executed using calculations in Microsoft Excel and Model 7 using RStudio. The steps in R
studio are presented in Table 2
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Table 1

List of univariate time series forecasting models

No. Model Forecasting model
1 Naive Elip1 =y;
2 Recursive Simple Average (RSA) El., = L(all data values)

t
3 Moving Average (MA3) El,,, = Y (most recent33 data values)
4 Moving Average (MA4) El,,, = Y (most recent44- data values)
5 Moving Average (MAS) El,,, = Y (most recent55 data values)
6 Simple Exponential Smoothing (SES) Eli,,=ay,+(1—a)F,, 0<a<1
7 Box-Jenkins ARIMA(p,d,q) ¢,(B)(1 — B)El, = ¢ + 6,(B)¢,

Meanwhile, the data is reserved for validating the UTS models’ performance in the evaluation

part. It acts as a hold-out set to assess how well the model can predict unseen data. Competition of
four forecasting errors of measurements was executed as a statistical tool to evaluate the UTS
forecasting model performance. The error measurements that were used were mean absolute error
(MAE), mean squared error (MSE), root mean squared error (RMSE) and mean absolute percentage
error (MAPE). The model exhibiting the lowest forecasting error across these metrics was designated
the most accurate and declared the best El forecasting model in this study.

Table 2
Steps to apply the ARIMA model in Rstudio.

Step Process

Code

1

Read the data from the EXCEL file

Transform the data into time
series data

Check Autocorrelation of the time
series data

Check stationary of the time
series data using ADF test

Differencing is required when the
time series data is non-stationary,
and check again the ADF test after
differencing

Generate ARIMA model and
select the best model
automatically

>library(readxl)

>xls.file <- file.path("your_file_path.xlsx")
>El <- read_excel(xls.file)

>View(El)

>ts_El <- ts(El, start = ¢(2021,1), end = ¢(2022,12), frequency =
12)

>library(ggplot2)
>library(fpp)

>library(forecast)

>ggAcf(ts_El) + ggtitle("ACF OF El at WTP ")
>ggPacf(ts_El) + ggtitle("PACF OF El at WTP ")

>adf.test(ts_El)
Note:
Hois rejected if p-value < a (0.05), the data series is stationary

Ho is not rejected if p-value > a (0.05), the data series is non-
stationary.

>E|_diffl <- diff(ts_El, differences = 1, lag = 1)
>El_diffl
>adf.test(El_diff1)

>Elmodel <- auto.arima(ts_El, seasonal = FALSE, ic = "aic", trace
= TRUE)
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7 Generate the fitted value based fit_El <- arima(ts_El, order = (0,0,0))
on the best ARIMA model > fitted(fit_El)
8 Forecast the values based on the >ElForecast = forecast(ElImodel, level = ¢(95), h = 1*10)

best ARIMA model

2.4. Phase 4: Forecasting 12 months ahead of energy intensity

In the final phase, the best-performing UTS model forecasts energy intensity (EI) from
November 2023 to October 2024. The forecast results will inform strategic energy management
decisions at the Jenun Baru Water Treatment Plant. By optimizing energy usage, the study aims to
enhance the plant’s overall energy-water efficiency, contributing to cost savings and supporting
broader sustainability goals in water resource management.

3. Findings and Discussion

Since this study’s primary analysis is EDA and UTS forecasting, this section is divided into two
sections: one focused on EDA and the other on UTS forecasting results.

3.1 Exploratory data analysis (EDA) results

Table 3 and Figure 2 show the statistical values and graphical representation of electricity
consumption across the four water treatment plants (WTPs) in Northern Kedah Region One, revealing
significant variations in usage patterns. Jenun Baru WTP exhibits the highest electricity consumption,
with an average of 850,699 kWh and the highest recorded maximum and minimum consumption
levels, suggesting a consistently high demand. However, in contrast, Jeneri WTP has the lowest
average electricity consumption (304,102 kWh) and the smallest range, indicating more stable and
lower energy usage. The coefficients of variation values show that all WTPs have relatively stable
consumption patterns, with variations below 4%. The time series graph confirms these findings,
showing that Jenun Baru and Jenun Lama WTPs have consistently higher consumption trends. At the
same time, Jeneri and Pokok Sena WTPs operate at comparatively lower levels. The observed trends
and variations highlight potential opportunities for optimizing energy efficiency, particularly at high-
consumption plants like Jenun Baru.

Table 3

Summary of electricity consumption at WTPs in Northern Kedah Region One
Statistics Jenun Baru Jenun Lama Jeneri Pokok Sena
Max 891375 624683 315190 494032
Min 724820 542681 275674 437395
Mean 850698.8235 588500.1765 304101.5588 470017.5294
Median 855786.5 594829 306849 470370.5
Range 166555 82002 39516 56637
Standard Deviation 32854.5880 21460.4132 9689.6863 14605.3505
Coefficient of Variation 3.86% 3.65% 3.19% 3.11%
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Fig. 2. Electricity consumption (kWh) movement by month at WTPs in Northern Kedah Region One.

Table 4 and Figure 3 show the statistical analysis and graphical trends of water production,
revealing that Jenun Baru WTP consistently produces the highest volume of water, with an average
production of 2,253,292 m? and the largest range, indicating significant fluctuations in production
levels. In contrast, Jeneri WTP has the lowest mean water production (540,099 m3) and the smallest
range, suggesting a more stable but lower output. The coefficients of variation values for all WTPs
remain below 3.6%, demonstrating relatively consistent production patterns over time. The time
series graph further illustrates that Jenun Baru maintains the highest production levels, followed by
Jenun Lama, Pokok Sena, and Jeneri. These findings highlight the substantial variation in production
capacity among the WTPs, emphasizing the need for optimized resource allocation and operational
efficiency, particularly at high-production facilities like Jenun Baru.

Table 4

Summary of water production at WTPs in Northern Kedah Region One
Statistics Jenun Baru Jenun Lama Jeneri Pokok Sena
Max 2351277 1264682 567932 1048696
Min 2047237 1089133 486035 923452
Mean 2253292.2941 1196623.3382 540098.8953 1007923.3824
Median 2264584.5 1201578 545552.5 1018494
Range 304040 175549 81897 125244
Standard Deviation 2253292.2941 1196623.3382 540098.8953 1007923.3824
Coefficient of Variation 3.09% 3.54% 3.50% 3.02%
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Fig. 3. Water production movement by month at WTPs in Northern Kedah Region One.
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The results presented in Table 5 and Figure 4 provide an in-depth analysis of energy intensity
across four water treatment plants (WTPs) in Northern Kedah Region One. The statistical values in
summary indicate that Jeneri WTP has the highest average energy intensity (0.56317 kWh/m?3),
followed by Jenun Lama (0.49189 kWh/m?3), Pokok Sena (0.46635 kWh/m3), and Jenun Baru (0.37747
kWh/m3). Notably, Jenun Baru WTP exhibits the lowest energy intensity values, suggesting greater
energy efficiency in water production than other WTPs. Additionally, the coefficients of variation
values, ranging from 1.34% to 2.08%, indicate relatively low variability in energy intensity over time,
implying stable operational efficiency at each WTP.

The time series analysis in Figure 4 further illustrates monthly fluctuations in energy intensity,
highlighting the trends and variations across the WTPs from January 2021 to September 2023. Jeneri
WTP consistently demonstrates the highest energy intensity, exceeding the average of all WTP in
Region One, 0.47472 kWh/m?3, suggesting a higher energy requirement per cubic meter of water
produced. Conversely, Jenun Baru WTP consistently operates below the energy intensity average in
Region One WTPs, reinforcing its position as the most energy-efficient facility among the four. The
fluctuations observed in Jenun Lama and Pokok Sena WTPs indicate potential operational
adjustments, seasonal effects, or external factors impacting energy consumption.

These findings significantly affect energy management and optimization in water treatment
operations. The relatively stable energy intensity values suggest consistent performance; however,
the variations across WTPs indicate opportunities for improvement. Adopting energy-efficient
technologies, optimizing pump operations, and implementing real-time monitoring could help
enhance energy efficiency, particularly for high-energy-consuming WTPs like Jeneri. Future research
could further investigate the factors contributing to energy intensity differences, including plant
design, water source quality, and operational protocols, to develop targeted interventions for
reducing energy consumption while maintaining water production efficiency.

Table 5
Summary of energy intensity at WTPs in Northern Kedah Region One
Statistics Jenun Baru Jenun lLama Jeneri Pokok Sena
Max 0.38463 0.51342 0.58269 0.48174
Min 0.35405 0.47024 0.55013 0.45340
Mean 0.37747 0.49189 0.56317 0.46635
Median 0.37833 0.49418 0.56142 0.46653
Range 0.03059 0.04318 0.03255 0.02834
Standard Deviation 0.00554 0.01024 0.00886 0.00626
Coefficient of Variation 1.47% 2.08% 1.57% 1.34%
__ 06
£ o055
e
2 05
é - eean e aor o o aor as e e T e e e e G s e e—]enun Baru
> 045
‘@ Jenun Lama
S 04
- = J .
i 035 V eneri
&0 Pokok Sena
o 03
5 355733588838 R8383888% = = e
RN EEEEEREEEEEY
Month-Year

Fig. 4. Monthly energy intensity movement at WTPs in Northern Kedah Region One.
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3.2 Univariate Time Series Forecasting

This section’s results focus only on selecting the best energy intensity univariate time series
forecasting model.

3.2.1 Jenun Baru WTP

Table 6 and Table 7 show the results from the model performance evaluation for the Jenun Baru
WTP, indicating the ARIMA (3,0,0) model consistently outperforms others based on forecasting error
measures, including Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Generalized RMSE
(GRMSE), Mean Absolute Percentage Error (MAPE), and Mean Absolute Deviation (MAD). The
ranking analysis in Table 6 further supports this conclusion, as ARIMA (3,0,0) attains the lowest total
rank, signifying its superior predictive accuracy. The results suggest that the ARIMA model is robust
and reliable for capturing the underlying patterns in energy intensity data at the Jenun Baru WTP,
making it suitable for short- and medium-term forecasting.

Meanwhile, the graphical representation in Figure 5 confirms that the ARIMA model successfully
captures fluctuations in energy performance while maintaining consistency with historical trends.
The alignment between actual, fitted, and forecasted values further validates the model’s
effectiveness. Given its ability to produce precise forecasts with minimal error, the ARIMA (3,0,0)
model is recommended for energy performance forecasting at Jenun Baru WTP over the next 12
months.

Table 6
Jenun Baru WTP’s forecasting models performance based on the evaluation part of the data
Model MSE RMSE GRMSE MAPE MAD
Naive 7.88336E-05 6.21473E-09 0.002500359 1.559542111 0.004697804
SES 7.39611E-05 5.47024E-09 0.002799733 1.546789084 0.004618383
SA 7.24236E-05 5.24518E-09 0.002174912 1.331995068 0.000297836
MA3 6.43373E-05 4.13929E-09 0.001760306 1.559170082 0.004306377
MA4 6.87058E-05 4.72048E-09 0.003359110 1.639138239 0.004228836
MAS 7.37036E-05 5.43222E-09 0.002220925 1.699094235 0.004043294
ARIMA (3,0,0) 6.30609E-05 3.97667E-09 0.002125014 1.251786036 0.000673090
Table 7
Total performance rank for each Jenun Baru WTP’s forecasting model
Model MSE RMSE GRMSE MAPE MAD Total Rank
Naive 7 7 5 5 7 31
SES 6 6 6 3 6 27
SA 4 4 3 2 1 14
MA3 2 2 1 4 5 14
MA4 3 3 7 6 4 23
MAS 5 5 4 7 3 24
ARIMA (3,0,0) 1 1 2 1 2 7

175



Journal of Advanced Research Design
Volume 146, Issue 1 (2026) 166-182

==@== Energy Performance (Actual) == == Fitted Value e Forecast Value

0.39000

0.38500

0.38000 _
037500 N

0.37000

0.36500

0.36000

0.35500

0.35000

Energy Intensity (kWh/m3)

Jan 2021
Mar 2021
May 2021

Jul 2021
Sep 2021
Nov 2021
Jan 2022
Mar 2022
May 2022

Jul 2022
Sep 2022
Nov 2022
Jan 2023
Mar 2023
May 2023

Jul 2023
Sep 2023
Nov 2023
Jan 2024
Mar 2024

May 2024

Jul 2024

Sep 2024

Actual Forecast

Fig. 5. Forecast values of energy intensity at Jenun Baru WTP.

3.2.2 Jenun Lama WTP

The evaluation of forecasting models for the Jenun Lama Water Treatment Plant (WTP) in Table
8 and the ranking of models in Table 9 demonstrate that the Naive model consistently outperforms
the others across most error measures, achieving the best rankings in MSE, RMSE, GRMSE, and MAPE,
with a total rank of 11. The SES model also shows strong performance, particularly in MSE and RMSE,
securing the second-best total rank of 14. In contrast, the ARIMA (0,1,0) model performs poorly
across all metrics, resulting in the highest (worst) total rank of 27. The remaining models, including
SA, MA3, MA4, and MAGS5, exhibit moderate performance with total ranks ranging from 17 to 24.
These findings indicate that simpler models like the Naive and SES approaches may provide better
forecasting accuracy for this specific dataset, suggesting that model complexity does not always
correlate with improved performance in forecasting water treatment plant data.

Figure 6 shows the energy performance (kWh/m3) at Jenun Lama WTP from January 2021 to
September 2024 using the Naive model, which was identified as the best-performing model. The
actual and fitted values align closely, demonstrating the Naive model’s strong ability to capture
trends in the historical data. The forecasted values remain stable from November 2023 onward,
reflecting the Naive model’s characteristic of projecting the most recent observed value forward,
suggesting a consistent energy performance prediction for the next year.

Table 8

Model performance in the evaluation part of data of Jenun Lama WTP
Model MSE RMSE GRMSE MAPE MAD
Naive 3.41599x10% 1.1669x10° 0.002283388 0.762077890 0.007218521
SES 3.42203x10% 1.1710x10° 0.002387421 0.782550458 0.007027391
SA 8.53528x10%° 7.28511x10° 0.004833000 1.617653934 0.001454915
MA3 4.24106x10° 1.79866Ex10%° 0.003097700 1.008064037 0.005617362
MA4 5.03547x10%° 2.53559x10%° 0.004886312 1.220180968 0.004775290
MAS 5.51967x10°° 3.04667x10° 0.005746474 1.344089451 0.004026547
ARIMA (0,1,0) 0.000112806 1.27252x10 0.004320566 1.784897380 0.003059562
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Table 9
Total ranking for each error measure based on the models in Jenun Lama WTP
Model MSE RMSE GRMSE MAPE MAD Total Rank
Naive 1 1 1 1 7 11
SES 2 2 2 2 6 14
SA 6 6 5 6 1 24
MA3 3 3 3 3 5 17
MA4 4 4 6 4 4 22
MAS 5 5 7 5 3 25
ARIMA (0,1,0) 7 7 4 7 2 27
Energy Performance (Actual) == = Fitted Value === Forecast Value
0.52000
E
= 0.51000 /
= N\
4
< 050000 FEEHN < | ¥V ‘\
2 Al AR\ 0-0-6-0-0-0-0-0-0-0-0-0
£ 0.49000 \ \
& /
$ 0.48000 i ,\ v Y
c
- v
0.47000
0.46000
i — — -l — — o~ (o] o~ o~ ~N o~ [a2] [a2] [22] o [a2] [22] < < < < <
N o~ (] o~ N (o] o~ o~ (o] N N (] o~ o~ (o] N o~ (] N (o] o o~ o~
o o o o o o o o o o o o o o o o o o o o o o o
N o~ o~ o~ o~ (g\] o~ o~ o~ o~ N o~ [} o~ (a\] o~ o~ (o] o~ o~ (g\] o~ o~
§ 8 8 3 § 3 5§ 3 3 3 $ 3 & & 332 933 &8 =73 ¢
- 2 s " vz > =2 s T vz - 3s T wz > =2 s 7o
Actual Forecast

Fig. 6. Forecast values of energy intensity at Jenun Lama WTP

3.2.3 Jenari WTP

The performance evaluation of models for the Jeneri Water Treatment Plant (WTP) data, as
shown in Tables 10 and 11, reveals that the Simple Average (SA) model performs best among all
models, achieving the lowest overall total rank of 9. The SA model ranks first across multiple error
measures, including Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Generalized RMSE
(GRMSE), Mean Absolute Percentage Error (MAPE), and Mean Absolute Deviation (MAD). The Naive
model, on the other hand, ranks the lowest with a total rank of 31, suggesting it is the least effective
model for forecasting energy performance at Jeneri WTP.

The graph in Figure 7 depicts the actual, fitted, and forecasted energy performance values at
Jeneri WTP. The fitted values (purple dashed line) closely follow the actual energy performance (grey
line) during the actual period, indicating a good model fit. The forecasted values demonstrate a stable

energy performance trend from November 2023 to September 2024, suggesting consistent energy
efficiency at the Jeneri WTP.
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Table 10
Model performance in the evaluation part of data of Jeneri WTP
Model MSE RMSE GRMSE MAPE MAD
Naive 4.32553E-05 1.87102E-09 0.003365079 0.941204166 0.003348295
SES 3.82266E-05 1.46127E-09 0.002766663 0.866673058 0.003085001
SA 1.51630E-05 2.29916E-10 0.001948176 0.50106597 0.000119461
MA3 2.14641E-05 4.60707E-10 0.001026281 0.558675451 0.002089332
MA4 2.20014E-05 4.84063E-10 0.001840002 0.575292179 0.001834129
MAS 2.03188E-05 4.12855E-10 0.001527988 0.567291851 0.001549863
ARIMA (0,1,0) 7.48387E-05 5.60082E-09 0.007226013 0.144336113 0.008245380
Table 11
Total ranking for each error measure based on the models in Jeneri WTP
Model MSE RMSE GRMSE MAPE MAD Total Rank
Naive 6 6 6 7 6 31
SES 5 5 5 6 5 26
SA 1 1 4 2 1 9
MA3 3 3 1 3 4 14
MA4 4 4 3 5 3 19
MAS5 2 2 2 4 2 12
ARIMA (0,1,0) 7 7 7 1 7 29
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Fig. 7. Forecast values of energy intensity at Jeneri WTP.
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3.2.4 Pokok Sena WTP

The performance of forecasting models in the evaluation part of the data for Pokok Sena Water
Treatment Plant (WTP) is presented in Tables 12 and 13. According to Table 12, the Moving Average
model with a 4-period (MA4) consistently achieved the lowest error values across multiple metrics,
including MSE, RMSE, GRMSE, MAPE, and MAD. The overall ranking in Table 13 further emphasizes
the superiority of MA4 with a total rank of 13, outperforming all other models. The Naive model,
while showing decent performance in MSE and RMSE, ranked relatively low overall, with a total rank
of 23, indicating that it was not the best choice for this dataset. The Simple Average (SA) model had
the highest total rank of 26, reflecting weaker performance across the evaluation metrics.

The graph in Figure 8 illustrates the forecasted energy performance values at the Pokok Sena
WTP. The fitted values closely follow the trend of the actual energy performance up until the forecast
period. The forecast values remain relatively stable from November 2023 to September 2024,
suggesting a steady energy performance projection for the upcoming year.

Table 12

Model performance in the evaluation part of data of Pokok Sena WTP
Model MSE RMSE GRMSE MAPE MAD
Naive 2.98512E-05 8.91093E-10 0.004110754 1.059115109 0.00490736
SES 3.02351E-05 9.14162E-10 0.003015721 1.041311055 0.004733165
SA 4.42487E-05 1.95795E-09 0.003634927 1.173411981 0.00072991
MA3 3.55971E-05 1.26716E-09 0.00318190 1.052627944 0.003851459
MA4 2.79646E-05 7.82021E-10 0.003691837 0.981256741 0.003855224
MAS 3.1552E-05 9.95526E-10 0.003235215 0.97787381 0.003894832
ARIMA (1,0,0) 3.69801E-05 1.36753E-09 0.003845884 1.100105909 0.001373633

Table 13

Ranking for each error measure based on the models in Pokok Sena WTP
Model MSE RMSE GRMSE MAPE MAD Total Rank
Naive 2 2 7 5 7 23
SES 3 3 1 3 6 16
SA 7 7 4 7 1 26
MA3 5 5 2 4 3 19
MA4 1 1 5 2 4 13
MAS 4 4 3 1 5 17
ARIMA (1,0,0) 6 6 6 6 2 26

Overall, Figure 9 highlights the varying energy intensity patterns among the Northern Kedah Region
One WTPs.Jeneri exhibits the highest energy intensity, indicating lower efficiency, while Jenun Baru
maintains the lowest, suggesting higher operational efficiency. Jenun Lama and Pokok Sena show
moderate energy intensity with fluctuations. The forecasted values (red markers) suggest stable
trends across all WTPs, emphasizing the need for tailored energy management strategies to optimize
energy consumption
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Fig. 9. Energy intensity in Northern Region One Kedah WTPs

4. Conclusions

This study has demonstrated the integration of Exploratory Data Analysis (EDA) and
Univariate Time Series (UTS) forecasting models in evaluating and predicting energy intensity at four
water treatment plants (WTPs) in Northern Kedah Region One. The findings provide valuable insights
into energy consumption patterns, water production efficiency, and the overall energy-water
intensity trends at these facilities. Through systematic data exploration and forecasting, the study

highlights opportunities for optimizing energy usage, thereby contributing to cost savings and
sustainable resource management in water treatment operations.
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A key takeaway from this study is that there is no single "best" forecasting model applicable
to all datasets. Different models perform optimally depending on the characteristics of the data,
including trends, seasonality, and variability. For instance, the ARIMA model yielded superior
predictive accuracy for Jenun Baru WTP, while the Naive model was the best choice for Jenun Lama
WTP. Similarly, the Simple Average model performed optimally for Jeneri WTP, whereas the Moving
Average model (MA4) was most suitable for Pokok Sena WTP. These results reinforce the necessity
of model selection based on data-specific attributes rather than relying on a one-size-fits-all
approach.

The study also underscores the importance of rigorous exploratory data analysis before
model selection and forecasting. By examining data distributions, trends, and anomalies, EDA serves
as a crucial preliminary step in ensuring the effectiveness of forecasting models. The integration of
EDA with time series forecasting enables a more data-driven and systematic approach to energy
management at WTPs, enhancing operational efficiency and sustainability. The comparative results
from this study show that different forecasting models yield varying levels of accuracy depending on
the dataset's characteristics, emphasizing the need for careful model selection tailored to specific
energy intensity patterns at different WTPs.

Furthermore, the comparative analysis of energy intensity (EI) among Jenun Baru, Jenun
Lama, Jeneri, and Pokok Sena WTPs reveals significant variations in energy efficiency across the
facilities. Jenun Baru WTP exhibited the lowest energy intensity, indicating greater efficiency in
converting electricity into water production, whereas Jeneri WTP had the highest El, suggesting
higher energy consumption per unit of water treated. These differences highlight the impact of
operational factors, infrastructure, and management practices on energy performance.
Understanding these variations is crucial for implementing targeted energy-saving strategies at each
facility, ensuring optimal resource utilization and improved sustainability.

Future research can explore the incorporation of multivariate time series models that
consider additional external factors influencing energy intensity, such as weather conditions,
operational changes, and policy interventions. Furthermore, machine learning-based forecasting
techniques may provide alternative approaches for improving predictive accuracy and robustness in
energy efficiency studies. By continuously refining forecasting methodologies and leveraging
advanced analytics, the optimization of energy consumption at water treatment plants can be further
enhanced, aligning with broader sustainability and energy conservation objectives.
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