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The exponential growth of the internet of things (IoT) networks has posed great 
challenges in maintaining security because of the diverse and dynamic nature of 
connected devices. These complex environments often defeat traditional anomaly 
detection methods. In this paper, we present an adaptive hybrid deep learning 
framework incorporating Variational Autoencoders (VAEs) and Deep Neural 
Networks (DNNs) enhanced by XGBoost for feature selection for real-time anomaly 
detection and classification in IoT networks. The VAE component efficiently reduces 
high dimensional input data into a lower-dimensional latent space that maintains 
essential network traffic features while managing information loss for storage 
optimization and improved accuracy in detecting anomalies. Afterward, XGBoost is 
utilized to choose top 10 significant features with respect to feature selection. The 
DNN portion uses these latent features to detect as well as classify anomalies; it is 
therefore trained on how to identify complex patterns within the selected latent 
features so as to effectively tell apart malicious activities from normal network 
behaviors. Test Accuracy of 92.8% was achieved by the proposed VAE-DNN model, 
which displays its efficiency in IoT real-time anomaly detection. Mode also helps 
improve model accuracy when coupled with XGBoost based feature selection 
techniques 
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1. Introduction 
 

The internet of things (iot) allows sensors and smart devices to exchange information 
autonomously, which demands near real-time data processing capabilities [1]. In this way, a new type 
of analytics might be needed that can run on the limited computing resources though. An effective 
method for doing this is identifying anomaly behaviors - sometimes called outliers or events – which 
highlight odd patterns or states within a given system [2]. They happen at different points including 
on iot network edges up to dcs where reliable detection is essential for cleaning and classification 
purposes of data. The extra importance of anomalous event detection lies in the fact that detection 
of rare anomalies in iot data can offer significant actionable insights in various domains such as 
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healthcare, manufacturing, finance, traffic management, energy among others [3]. In betting and 
gaming industry, for example, anomaly detectors are applied to signal some aspects implying insider 
trading. Similarly, these algorithms monitor machinery looking for any irregularities thereby ensuring 
production safety in industrial settings. However, most of the present techniques of anomaly 
detection in iot environments require substantial human interaction and are often tuned to local 
solutions [4]. In simple terms, experts can recognize any data that is out of place. Creating automated 
systems for detecting anomalies in iot has several hurdles [5]. One of the main challenges is having 
precise definitions and categories for all forms of anomalous data, especially in situations where 
there is a dearth or lack of labeled training data. Besides, normal behavior changes with time; this 
includes patterns in electricity consumption due to shifts in household occupancy. In the iot, 
anomalies are defined as deviations from expected or normal behaviors of devices, systems, or 
network traffic. These deviations signal potential disruptions such as operational failures, security 
intrusions, or inefficiencies that could compromise the functionality and safety of iot environments. 
Anomalies can manifest in various forms: a point anomaly indicates a single data instance that is 
significantly different from the majority; a contextual anomaly, relevant to specific conditions, may 
not be anomalous under different circumstances; and collective anomalies, where a group of related 
data points diverges from expected patterns when evaluated together [1]. Detecting these anomalies 
accurately is crucial for maintaining the reliability and security of iot systems. The effectiveness of 
anomaly detection systems in the iot heavily depends on the quality of ground truth labels used for 
training and evaluating models. These labels, which distinguish between normal and anomalous 
behavior, must be accurate and comprehensive to train machine learning models effectively. Any 
inaccuracies in these labels can lead to models that either miss actual anomalies or flag normal 
behavior as anomalous, undermining system reliability. Moreover, labels must cover a diverse range 
of anomalies, including subtle and rare occurrences, to ensure the model's robustness and its ability 
to generalize across different scenarios. The process of label generation should also be dynamic, 
adapting to new patterns and evolving threats in iot contexts to remain relevant. Additionally, the 
data used for these labels should be devoid of biases that could skew model training, such as 
imbalanced distributions between normal and anomalous examples. Therefore, maintaining high 
standards in the accuracy, coverage, timeliness, and objectivity of ground truth labels is essential for 
developing effective anomaly detection capabilities in iot networks [4]. 

This paper presents an adaptive deep learning model that combines deep neural networks (dnns) 
with variational autoencoders (vaes), and further includes feature selection with xgboost, for 
anomaly detection and classification in real-time iot networks. In this proposed framework, the 
critical capability of vaes is to capture meaningful latent features from high dimensional iot data while 
dnns are effective in detecting attacks and classifying different types of cyber-attacks. The vae 
portion will encode the high dimensional input data into a lower-dimensional latent space thereby 
keeping only relevant characteristics but ensuring it maintains useful information as well. The 
objective behind reducing is to ensure storage requirements are met yet maintain recognition 
accuracy even though some original information may loss eventually. 

The dnn component follows the processing of the already extracted latent features, which are 
further examined for the detection of anomalies and identification steps for the classification of 
malicious activities. The power of a dnn in learning complex patterns and relationships among 
features is of the essence in that, hitherto, it finally leads to the effective differentiation of normal 
and malicious network behaviors. Such an integrated vae-dnn model can allow the development of 
an effective, efficient, and lightweight intrusion detection system in the iot environment. 

Contributions in this paper, the main contributions of the proposed work are as follows:                              
• presentation of a lightweight intrusion detection model for iot networks making proper use of the 
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deep vae model to perform both anomaly detection and feature reduction. This is in slight contrast 
to most other existing methods, which mostly rely on aes to perform just one of the purposes. Herein, 
as in our experimental setup, we perform intense evaluations on real data by using ddosdataset 
covering both normal and malicious network traffic. The performance of the classification is 
measured across five iot devices using metrics like accuracy, precision, recall, f1 score, and execution 
time. Lastly, the efficiency of the proposed ids system is compared with state-of-the-art methods to 
show its effectiveness in detecting anomalies and classifying them within an iot network. 

 
1.1 Related Work 
  

Svm was already demonstrated as efficient in data classification and anomaly detection, whereas 
its efficiency was not yet separately estimated [6, 7] with the use of dcnns and many other models 
of ml. These kinds of dynamism and diversity in iot applications and its environments more enhance 
the need to find appropriate anomaly detection models for iot. In this light, the necessity arises to 
validate ml-based anomaly detection models across multiple datasets originating out of different 
environments. To validate the model, three most recent, up-to-date state-of-the-art datasets have 
been used: iot-23, nsl-kdd, and ton_iot [10,11,12]. Iot-23 is a set of 23 captures of network-based 
attacks on the iot, whereas nsl-kdd is an improved and diversified dataset used in network-based 
attacks and ton_iot in traffic patterns from iot devices to understand the behavior of an iot network. 
These selected datasets are the best available representations of real iot systems and attacks 
worldwide [13].  

In [14], meidan et al. Proposed an ae for the detection of anomalies in the n-baiot dataset, aiming 
to identify botnet attacks on nine iot devices infected with bashlite and mirai. The ae model proposed 
showed great efficiency in terms of detection time and evaluation metrics in comparison to classical 
methods like oc-svm, iforest, and lof. The dataset consisted of various samples and 115 features, all 
obtained from network traffic metrics. A similar work proposed in [14] was the designing of a hybrid 
deep learning model coupling cnn with lstm to classify benign and 10 malicious attacks using the 
same dataset. Also in [16], a fusion model based on two deep neural networks for binary and multi-
attack classification was tested on the zyell dataset and its performance overshadowed the proposed 
baseline multi-class model. Zero-day attacks were detected by aygun et al. [17] based on the nsl-kdd 
dataset with extremely high accuracy, outperforming methods like fuzzy classifier, random tree, and 
naïve bayes (nb) tree. Zavrak et al. [18] used ae and vae for the identification of unknown attacks 
based on the cicids2017 dataset. Vae outperformed ae and oc-svm. Min et al. [19] developed a 
memory-augmented deep auto-encoder, memae, for network intrusion detection. The author 
showed that memae-based solutions outperform the oc-svm models over the datasets nsl-kdd, 
unswnb15, and cicids 2017. Not a single study used any of the feature reduction methods, despite 
the likely high amount of computational time because of that. 

The recent research interest presents anomaly detection practices on different methodologies 
on different datasets. The work by javaid, niyaz, sun, alam, and alrubaian applied sparse taught 
learning with sparse autoencoder on the nsl-kdd dataset and obtained binary classification results of 
85.44% precision, 95.95% recall, 90.4% f-measure, and 88.39% accuracy. However, the approach has 
been taken by them to have a constraint in a requisite efficient nids to.  Wijesty et al. [21] obtained 
an accuracy of 93.2% for the binary classification and 54.13% multi-class classification of using 
conjugate gradient algorithm (cga) in the kdd-cup1999 dataset. They found that simple sampling 
methods like subs. Shone et al. [22], at the same time, combined rf classification with ndae and dl 
stacked ndaes for f-score, 89.22% accuracy, 92.97% precision rate, 89.22% recall rate, and an f-score 
of 90.76% while working on the kdd99 and nsl-kdd. 
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Caminero et al. [23] further used adversarial environment reinforcement learning with very high 
accuracies over the awid and nsl-kdd datasets of 80.16%, 79.74% precisions, 80.16% recalls, and 
79.40% f-scores. Feng et al. [24] used dnn, lstm, and cnn over the kdd99 dataset and reported very 
high accuracies of 98.5%, 97.63% precisions, and 99.59% recalls for multiclass classification but were 
limited to sql, xss, and dos. Dbf were used by yang et al. [25] with a modified density peak clustering 
technique over unsw-nb15 and nsl-kdd datasets, showing the highest accuracy of 82.08% and a 
synthesized fpr of 2.62% when synthesized u2r and r2l attacks were used to amplify the performance. 

Aminanto et al. [26] used sparse autoencoder on the awid dataset and achieved an f1-score of 
89.06%, a detection rate of 92.18%, with 94.81% accuracy for multi-class classification. Kshirsagar et 
al. [27] applied rule-based classifiers on the cicids 2018 dataset and got a reported accuracy of 99.9%. 
The experiment, however, had very limited information along with measures of build-up time. 
Bharati et al. [28] realized an accuracy of 99.9% using random forest on the cicids 2018 dataset but 
failed to offer any classification information in detail. Alani et al. [29] experimented with several 
machine learning classifiers on the unswnb15 dataset and reported an average classification accuracy 
of 99% using hand-engineered methods in their tests. Qazi et al. [30] developed their own hybrid 
deep-learning-based network intrusion detection system, called hdlnids, using a convolutional 
recurrent neural network. In this system, the efficiency and predictability will be increased by 
capturing the local features in a convolutional neural network and extracting them from a deep-
layered recurrent neural network. The experimental results show that hdlnids performs the intrusion 
detection with an average accuracy of 98.90% for the cicids-2018 dataset, which outperforms the 
existing intrusion detection methods for detecting malicious attacks. 

 
2. Methods and Materials  
2.1 Dataset 

 
In this study, we analyzed the "DDoSDataset" dataset, which is available through a repository on 

Kaggle (available on: https://www.kaggle.com/code/aikenkazin/ddos-attack-detection-
classification). This dataset consists of 104,345 entries, each representing a unique data point, and 
includes 23 columns encompassing a wide range of network traffic and performance metrics. The 
data is organized into a DataFrame structure, featuring various attributes such as date/time (dt), 
source (src), destination (dst), packet count (pktcount), and multiple metrics related to data 
transmission rates and flow details such as tx_kbps, rx_kbps, and tot_kbps. The dataset primarily 
contains integers, floating points, and categorical strings for columns like src, dst, and Protocol. Minor 
missing values were noted, particularly in the rx_kbps and tot_kbps columns, where 103,839 non-
null entries were recorded out of the total. Initial preprocessing of the data involved addressing these 
missing values through imputation to enhance the dataset’s completeness for subsequent analysis. 
Each entry is meticulously indexed from 0 to 104,344 to maintain a structured format, facilitating 
efficient data manipulation and analysis. The comprehensive nature of the dataset, combined with 
meticulous preprocessing, provides a robust foundation for detailed exploration and model 
development in the areas of network traffic analysis and anomaly detection. 
 
2.2 Proposed Methodology 

 
In this study, we propose an adaptive hybrid deep learning model combining Variational 

Autoencoders (VAEs) and Deep Neural Networks (DNNs), enhanced with XGBoost for feature 
selection, to address real-time anomaly detection and classification in IoT networks. The 

https://www.kaggle.com/code/aikenkazin/ddos-attack-detection-classification
https://www.kaggle.com/code/aikenkazin/ddos-attack-detection-classification
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DDoSDataset analyzed in this study comprises 104,345 entries and 23 columns, encompassing 
various features indicative of DDoS attacks.  

The dataset includes attributes such as packet sequence ID, flags, protocol type, source and 
destination addresses and ports, number of packets and bytes, state, duration, statistical measures 
(mean, standard deviation, sum, min, max), rates, and protocol-specific metrics. This high-
dimensional data was used to train and test our proposed model. 

The VAE component of our model efficiently encodes the high-dimensional input data into a 
lower-dimensional latent space, capturing the essential characteristics of the network traffic while 
managing the loss of some original information. This process tries to retain the most useful features 
that can provide an accurate completion of the anomaly and meet the constraints of storage. 

In turn, the XGBoost feature-selection approach will identify 10 effective features from the 
dataset. By boosting with respect to the most influential features, the model will reduce 
computational complexity and enhance anomaly detection accuracy. Of these features, "proto," 
"bytes," and "dest_port" have been seen as most impactful and reflect general usage behavior for 
different kinds of devices in network communication. The decision to focus on the top 10 features 
was guided by a combination of empirical testing and model performance metrics. Initially, features 
were ranked according to their importance scores generated by the XGBoost model, which measures 
each feature's contribution to improving the accuracy of the model at each split. We tested various 
thresholds for the number of features (e.g., top 5, top 10, top 15) and observed that the top 10 
features provided a balance between model complexity and predictive performance. Including more 
than 10 features did not significantly improve model accuracy but did increase computational 
complexity, which is a critical factor in IoT environments where resources are limited. This decision 
is supported by similar methodologies in recent literature where a subset of high-impact features is 
preferred to enhance model efficiency and performance. 

Next, the selected latent features are forwarded to the DNN module so that the anomaly can be 
detected and various types of DDoS attacks classified, since the developed DNN learns and provides 
proper discrimination between the nonlinear and intricate characteristics of normal network 
behavior against malicious behavior. 

 

 
 

Fig. 1. This visual representation of step-by-step workflow of the model. 
 
Methodology Description with Mathematical Models 

1. Varia;onal Autoencoders  
VAEs are employed to encode high-dimensional input data into a lower-dimensional latent 

space, effecovely capturing the essenoal characterisocs of network traffic. 
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• Encoder Func;on: The encoder maps the input data x\mathbf{x}x to a latent space 
represented by a mean μ and a standard deviaoon σ: 
μ , σ=fϕ(x) 
where fϕ is the neural network parameterized by ϕ. 
• Latent Variable Sampling: To ensure differenoability, the latent variable z is sampled using the 
reparameterizaoon trick: 
z=μ+σ⊙ϵ 
with ϵ∼N(0,I) 
• Decoder Func;on: The decoder reconstructs the input data from the latent variable: 
𝑥$ = 𝑔!(𝑧) 
where gθ  is the neural network parameterized by θ\thetaθ. 
• Loss Func;on: The objecove is to minimize the combined reconstrucoon loss and KL 
divergence: 
𝐿(𝑥, 𝑥$) = 𝐸"#(𝑧∣𝑥 )[𝑙𝑜𝑔	𝑝𝜃( 𝑥 ∣ 𝑧 )] − 𝐷'( 7𝑞#( 𝑧 ∣ 𝑥 ) ∥ 𝑝(𝑧): 
2. XGBoost for Feature Selec;on 

XGBoost is uolized to idenofy the most important features from the dataset, reducing the 
computaoonal complexity and enhancing model accuracy. 
• Objec;ve Func;on: The objecove funcoon in XGBoost combines the loss funcoon and a 
regularizaoon term: 

𝐿 =;𝑙<𝑦𝑖, 𝑦)?
*

)+,

+ 𝑘;𝛺(𝑓-)
'

-+,

 

where 𝑙<𝑦𝑖, 𝑦)? is the loss funcoon measuring the difference between the actual and 
predicted values, and 𝛺(𝑓-)	is the regularizaoon term controlling the model complexity. 
• Feature Importance: Features are ranked based on their contribuoon to the model's 
predicove power, typically using metrics such as gain, cover, or frequency. 
3. Deep Neural Networks (DNNs) 

DNNs are used to process the selected latent features from the VAE and classify different 
types of DDoS a{acks. 
• Input Layer: The input to the DNN consists of the selected features zselected . 
• Hidden Layers: The DNN consists of mulople hidden layers, each performing nonlinear 
transformaoons: 
h1=σ(W1zselected+b1) 
h2=σ(W2h1+b2) 

and so on, where σ\sigmaσ is the acovaoon funcoon (e.g., ReLU), Wi  and bi  are the weights 
and biases of the i-th layer. 
• Output Layer: The output layer produces the probability of each class (normal or different 
types of DDoS a{acks): 
𝑦$ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊.ℎ./, + 𝑏.) 
where N is the number of layers. 
• Loss Func;on: The DNN is trained using a cross-entropy loss funcoon: 

𝐿(𝑦, 𝑦$) = −	;𝑦)log	(𝑦$))
0

)+,

 

where y is the one-hot encoded true label, 𝑦$	is the predicted probability, and C is the 
number of classes. 
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2.3 Proposed Methodology  
 

Model performance was evaluated using balanced accuracy for the anomaly detection task since 
this is an imbalanced data set. This measure is very adequate here as it deals with classes of outcome: 
positive and negative, and therefore gives a fuller picture of the performance. Another critical metric 
used was the F1 score, Equation 2. One of the most popular ones is the F1 score, which is the 
harmonic mean of precision (Equation) and recall (Equation), since users often want to combine 
these two fundamental facets of classification performance. 

The metrics are defined as follows:  
Balanced Accuracy=(𝑇𝑃𝑅+𝑇𝑁𝑅)/2  (1) 
F1 Score=2x (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)/(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙)  (2) 
Precision=𝑇𝑃/(𝑇𝑃+𝐹𝑃)   (3) 
Recall=𝑇𝑃/(𝑇𝑃+𝐹𝑁)  (4) 
TPR=𝑇𝑃/(𝑇𝑁+𝐹𝑃)  (5) 
TNR=𝑇𝑁/(𝑇𝑁+𝐹𝑃)  (6) 
The equations depict: where TP is the True Positives, FP is the False Positives, TN is the True 

Negatives, and FN is the False Negatives. TPR is the True Positive Rate, and TNR is the True Negative 
Rate, respectively. It represents a combined set of possible metrics that make up a strong foundation 
for evaluating the effectiveness of a system geared at detecting abnormalities. 
 
3. Results and Discussion 
 

The data set was divided into training, validation, and testing. Specifically, we took 83,476 as the 
training set, 10,435 as the validation set, and 10,434 as the set for testing. In this way, the neural 
network was trained with exponential linear unit activation functions and the Adam optimizer for a 
total of 150 epochs, with a batch size of 32. Our VAE-DNN model had an attained test accuracy of 
92.8% (Table 1), showing the potential for our hybrid approach to detect anomalies in IoT networks. 
Further, we optimized it for our model for anomaly detection using feature selection methods. The 
next step is applying the model with XGBoost feature selection, whereby we selected the top 10 
important features in our data. As it is expected, these selected features increase the model's 
accuracy. According to our results, the improved model showed 95.68% accuracy, which represents 
an increase of 2.88% compared to the model without feature selection. This proves the efficacy of 
our proposed model using VAE, which is adapted for DNN in combination with the feature selection 
method toward increasing classification performance. For the micro-averaging approach, the F1 
score was about 99.3%, while less for the macro-avg approach, nearly 90.48%. Still, we found that 
the macro-avg F1 score was somewhat lower compared to the cases when the classes are perfectly 
balanced, especially the under-represented class. So, as such, we recommend AVA approaches, 
which in general build a binary classifier for each binary pair of attack types to improve multiclass 
classification performance for the minority class. During the training phase, involving a significant 
sample size of 83,476, the model demonstrated exemplary performance, achieving an accuracy of 
96.3%, with a balanced accuracy indicating effective performance across classes at 95.1%. Notably, 
the model achieved high precision at 96.8%, reflecting its capability to correctly identify positive 
instances. The sensitivity (true positive rate) was 94.5%, showcasing the model's effectiveness in 
detecting actual anomalies, while the specificity (true negative rate) stood at 95.7%, highlighting its 
ability to correctly dismiss non-anomalies. This phase culminated in an F1 score of 95.9%, indicating 
a well-balanced model regarding precision and sensitivity. Upon testing with 10,434 samples, the 
model preserved a robust framework, securing an accuracy of 92.8% and a balanced accuracy of 
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90.5%, suggesting slightly reduced but still substantial efficacy on unseen data. Precision during 
testing was commendably high at 94.2%, and the sensitivity decreased somewhat to 87.3%, 
indicating a few challenges in identifying all positive cases under test conditions. Nevertheless, the 
specificity was high at 93.8%, affirming the model’s reliability in excluding negatives. The F1 score in 
the testing phase was 89.9%, reflecting a solid balance between precision and sensitivity, though 
slightly lower than in training. 
	

Table 1 
Detailed Results of Anomaly DetecFon Model in IoT Networks 

Dataset	
Split	

Samples	
Used	

Accuracy	
(%)	

Balanced	
Accuracy	
(%)	

Precision	
(%)	

TPR	/	
sensitivity	

(%)	

TNR	/	
Speci?icity	

(%)	

F1	
Score	
(%)	

Training	 83,476	 96.3	 95.1	 96.8	 94.5	 95.7	 95.9	
Validation	 10,435	 -	 -	 -	 -	 -	 -	
Testing	 10,434	 92.8	 90.5	 94.2	 87.3	 93.8	 89.9	
Feature	
Selection	 -	 -	 -	 -	 -	 -	 -	

Overall	 -	 95.68	 93.2	 96.5	 91.2	 95.2	 94.4	
	

 
Our approach achieved an overall accuracy of 95.68%, precision of 96.5%, recall of 94.3%, and an 

F1 score of 94.4%. This performance compares favorably against a variety of methods applied to 
similar challenges (Table 2). For instance, Javaid et al., using a Sparse Autoencoder on the NSL-KDD 
dataset, achieved a lower accuracy of 88.39% and precision of 85.44% but had a slightly higher recall. 
Our model surpasses several others in precision, such as the adversarial environment reinforcement 
learning by Caminero et al., which had lower metrics across the board, including an accuracy of 
80.16% and precision of 79.74%. Moreover, our results are superior to those from studies using 
methods like the Conjugate Gradient on the KDD dataset, which showed a significant variance in 
accuracy (93.2% in binary classification and 54.13% in multi-class scenarios), indicating our method's 
consistency. Shone et al., who integrated RF Classification with NDAE on KDD99 and NSL-KDD 
datasets, also reported lower precision and F1 scores compared to our study. 
	

Table 2 
Detailed comparison of related work and proposed approach 

Study	 Dataset	Used	 Methodology	 Accuracy	
(%)	

Precision	
(%)	

Recall	
(%)	

F1	
Score	
(%)	

Javaid	et	al.	 NSL-KDD	 Sparse	Autoencoder	 88.39	 85.44	 95.95	 90.4	
Wijesty	et	
al.	[21]	 KDD	 Conjugate	Gradient		 93.2	 -	 -	 -	
	 	 Conjugate	Gradient		 54.13	 -	 -	 -	

Shone	et	al.	
[22]	

KDD99,	NSL-
KDD	

RF	ClassiHication	+	
NDAE	and	DL	
Stacked	NDAEs	

89.22	 92.97	 89.22	 90.76	

Caminero	
et	al.	[23]	

AWID,	NSL-
KDD	

Adversarial	
Environment	
Reinforcement	
Learning	

80.16	 79.74	 80.16	 79.4	
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Yang	et	al.	
[25]	

UNSW-NB15,	
NSL-KDD	

DBF	+	ModiHied	
Density	Peak	
Clustering	

82.08	 -	 -	 -	

Aminanto	
et	al.	[26]	 AWID	 Sparse	Autoencoder	 94.81	 -	 92.18	 89.06	

This	study	 DDoSDataset	 VAE+DNN	 95.68	 96.5	 94.3	 94.4	

	
In the research on anomaly detection in IoT networks using the hybrid VAE-DNN approach with 

feature selection, significant advances have been made. While the methodologies employed—from 
autoencoders to SVM and deep neural network-based approaches—effectively handle the complex 
challenges presented by IoT environments, the need for model interpretability remains paramount. 
Studies such as those by Meidan et al. [14], Min et al. [19], and Zavrak et al. [18] have demonstrated 
the efficacy of AE and VAE models in detecting network intrusions, yet the reasons behind the model 
decisions often remain opaque. This opacity can be a barrier to trust and adoption in critical IoT 
applications. To address this, our study has not only focused on enhancing the performance of 
anomaly detection via feature selection and deep learning techniques but has also prioritized making 
these models more interpretable. The integration of variational autoencoding ensembles within a 
deep neural network framework has indeed improved test accuracy to 95.68%. However, to further 
enhance interpretability, we have incorporated techniques such as layer-wise relevance propagation 
(LRP). These techniques help in visually representing the contribution of each feature to the decision-
making process, thereby providing clear insights into the model's internal workings. Moreover, the 
use of XGBoost for feature selection was optimized not only for computational efficiency but also for 
enhancing the transparency of the feature importance in the anomaly detection process. This dual 
focus on performance and interpretability ensures that the models can be trusted and their decisions 
fully understood by users, which is especially critical in security-sensitive IoT environments. By 
emphasizing the synergy of advanced machine learning techniques with domain-specific feature 
engineering and interpretative methodologies, this study contributes to the state-of-the-art in IoT 
anomaly detection. It also establishes a framework for future research that balances the complexity 
of modeling techniques with the necessity for transparency and interpretability in real-world 
applications. 

It is crucial to contextualize the findings within the broader scope of IoT-based applications as 
demonstrated by recent studies. For instance, Hussein et al. [31] provide an example of IoT’s 
application in enhancing laboratory safety, where an elaborate system of sensors and controllers, 
managed via Arduino IDE, mitigates risks such as fire, gas leaks, and chemical imbalances. This reflects 
the practical utility of IoT in continuous monitoring and immediate hazard response in sensitive 
environments. Additionally, Sheela et al. [32] explore IoT’s role in residential energy management, 
using a smart metering system that employs wireless communication to monitor and adjust energy 
consumption efficiently. This study underscores the potential of IoT to contribute to significant 
energy savings and operational efficiency in domestic settings. Furthermore, the work of Hameed et 
al. [33] investigated the synergy between IoT and Federated Learning, highlighting how decentralized 
approaches in data handling can enhance privacy and efficiency in data-intensive applications like 
smart cities and healthcare systems. These examples from the literature underscore the 
transformative implications of IoT technologies in diverse sectors, enriching our discussion by 
aligning our findings with documented cases of IoT innovation and its impact on safety, efficiency, 
and data management. 

Future research could explore broader applications of the hybrid VAE-DNN approach across 
diverse IoT environments like smart cities and healthcare systems, which could test the scalability 
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and adaptability of the models. Additionally, enhancing model interpretability through advanced 
visualization tools and explanation frameworks could further build trust and facilitate diagnostics in 
AI-driven security systems. Investigating the robustness of these systems against adversarial attacks 
and integrating edge computing could improve both security and efficiency. Lastly, exploring energy-
efficient algorithms remains crucial for sustainable technology deployment in resource-constrained 
environments. By focusing on these targeted directions, future studies can deepen the impact and 
relevance of IoT anomaly detection research, leveraging the foundational work presented in this 
study. 
 
4. Conclusion 
 

That is, this research on anomaly detection in IoT networks using a hybrid VAE-DNN approach 
with feature selection also contributes to the accuracy and effectiveness of the underlying detection 
system in typically very dynamic IoT environments. Integrating variational auto-encoders with deep 
neural networks and methods of feature selection optimization, like XGBoost, this research could 
enhance test accuracy by 2.88% over baseline models. The latter supports not only the power of the 
involved advanced machine learning techniques but also meets one of the core challenges to robust 
multiclass classification for anomaly detection: class imbalance. In addition, compared to previous 
researches using methods like autoencoder, SVM, and deep neural networks over datasets such as 
NSL-KDD and CICIDS2017, the hybrid approach presented in this research provides better 
performance and adaptiveness.  
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