Optimizing Classification of Malaysian Plant Species through Comparative Analysis of Edge Detection Methods

Authors

  • Zuraini Othman Fakulti Teknologi Maklumat dan Komunikasi, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • Muhammad Hafiz Izzuddin Mohamad Sukeri Fakulti Teknologi Maklumat dan Komunikasi, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • Sharifah Sakinah Syed Ahmad Fakulti Teknologi Maklumat dan Komunikasi, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • Fauziah Kasmin Fakulti Teknologi Maklumat dan Komunikasi, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • Nur Hajar Zamah Shari Forestry and Environment Division, Forest Research Institute Malaysia (FRIM), 52109 Kepong, Malaysia
  • Anton Satria Prabuwono Faculty of Computing and Information Technology in Rabigh, King Abdulaziz University, Rabigh 21911, Saudi Arabia

Keywords:

Plant species classification, Edge detection algorithms, Convolutional Neural Networks (CNNs), Image pre-processing, Malaysian Plant

Abstract

The classification of plant species is a vital aspect of botanical research, biodiversity monitoring, and conservation efforts. This study aims to optimize the classification of Malaysian plant species by conducting a comprehensive comparative analysis of various edge detection methods. This study investigates the optimization of Malaysian plant species classification through a comparative analysis of edge detection methods. Focusing on five distinct species - Murraya koenigii, Citrus aurantiifolia, Pandanus amaryllifolius, Polygonum minus, and Mentha arvensis - the research evaluates the effectiveness of Canny, Roberts, Sobel, and Laplace edge detection algorithms across RGB, grayscale, and pre-processed leaf images. A dataset of high-resolution microscopic leaf images was developed and subjected to various image processing techniques. The study employs Convolutional Neural Networks (CNNs) for classification, assessing performance using precision, recall, and F1-score metrics. Results consistently demonstrate the superiority of the Canny edge detection method across all image types and plant species, with Citrus aurantiifolia exhibiting the highest classification accuracy with F1-score 93%. The research highlights the importance of species-specific considerations in edge detection and emphasizes the potential of adaptive methodologies in improving classification accuracy. These findings contribute to the advancement of automated plant identification systems, with implications for botanical research and biodiversity conservation in Malaysia.

Downloads

Download data is not yet available.

Author Biography

Zuraini Othman, Fakulti Teknologi Maklumat dan Komunikasi, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia

zuraini@utem.edu.my

Downloads

Published

2025-11-02

How to Cite

Othman, Z. ., Mohamad Sukeri, M. H. I. ., Syed Ahmad, S. S. ., Kasmin, F. ., Shari, N. H. Z. ., & Prabuwono, A. S. . (2025). Optimizing Classification of Malaysian Plant Species through Comparative Analysis of Edge Detection Methods. Journal of Advanced Research Design, 146(1), 244–257. Retrieved from https://www.akademiabaru.com/submit/index.php/ard/article/view/6066
سرور مجازی ایران Decentralized Exchange

Issue

Section

Articles

Most read articles by the same author(s)

فروشگاه اینترنتی