Simulation of Oldroyd-B Viscoelastic Fluid in Axisymmetric Straight Channel by Using a Hybrid Finite Element/Volume Method

Authors

  • Ihssan Aqeel Fadhel Department of Mathematics, College of Education for Pure Sciences, University of Basrah, Basrah, Iraq
  • Alaa Hassan Al-Muslimawi Department of Mathematics, College of Sciences, University of Basrah, Basrah, Iraq

DOI:

https://doi.org/10.37934/arfmts.81.1.2640

Keywords:

Axisymmetric straight channel, Galerkin method, Hybrid finite element/volume, Oldroyd-B model, Viscoelasticity

Abstract

In this study, incompressible viscoelastic fluid through the axisymmetric circular channel is simulated with Oldroyd-B model. The simulation is performed based on a hybrid finite volume/element method, which consists of Taylor-Galerkin finite element discretisation, and a cell vertex fluctuation-distribution finite volume method. In this context, the momentum and continuity equations are treated with a finite element method, while a finite volume approach is applied to solve the Oldroyd-B constitutive model. Analytical expressions are presented for the velocity and stress components in fully developed channel flow of Oldroyd-B fluid. For this complex fluid, we see an excellent agreement between the analytic and the numerical solutions. The study of axisymmetric circular channel problem based on a hybrid numerical method represents a great challenge. The novelty here is to study the temporal convergence-rate of the system solution that is taken to be steady state, incompressible, axisymmetric, and laminar, which did not address by researchers previously. Here, the rate of convergence for all solution components is presented, where a large level of convergence is appeared for stress compared to the other solution components. Moreover, the pressure drops and stress response across the flow are provided with respect to difference in solvent-fraction  and Weissenberg number . A significant effect from the viscoelastic parameters upon the level of the stress has been detected, while for the pressure response the change is semi-modest. For the stress response the findings reveal that, with decreasing solvent-fraction , the maxima level of stress components are strongly amplifies.

References

Wapperom, P., and M. F. Webster. "A second-order hybrid finite-element/volume method for viscoelastic flows." Journal of Non-Newtonian Fluid Mechanics 79, no. 2-3 (1998): 405-431. https://doi.org/10.1016/S0377-0257(98)00124-4

Struijs, R., Herman Deconinck, and P. L. Roe. "Fluctuation splitting schemes for the 2D Euler equations." In its Computational Fluid Dynamics 94 p (SEE N91-32426 24-34 (1991).

Carew, E. O. A., P. Townsend, and M. F. Webster. "A Taylor-Petrov-Galerkin algorithm for viscoelastic flow." Journal of Non-Newtonian Fluid Mechanics 50, no. 2-3 (1993): 253-287. https://doi.org/10.1016/0377-0257(93)80034-9

Baloch, A., P. Townsend, and M. F. Webster. "On the simulation of highly elastic complex flows." Journal of Non-Newtonian Fluid Mechanics 59, no. 2-3 (1995): 111-128. https://doi.org/10.1016/0377-0257(95)01369-7

Baloch, A., P. Townsend, and M. F. Webster. "On vortex development in viscoelastic expansion and contraction flows." Journal of Non-Newtonian Fluid Mechanics 65, no. 2-3 (1996): 133-149. https://doi.org/10.1016/0377-0257(96)01470-X

Xue, S-C., N. Phan-Thien, and R. I. Tanner. "Three dimensional numerical simulations of viscoelastic flows through planar contractions." Journal of Non-Newtonian Fluid Mechanics 74, no. 1-3 (1998): 195-245. https://doi.org/10.1016/S0377-0257(97)00072-4

Baaijens, Frank PT. "Numerical analysis of unsteady viscoelastic flow." Computer Methods in Applied Mechanics and Engineering 94, no. 2 (1992): 285-299. https://doi.org/10.1016/0045-7825(92)90151-9

Béraudo, C., A. Fortin, T. Coupez, Y. Demay, B. Vergnes, and J. F. Agassant. "A finite element method for computing the flow of multi-mode viscoelastic fluids: comparison with experiments." Journal of Non-Newtonian Fluid Mechanics 75, no. 1 (1998): 1-23. https://doi.org/10.1016/S0377-0257(97)00083-9

Hirsch, Charles. Numerical computation of internal and external flows, Volume 1. Fundamentals of numerical discretization. John Wiley and Sons 9, 1988.?

Sato, Toru, and Stephen M. Richardson. "Explicit numerical simulation of time-dependent viscoelastic flow problems by a finite element/finite volume method." Journal of Non-Newtonian Fluid Mechanics 51, no. 3 (1994): 249-275. https://doi.org/10.1016/0377-0257(94)85019-4

Yoo, Jung Yul, and Yang Na. "A numerical study of the planar contraction flow of a viscoelastic fluid using the SIMPLER algorithm." Journal of Non-Newtonian Fluid Mechanics 39, no. 1 (1991): 89-106. https://doi.org/10.1016/0377-0257(91)80005-5

Wapperom, P., and M. F. Webster. "Simulation for viscoelastic flow by a finite volume/element method." Computer Methods in Applied Mechanics and Engineering 180, no. 3-4 (1999): 281-304. https://doi.org/10.1016/S0045-7825(99)00170-X

Aboubacar, M., and M. F. Webster. "A cell-vertex finite volume/element method on triangles for abrupt contraction viscoelastic flows." Journal of Non-Newtonian Fluid Mechanics 98, no. 2-3 (2001): 83-106. https://doi.org/10.1016/S0377-0257(00)00196-8

Aboubacar, M., H. Matallah, and M. F. Webster. "Highly elastic solutions for Oldroyd-B and Phan-Thien/Tanner fluids with a finite volume/element method: planar contraction flows." Journal of Non-Newtonian Fluid Mechanics 103, no. 1 (2002): 65-103. https://doi.org/10.1016/S0377-0257(01)00164-1

Webster, M. F., H. R. Tamaddon?Jahromi, and M. Aboubacar. "Time?dependent algorithms for viscoelastic flow: Finite element/volume schemes." Numerical Methods for Partial Differential Equations: An International Journal 21, no. 2 (2005): 272-296. https://doi.org/10.1002/num.20037

Belblidia, Fawzi, I. J. Keshtiban, and M. F. Webster. "Stabilised computations for viscoelastic flows under compressible implementations." Journal of Non-Newtonian Fluid Mechanics 134, no. 1-3 (2006): 56-76. https://doi.org/10.1016/j.jnnfm.2005.12.003

Belblidia, F., H. Matallah, B. Puangkird, and M. F. Webster. "Alternative subcell discretisations for viscoelastic flow: Stress interpolation." Journal of Non-Newtonian Fluid Mechanics 146, no. 1-3 (2007): 59-78. https://doi.org/10.1016/j.jnnfm.2006.12.009

Al-Muslimawi, Alaa Hasan A. Numerical analysis of partial differential equations for viscoelastic and free surface flows. Swansea University (United Kingdom), 2013.

Al-Muslimawi, A., H. R. Tamaddon-Jahromi, and M. F. Webster. "Numerical simulation of tube-tooling cable-coating with polymer melts." Korea-Australia Rheology Journal 25, no. 4 (2013): 197-216. https://doi.org/10.1007/s13367-013-0021-x

Al-Muslimawi, A., H. R. Tamaddon-Jahromi, and M. F. Webster. "Numerical computation of extrusion and draw-extrusion cable-coating flows with polymer melts." Applied Rheology 24, no. 3 (2014): 1-15.

Al-Muslimawi, Alaa H. "Numerical study for differential constitutive equations with polymer melts by using a hybrid finite-element/volume method." Journal of Computational and Applied Mathematics 308 (2016): 488-498. https://doi.org/10.1016/j.cam.2016.06.007

Sulochana, Chalavadi, Samrat S. Payad, and Naramgari Sandeep. "Non-uniform heat source or sink effect on the flow of 3D Casson fluid in the presence of Soret and thermal radiation." In International Journal of Engineering Research in Africa, vol. 20, pp. 112-129. Trans Tech Publications Ltd, 2016. https://doi.org/10.4028/www.scientific.net/JERA.20.112

Sulochana, C., S. P. Samrat, and N. Sandeep. "Numerical investigation of magnetohydrodynamic (MHD) radiative flow over a rotating cone in the presence of Soret and chemical reaction." Propulsion and power Research 7, no. 1 (2018): 91-101. https://doi.org/10.1016/j.jppr.2018.01.001

Tlili, Iskander, S. P. Samrat, N. Sandeep, and Hossam A. Nabwey. "Effect of nanoparticle shape on unsteady liquid film flow of MHD Oldroyd-B ferrofluid." Ain Shams Engineering Journal (2020). https://doi.org/10.1016/j.asej.2020.06.007

Samrat, S. P., C. Sulochana, and G. P. Ashwinkumar. "Impact of thermal radiation on an unsteady Casson nanofluid flow over a stretching surface." International Journal of Applied and Computational Mathematics 5, no. 2 (2019): 1-20. https://doi.org/10.1007/s40819-019-0606-2

Tlili, Iskander, Hossam A. Nabwey, S. P. Samrat, and N. Sandeep. "3D MHD nonlinear radiative flow of CuO-MgO/methanol hybrid nanofluid beyond an irregular dimension surface with slip effect." Scientific Reports 10, no. 1 (2020): 1-14. https://doi.org/10.1038/s41598-020-66102-w

Townsend, P., and M. F. Webster. "An algorithm for the three-dimensional transient simulation of non-Newtonian fluid flows." In Proc. Int. Conf. Num. Meth. Eng.: Theory and Applications, NUMETA, Nijhoff, Dordrecht, vol. 12, pp. 1-11. 1987.

Zienkiewicz, O. C., K. Morgan, J. Peraire, M. Vandati, and R. Löhner. "Finite elements for compressible gas flow and similar systems." In 7th Int. Conf. Comput. Meth. Appl. Sci. Eng. 1985.

Donea, J. "A Taylor-Galerkin algorithm for hyperbolic conservation laws." International Journal for Numerical Methods in Engineering 20 (1984): 101-119. https://doi.org/10.1002/nme.1620200108

Matallah, H., P. Townsend, and M. F. Webster. "Recovery and stress-splitting schemes for viscoelastic flows." Journal of Non-Newtonian Fluid Mechanics 75, no. 2-3 (1998): 139-166. https://doi.org/10.1016/S0377-0257(97)00085-2

Aboubacar, M., H. Matallah, H. R. Tamaddon-Jahromi, and M. F. Webster. "Numerical prediction of extensional flows in contraction geometries: hybrid finite volume/element method." Journal of Non-Newtonian Fluid Mechanics 104, no. 2-3 (2002): 125-164. https://doi.org/10.1016/S0377-0257(02)00015-0

Bird, R. Byron, Warren E. Stewart, Edwin N. Lightfoot, and Daniel J. Klingenberg. Introductory Transport Phenomena. Wiley, 2014.

Ngamaramvaranggul, V., and M. F. Webster. "Viscoelastic simulations of stick?slip and die?swell flows." International Journal for Numerical Methods in Fluids 36, no. 5 (2001): 539-595. https://doi.org/10.1002/fld.145

Downloads

Published

2021-03-11

How to Cite

Fadhel, I. A. ., & Al-Muslimawi, A. H. (2021). Simulation of Oldroyd-B Viscoelastic Fluid in Axisymmetric Straight Channel by Using a Hybrid Finite Element/Volume Method. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 81(1), 26–40. https://doi.org/10.37934/arfmts.81.1.2640
صندلی اداری سرور مجازی ایران Decentralized Exchange

Issue

Section

Articles
فروشگاه اینترنتی