Numerical Analysis of Phenomena Transport of a Proton Exchange Membrane (PEM) Fuel Cell

Authors

  • Yusuf Dewantoro Herlambang Department of Mechanical Engineering, Politeknik Negeri Semarang, Semarang 50275, Indonesia
  • Fatahul Arifin Department of Mechanical Engineering, Politeknik Negeri Sriwijaya, Palembang 30139, Indonesia
  • Kurnianingsih Department of Electrical Engineering, Politeknik Negeri Semarang, Semarang 50275, Indonesia
  • Totok Prasetyo Department of Mechanical Engineering, Politeknik Negeri Semarang, Semarang 50275, Indonesia
  • Anis Roihatin Department of Mechanical Engineering, Politeknik Negeri Semarang, Semarang 50275, Indonesia

DOI:

https://doi.org/10.37934/arfmts.80.2.127135

Keywords:

PEM fuel cell, low temperature, current distribution, numerical simulation

Abstract

The investigation the PEM fuel cell under various conditions was carried out through numerical simulation. The results revealed that the mass transport resistance, the ionic resistance, and charge transfer resistance defined the current distribution in the cathode catalyst layer. The highest current distribution in the cell was determined by the highest depletion of oxygen concentration in the exit side of the channel, and the amount of the reacted and carried oxygen towards the electrode surface of the mass transfer conditions. Among all simulation conditions, the current density on the shape gas channel with the channel ratio height-width 1:1 and 2:1 was 1,061 and 1,078 A/m2, respectively, with the power density of the cell was 3,714 W/m2 and 3,776 W/m2, respectively.

References

Herlambang, Yusuf Dewantoro, Jin-Cherng Shyu, and Shun-Ching Lee. "Numerical simulation of the performance of air-breathing direct formic acid microfluidic fuel cells." Micro & Nano Letters 12, no. 11 (2017): 860-865. https://doi.org/10.1049/mnl.2017.0322

Zhou, Daming, Fei Gao, Ahmed Al-Durra, Elena Breaz, Alexandre Ravey, and Abdellatif Miraoui. "Development of a multiphysical 2-D model of a PEM fuel cell for real-time control." IEEE Transactions on Industry Applications 54, no. 5 (2018): 4864-4874. https://doi.org/10.1109/TIA.2018.2839082

Herlambang, Yusuf Dewantoro, Shun-Ching Lee, and Huan-Chi Hsu. "Numerical estimation of photovoltaic-electrolyzer system performance on the basis of a weather database." International Journal of Green Energy 14, no. 7 (2017): 575-586. https://doi.org/10.1080/15435075.2017.1307200

Khazaee, I., and A. Rava. "Numerical simulation of the performance of solid oxide fuel cell with different flow channel geometries." Energy 119 (2017): 235-244. https://doi.org/10.1016/j.energy.2016.12.074

Thomas, Sobi, Samuel Simon Araya, Steffen Henrik Frensch, Thomas Steenberg, and Søren Knudsen Kær. "Hydrogen mass transport resistance changes in a high temperature polymer membrane fuel cell as a function of current density and acid doping." Electrochimica Acta 317 (2019): 521-527. https://doi.org/10.1016/j.electacta.2019.06.021

Li, Wenkai, Qinglei Zhang, Chao Wang, Xiaohui Yan, Shuiyun Shen, Guofeng Xia, Fengjuan Zhu, and Junliang Zhang. "Experimental and numerical analysis of a three-dimensional flow field for PEMFCs." Applied Energy 195 (2017): 278-288. https://doi.org/10.1016/j.apenergy.2017.03.008

Berning, Torsten, and Ned Djilali. "Three-dimensional computational analysis of transport phenomena in a PEM fuel cell-a parametric study." Journal of Power Sources 124, no. 2 (2003): 440-452. https://doi.org/10.1016/S0378-7753(03)00816-4

Nguyen, Phong Thanh, Torsten Berning, and Ned Djilali. "Computational model of a PEM fuel cell with serpentine gas flow channels." Journal of Power Sources 130, no. 1-2 (2004): 149-157. https://doi.org/10.1016/j.jpowsour.2003.12.027

Haji, Shaker. "Analytical modeling of PEM fuel cell i-V curve." Renewable Energy 36, no. 2 (2011): 451-458. https://doi.org/10.1016/j.renene.2010.07.007

Eikani, M. H., A. Eliassi, N. Khandan, and V. R. Nafisi. "Design and fabrication of a 300W PEM fuel cell test station." Procedia Engineering 42 (2012): 368-375. https://doi.org/10.1016/j.proeng.2012.07.428

Wang, Xiao-Dong, Wei-Mon Yan, Wen-Chung Won, and Duu-Jong Lee. "Effects of operating parameters on transport phenomena and cell performance of PEM fuel cells with conventional and contracted flow field designs." International Journal of Hydrogen Energy 37, no. 20 (2012): 15808-15819. https://doi.org/10.1016/j.ijhydene.2012.02.145

Sun, Hong, Chen Xie, Hao Chen, and Saif Almheiri. "A numerical study on the effects of temperature and mass transfer in high temperature PEM fuel cells with ab-PBI membrane." Applied Energy 160 (2015): 937-944. https://doi.org/10.1016/j.apenergy.2015.02.053

Najafi, Behzad, Alireza Haghighat Mamaghani, Fabio Rinaldi, and Andrea Casalegno. "Fuel partialization and power/heat shifting strategies applied to a 30 kWel high temperature PEM fuel cell based residential micro cogeneration plant." International Journal of Hydrogen Energy 40, no. 41 (2015): 14224-14234. https://doi.org/10.1016/j.ijhydene.2015.08.088

Ham, Sang-Woo, Su-Young Jo, Hye-Won Dong, and Jae-Weon Jeong. "A simplified PEM fuel cell model for building cogeneration applications." Energy and Buildings 107 (2015): 213-225. https://doi.org/10.1016/j.enbuild.2015.08.023

Authayanun, Suthida, Karittha Im-Orb, and Amornchai Arpornwichanop. "A review of the development of high temperature proton exchange membrane fuel cells." Chinese Journal of Catalysis 36, no. 4 (2015): 473-483. https://doi.org/10.1016/S1872-2067(14)60272-2

Devrim, Y?lser, Huseyin Devrim, and Inci Eroglu. "Development of 500 W PEM fuel cell stack for portable power generators." International Journal of Hydrogen Energy 40, no. 24 (2015): 7707-7719. https://doi.org/10.1016/j.ijhydene.2015.02.005

Herlambang, Yusuf Dewantoro, Jin-Cherng Shyu, and Shun-Ching Lee. "Numerical simulation of the performance of air-breathing direct formic acid microfluidic fuel cells." Micro & Nano Letters 12, no. 11 (2017): 860-865. https://doi.org/10.1049/mnl.2017.0322

Rezazadeh, Sajad, Haleh Sadeghi, Reza Mirzaei, and Iraj Mirzaei. "Numerical Investigation of Flow Channel Geometrical Configuration Design Effect on a Proton Exchange Membrane Fuel Cell Performance and Mass Transport Phenomenon." In 2018 2nd International Conference on Smart Grid and Smart Cities (ICSGSC), pp. 137-141. IEEE, 2018. https://doi.org/10.1109/ICSGSC.2018.8541298

Deng, Suxiang, Mohammad K. Hassan, Kenneth A. Mauritz, and Jimmy W. Mays. "Hydrocarbon-based fuel cell membranes: Sulfonated crosslinked poly (1, 3-cyclohexadiene) membranes for high temperature polymer electrolyte fuel cells." Polymer 73 (2015): 17-24. https://doi.org/10.1016/j.polymer.2015.07.030

Yang, W. J., H. Y. Wang, and Y. B. Kim. "Channel geometry optimization using a 2D fuel cell model and its verification for a polymer electrolyte membrane fuel cell." International Journal of Hydrogen Energy 39, no. 17 (2014): 9430-9439. https://doi.org/10.1016/j.ijhydene.2014.03.243

Rostami, Leila, Puriya Mohamad Gholy Nejad, and Ali Vatani. "A numerical investigation of serpentine flow channel with different bend sizes in polymer electrolyte membrane fuel cells." Energy 97 (2016): 400-410. https://doi.org/10.1016/j.energy.2015.10.132

Rosli, R. E., A. B. Sulong, W. R. W. Daud, M. A. Zulkifley, T. Husaini, M. I. Rosli, E. H. Majlan, and M. A. Haque. "A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system." International Journal of Hydrogen Energy 42, no. 14 (2017): 9293-9314. https://doi.org/10.1016/j.ijhydene.2016.06.211

Rasheed, Raj Kamal Abdul, Quan Liao, Zhang Caizhi, and Siew Hwa Chan. "A review on modelling of high temperature proton exchange membrane fuel cells (HT-PEMFCs)." International Journal of Hydrogen Energy 42, no. 5 (2017): 3142-3165. https://doi.org/10.1016/j.ijhydene.2016.10.078

Dekel, Dario R. "Review of cell performance in anion exchange membrane fuel cells." Journal of Power Sources 375 (2018): 158-169. https://doi.org/10.1016/j.jpowsour.2017.07.117

Herlambang, Yusuf Dewantoro, Anis Roihatin, Kurnianingsih, Totok Prasetyo, Shun-Ching Lee, and Jin-Cherng Shyu. "Computation and numerical modeling of fuel concentration distribution and current density on performance of the microfluidic fuel cell." In AIP Conference Proceedings, vol. 2197, no. 1, p. 090001. AIP Publishing LLC, 2020. https://doi.org/10.1063/1.5140949

Nikiforow, K., P. Koski, and J. Ihonen. "Discrete ejector control solution design, characterization, and verification in a 5 kW PEMFC system." International Journal of Hydrogen Energy 42, no. 26 (2017): 16760-16772. https://doi.org/10.1016/j.ijhydene.2017.05.151

Li, Wenkai, Qinglei Zhang, Chao Wang, Xiaohui Yan, Shuiyun Shen, Guofeng Xia, Fengjuan Zhu, and Junliang Zhang. "Experimental and numerical analysis of a three-dimensional flow field for PEMFCs." Applied Energy 195 (2017): 278-288. https://doi.org/10.1016/j.apenergy.2017.03.008

Aman, Nurul Ashikin Mohd Nazrul, Andanastuti Muchtar, Mahendra Rao Somalu, Masli Irwan Rosli, and Noor Shieela Kalib. "Overview of Computational Fluid Dynamics Modelling in Solid Oxide Fuel Cell." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 52, no. 2 (2018): 174-181.

Norman, Nur Wardah, Mahendra Rao Somalu, and Andanastuti Muchtar. "A short review on the proton conducting electrolytes for solid oxide fuel cell applications." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 52, no. 2 (2018): 115-122.

Herlambang, Yusuf Dewantoro, Anis Roihatin, Shun-Ching Lee, and Jin-Cherng Shyu. "MEMS-Based Microfluidic Fuel Cell for In Situ Analysis of the Cell Performance on The Electrode Surface." In Journal of Physics: Conference Series, vol. 1444, no. 1, p. 012044. IOP Publishing, 2020. https://doi.org/10.1088/1742-6596/1444/1/012044

Downloads

Published

2021-03-05

How to Cite

Herlambang, Y. D. ., Fatahul Arifin, Kurnianingsih, Totok Prasetyo, & Anis Roihatin. (2021). Numerical Analysis of Phenomena Transport of a Proton Exchange Membrane (PEM) Fuel Cell. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 80(2), 127–135. https://doi.org/10.37934/arfmts.80.2.127135

Issue

Section

Articles