Characteristic of TiO2-SiO2 Nanofluid With Water/Ethylene Glycol Mixture for Solar Application

Authors

  • Mohd Amiruddin Fikri Engineering Division, Jabatan Kesihatan Negeri Kelantan, 15590 Kota Bharu, Kelantan, Malaysia
  • Wan Mohd Faizal Faculty of Bioengineering and Technology, Universiti Malaysia Kelantan, 17600, Malaysia
  • Hasyiya Karimah Adli Faculty of Bioengineering and Technology, Universiti Malaysia Kelantan, 17600, Malaysia
  • Rizalman Mamat College of Engineering, Universiti Malaysia Pahang, 26600, Malaysia
  • Wan Hamzah Azmi College of Engineering, Universiti Malaysia Pahang, 26600, Malaysia
  • Zafri Azran Abdul Majid Kulliyyah of Health Allied Science, International Islamic University Malaysia, 25200, Malaysia
  • Anwar Ilmar Ramadhan Faculty of Engineering, Universitas Muhammadiyah Jakarta, 10510, Indonesia

DOI:

https://doi.org/10.37934/arfmts.81.2.113

Keywords:

composite nanofluids, water-ethylene glycol, heat transfer, solar radiation

Abstract

Solar energy is a sustainable energy supply technology due to the renewable nature of solar radiation and the ability of solar energy conversion systems to generate greenhouse gas-free heat and electricity during their lifetime. In this study, an experimental investigation was conducted to explore the effect of hybrid nanofluids on heat transfer for solar application. An experiment was conducted for hybrid nanofluid concentrations starting from 0.3, 0.5, 0.7 and 1.0%. Each setup was exposed to short wavelength radiation under a solar simulator with 300, 500 and 700 W/m2 for 30 minutes, of which 15 minutes is the heating period and the next 15 minutes is for cooling. For solar radiation of 300 W/m2 within 15 minutes of charging process are 51.9 °C, 52.8 °C, 53.4 °C and 54.2 °C for concentration of nanofluids 0.3, 0.5, 0.7 and 1.0% respectively. The results for solar radiation of 500 and 700 W/m2 within 15 minutes almost the same pattern which is increasing during the charging process. It can be concluded that the higher concentrations of nanofluid give ample time to the test tube to transfer the heat and thus increased its temperature during the charging process.

References

Bamisile, Olusola O., and Mustafa Dagbasi. "Analysis of Serhatkoy Photovoltaic Power Plant and Production over the Years it Application to a Central City in Nigeria (Markurdi)." International Journal of Engineering Research & Technology (IJERT) 4, no. 04 (2015): 562-568. https://doi.org/10.17577/IJERTV4IS040751

Bergmann, Ariel, Sergio Colombo, and Nick Hanley. "Rural versus urban preferences for renewable energy developments." Ecological economics 65, no. 3 (2008): 616-625. https://doi.org/10.1016/j.ecolecon.2007.08.011

Painuly, Jyoti P. "Barriers to renewable energy penetration; a framework for analysis." Renewable energy 24, no. 1 (2001): 73-89. https://doi.org/10.1016/S0960-1481(00)00186-5

Ellabban, Omar, Haitham Abu-Rub, and Frede Blaabjerg. "Renewable energy resources: Current status, future prospects and their enabling technology." Renewable and Sustainable Energy Reviews 39 (2014): 748-764. https://doi.org/10.1016/j.rser.2014.07.113

Alrikabi, N. "Kh. MA (2014)." Renewable Energy Types. Journal of Clean Energy Technologies 2, no. 1: 61-64. https://doi.org/10.7763/JOCET.2014.V2.92

Suman, Siddharth. "Hybrid nuclear-renewable energy systems: A review." Journal of Cleaner Production 181 (2018): 166-177. https://doi.org/10.1016/j.jclepro.2018.01.262

Heras-Saizarbitoria, Iñaki, Lucía Sáez, Erlantz Allur, and Jon Morandeira. "The emergence of renewable energy cooperatives in Spain: A review." Renewable and Sustainable Energy Reviews 94 (2018): 1036-1043. https://doi.org/10.1016/j.rser.2018.06.049

Liu, Junxia. "China's renewable energy law and policy: a critical review." Renewable and Sustainable Energy Reviews 99 (2019): 212-219. https://doi.org/10.1016/j.rser.2018.10.007

Jenniches, Simon. "Assessing the regional economic impacts of renewable energy sources–A literature review." Renewable and Sustainable Energy Reviews 93 (2018): 35-51. https://doi.org/10.1016/j.rser.2018.05.008

?ener, ?erife Elif Can, Julia L. Sharp, and Annick Anctil. "Factors impacting diverging paths of renewable energy: A review." Renewable and Sustainable Energy Reviews 81 (2018): 2335-2342. https://doi.org/10.1016/j.rser.2017.06.042

Guo, Shaopeng, Qibin Liu, Jie Sun, and Hongguang Jin. "A review on the utilization of hybrid renewable energy." Renewable and Sustainable Energy Reviews 91 (2018): 1121-1147. https://doi.org/10.1016/j.rser.2018.04.105

Shuba, Eyasu Shumbulo, and Demeke Kifle. "Microalgae to biofuels:‘Promising’alternative and renewable energy, review." Renewable and Sustainable Energy Reviews 81 (2018): 743-755. https://doi.org/10.1016/j.rser.2017.08.042

Khan, Meer AM, Shafiqur Rehman, and Fahad A. Al-Sulaiman. "A hybrid renewable energy system as a potential energy source for water desalination using reverse osmosis: A review." Renewable and Sustainable Energy Reviews 97 (2018): 456-477. https://doi.org/10.1016/j.rser.2018.08.049

Picchi, Paolo, Martina van Lierop, Davide Geneletti, and Sven Stremke. "Advancing the relationship between renewable energy and ecosystem services for landscape planning and design: A literature review." Ecosystem services 35 (2019): 241-259. https://doi.org/10.1016/j.ecoser.2018.12.010

Rueda-Bayona, Juan Gabriel, Andres Guzmán, Juan José Cabello Eras, Rodolfo Silva-Casarín, Emilio Bastidas-Arteaga, and José Horrillo-Caraballo. "Renewables energies in Colombia and the opportunity for the offshore wind technology." Journal of Cleaner Production 220 (2019): 529-543. https://doi.org/10.1016/j.jclepro.2019.02.174

Fekadu, Geleta, and Sudhakar Subudhi. "Renewable energy for liquid desiccants air conditioning system: A review." Renewable and Sustainable Energy Reviews 93 (2018): 364-379. https://doi.org/10.1016/j.rser.2018.05.016

Panwar, N. L., S. C. Kaushik, and Surendra Kothari. "Role of renewable energy sources in environmental protection: A review." Renewable and sustainable energy reviews 15, no. 3 (2011): 1513-1524. https://doi.org/10.1016/j.rser.2010.11.037

Zakhidov, R. A. "Central Asian countries energy system and role of renewable energy sources." Applied Solar Energy 44, no. 3 (2008): 218-223. https://doi.org/10.3103/S0003701X08030201

Wazeer, Adil, Bhaskar Chaturvedi, Shriyash Mohril, Mahipal Singh Sankhla, and Dr Rajeev Kumar. "Gasification-Contributing to the Energy Production Demands." International Journal of Engineering And Computer Science 5, no. 12 (2016): 19440-19449. https://doi.org/10.18535/ijecs/v5i12.30

Ravindranath, Nijavalli H., and David Oakley Hall. Biomass, energy and environment: a developing country perspective from India. Oxford University Press, 1995.

Jin, Xin, Guiping Lin, Aimen Zeiny, Haichuan Jin, Lizhan Bai, and Dongsheng Wen. "Solar photothermal conversion characteristics of hybrid nanofluids: An experimental and numerical study." Renewable Energy 141 (2019): 937-949. https://doi.org/10.1016/j.renene.2019.04.016

Sun, Bin, Yue Zhang, Di Yang, and Hongwei Li. "Experimental study on heat transfer characteristics of hybrid nanofluid impinging jets." Applied Thermal Engineering 151 (2019): 556-566. https://doi.org/10.1016/j.applthermaleng.2019.01.111

Huminic, Gabriela, and Angel Huminic. "Heat transfer capability of the hybrid nanofluids for heat transfer applications." Journal of Molecular Liquids 272 (2018): 857-870. https://doi.org/10.1016/j.molliq.2018.10.095

Yagnem, Anil Reddy, and S. Venkatachalapathy. "Heat transfer enhancement studies in pool boiling using hybrid nanofluids." Thermochimica Acta 672 (2019): 93-100. https://doi.org/10.1016/j.tca.2018.11.014

Moldoveanu, Georgiana Madalina, and Alina Adriana Minea. "Specific heat experimental tests of simple and hybrid oxide-water nanofluids: proposing new correlation." Journal of Molecular Liquids 279 (2019): 299-305. https://doi.org/10.1016/j.molliq.2019.01.137

Kaska, Sheren A., Rafeq A. Khalefa, and Adnan M. Hussein. "Hybrid nanofluid to enhance heat transfer under turbulent flow in a flat tube." Case Studies in Thermal Engineering 13 (2019): 100398. https://doi.org/10.1016/j.csite.2019.100398

Manjunatha, S., B. Ammani Kuttan, S. Jayanthi, Ali Chamkha, and B. J. Gireesha. "Heat transfer enhancement in the boundary layer flow of hybrid nanofluids due to variable viscosity and natural convection." Heliyon 5, no. 4 (2019): e01469. https://doi.org/10.1016/j.heliyon.2019.e01469

Aparna, Z., Monisha Michael, S. K. Pabi, and S. Ghosh. "Thermal conductivity of aqueous Al2O3/Ag hybrid nanofluid at different temperatures and volume concentrations: an experimental investigation and development of new correlation function." Powder Technology 343 (2019): 714-722. https://doi.org/10.1016/j.powtec.2018.11.096

Waini, Iskandar, Anuar Ishak, and Ioan Pop. "Unsteady flow and heat transfer past a stretching/shrinking sheet in a hybrid nanofluid." International Journal of Heat and Mass Transfer 136 (2019): 288-297. https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.101

Venkataraman, B., and D. Elango. "Renewable Energy Sources." Hindustan College of Engineering, Padur, India (1998).

Thirugnanasambandam, Mirunalini, Selvarasan Iniyan, and Ranko Goic. "A review of solar thermal technologies." Renewable and sustainable energy reviews 14, no. 1 (2010): 312-322. https://doi.org/10.1016/j.rser.2009.07.014

Koroneos, Christopher J., and Evanthia A. Nanaki. "Life cycle environmental impact assessment of a solar water heater." Journal of Cleaner Production 37 (2012): 154-161. https://doi.org/10.1016/j.jclepro.2012.07.001

Ho, C. D., and T. C. Chen. "The recycle effect on the collector efficiency improvement of double-pass sheet-and-tube solar water heaters with external recycle." Renewable Energy 31, no. 7 (2006): 953-970. https://doi.org/10.1016/j.renene.2005.05.016

Al-Madani, Hussain. "The performance of a cylindrical solar water heater." Renewable Energy 31, no. 11 (2006): 1751-1763. https://doi.org/10.1016/j.renene.2005.09.010

Fikri, Mohd Amiruddin, Fatin Fatihah Asri, Wan Mohd Faizal, Hasyiya Karimah Adli, Rizalman Mamat, W. H. Azmi, A. I. Ramadhan, and Talal Yusaf. "Effects of heat transfer based water for three square multilayer absorber solar collector." In IOP Conference Series: Materials Science and Engineering, vol. 788, no. 1, p. 012078. IOP Publishing, 2020. https://doi.org/10.1088/1757-899X/788/1/012078

Zhai, X. Q., R. Z. Wang, Y. J. Dai, J. Y. Wu, and Q. Ma. "Experience on integration of solar thermal technologies with green buildings." Renewable Energy 33, no. 8 (2008): 1904-1910. https://doi.org/10.1016/j.renene.2007.09.027

Otanicar, Todd P., Patrick E. Phelan, Ravi S. Prasher, Gary Rosengarten, and Robert A. Taylor. "Nanofluid-based direct absorption solar collector." Journal of renewable and sustainable energy 2, no. 3 (2010): 033102. https://doi.org/10.1063/1.3429737

Okujagu, C. U., and S. K. Adjepong. "Performance of a simple flat plate solar collector at an equatorial location." Solar & wind technology 6, no. 3 (1989): 283-289. https://doi.org/10.1016/0741-983X(89)90081-7

Choi, Stephen US, and Jeffrey A. Eastman. Enhancing thermal conductivity of fluids with nanoparticles. No. ANL/MSD/CP-84938; CONF-951135-29. Argonne National Lab., IL (United States), 1995.

Masuda, Hidetoshi, Akira Ebata, K. Teramae, and N. Hishiunma. "conductivity and viscosity of liquid by dispersed ultra-fine particles (dispersion of Al2O3, SiO2, and TiO2 ultra-fine particles)." Alteration of Thermal, Netsu Bussei (Japan) 7, no. 4 (1993). https://doi.org/10.2963/jjtp.7.227

Azmi, W. H., K. V. Sharma, Rizalman Mamat, and Shahrani Anuar. "Nanofluid properties for forced convection heat transfer: An overview." Journal of Mechanical Engineering and Sciences 4 (2013): 397-408. https://doi.org/10.15282/jmes.4.2013.4.0037

Abu-Nada, Eiyad, and Ali J. Chamkha. "Effect of nanofluid variable properties on natural convection in enclosures filled with a CuO–EG–water nanofluid." International Journal of Thermal Sciences 49, no. 12 (2010): 2339-2352. https://doi.org/10.1016/j.ijthermalsci.2009.09.002

Sarkar, Jahar, Pradyumna Ghosh, and Arjumand Adil. "A review on hybrid nanofluids: recent research, development and applications." Renewable and Sustainable Energy Reviews 43 (2015): 164-177. https://doi.org/10.1016/j.rser.2014.11.023

Yilmaz, Fatih. "Thermodynamic performance evaluation of a novel solar energy based multigeneration system." Applied Thermal Engineering 143 (2018): 429-437. https://doi.org/10.1016/j.applthermaleng.2018.07.125

Khaliq, Abdul, Esmail MA Mokheimer, and Mohammed Yaqub. "Thermodynamic investigations on a novel solar powered trigeneration energy system." Energy Conversion and Management 188 (2019): 398-413. https://doi.org/10.1016/j.enconman.2019.03.026

Fathabadi, Hassan. "Solar energy harvesting in buildings using a proposed novel electrochemical device as an alternative to PV modules." Renewable Energy 133 (2019): 118-125. https://doi.org/10.1016/j.renene.2018.10.010

El-Emam, Rami S., and Ibrahim Dincer. "Investigation and assessment of a novel solar-driven integrated energy system." Energy Conversion and Management 158 (2018): 246-255. https://doi.org/10.1016/j.enconman.2017.12.062

Karapekmez, Aras, and Ibrahim Dincer. "Thermodynamic analysis of a novel solar and geothermal based combined energy system for hydrogen production." International Journal of Hydrogen Energy 45, no. 9 (2020): 5608-5628.

Mehrpooya, Mehdi, Bahram Ghorbani, and Mehrdad Moradi. "A novel MCFC hybrid power generation process using solar parabolic dish thermal energy." International Journal of Hydrogen Energy 44, no. 16 (2019): 8548-8565. https://doi.org/10.1016/j.ijhydene.2018.12.014

Yilmaz, Fatih, Murat Ozturk, and Resat Selbas. "Energy and exergy performance assessment of a novel solar-based integrated system with hydrogen production." International Journal of Hydrogen Energy 44, no. 34 (2019): 18732-18743. https://doi.org/10.1016/j.ijhydene.2018.10.118

Fernández, R., C. Ortiz, R. Chacartegui, J. M. Valverde, and J. A. Becerra. "Dispatchability of solar photovoltaics from thermochemical energy storage." Energy Conversion and Management 191 (2019): 237-246. https://doi.org/10.1016/j.enconman.2019.03.074

Jia, Hao, Xiaomei Cheng, Jingjing Zhu, Zhaoling Li, and Jiansheng Guo. "Mathematical and experimental analysis on solar thermal energy harvesting performance of the textile-based solar thermal energy collector." Renewable energy 129 (2018): 553-560. https://doi.org/10.1016/j.renene.2018.05.097

Khan, M. Ryyan, Enas Sakr, Xingshu Sun, Peter Bermel, and Muhammad A. Alam. "Ground sculpting to enhance energy yield of vertical bifacial solar farms." Applied Energy 241 (2019): 592-598. https://doi.org/10.1016/j.apenergy.2019.01.168

?evik, Seyfi, Mustafa Akta?, Ekin Can Dolgun, Erhan Arslan, and Azim Do?u? Tuncer. "Performance analysis of solar and solar-infrared dryer of mint and apple slices using energy-exergy methodology." Solar Energy 180 (2019): 537-549. https://doi.org/10.1016/j.solener.2019.01.049

Mosaffa, A. H., Z. Ghaffarpour, and L. Garousi Farshi. "Thermoeconomic assessment of a novel integrated CHP system incorporating solar energy based biogas-steam reformer with methanol and hydrogen production." Solar Energy 178 (2019): 1-16. https://doi.org/10.1016/j.solener.2018.12.011

Sundar, L. Syam, P. Bhramara, NT Ravi Kumar, Manoj K. Singh, and Antonio CM Sousa. "Experimental heat transfer, friction factor and effectiveness analysis of Fe3O4 nanofluid flow in a horizontal plain tube with return bend and wire coil inserts." International Journal of Heat and Mass Transfer 109 (2017): 440-453. https://doi.org/10.1016/j.ijheatmasstransfer.2017.02.022

Azmi, W. H., K. Abdul Hamid, N. A. Usri, Rizalman Mamat, and M. S. Mohamad. "Heat transfer and friction factor of water and ethylene glycol mixture based TiO2 and Al2O3 nanofluids under turbulent flow." International Communications in Heat and Mass Transfer 76 (2016): 24-32. https://doi.org/10.1016/j.icheatmasstransfer.2016.05.010

Hamid, K. Abdul, W. H. Azmi, M. F. Nabil, and Rizalman Mamat. "Experimental investigation of nanoparticle mixture ratios on TiO2–SiO2 nanofluids heat transfer performance under turbulent flow." International Journal of Heat and Mass Transfer 118 (2018): 617-627. https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.036

Nabil, M. F., W. H. Azmi, K. Abdul Hamid, Rizalman Mamat, and Ftwi Y. Hagos. "An experimental study on the thermal conductivity and dynamic viscosity of TiO2-SiO2 nanofluids in water: ethylene glycol mixture." International Communications in Heat and Mass Transfer 86 (2017): 181-189. https://doi.org/10.1016/j.icheatmasstransfer.2017.05.024

Hamid, K. Abdul, W. H. Azmi, Rizalman Mamat, and K. V. Sharma. "Heat transfer performance of TiO2–SiO2 nanofluids in a tube with wire coil inserts." Applied Thermal Engineering 152 (2019): 275-286. https://doi.org/10.1016/j.applthermaleng.2019.02.083

Azmi, W. H., K. Abdul Hamid, Rizalman Mamat, K. V. Sharma, and M. S. Mohamad. "Effects of working temperature on thermo-physical properties and forced convection heat transfer of TiO2 nanofluids in water–Ethylene glycol mixture." Applied Thermal Engineering 106 (2016): 1190-1199. https://doi.org/10.1016/j.applthermaleng.2016.06.106

Ramadhan, A. I., W. H. Azmi, R. Mamat, M. Mazlan, “A new correlation of thermal-properties of tri-hybrid nanoparticles in water-ethylene glycol mixture”, Technology Reports of Kansai University, 62(2) (2020): 1151-1160.

Ramadhan, A. I., W. H. Azmi, R. Mamat, and K. A. Hamid. "Experimental and numerical study of heat transfer and friction factor of plain tube with hybrid nanofluids." Case Studies in Thermal Engineering 22 (2020): 100782. https://doi.org/10.1016/j.csite.2020.100782

Ramadhan, A. I., W. H. Azmi, and R. Mamat. "Heat transfer characteristics of car radiator using tri-hybrid nanocoolant." In IOP Conference Series: Materials Science and Engineering, vol. 863, no. 1, p. 012054. IOP Publishing, 2020. https://doi.org/10.1088/1757-899X/863/1/012054

Saeedinia, M., M. A. Akhavan-Behabadi, and M. Nasr. "Experimental study on heat transfer and pressure drop of nanofluid flow in a horizontal coiled wire inserted tube under constant heat flux." Experimental Thermal and Fluid Science 36 (2012): 158-168. https://doi.org/10.1016/j.expthermflusci.2011.09.009

Ramadhan, A. I., W. H. Azmi, R. Mamat, K. A. Hamid, and S. Norsakinah. "Investigation on stability of tri-hybrid nanofluids in water-ethylene glycol mixture." In IOP Conference Series: Materials Science and Engineering, vol. 469, no. 1, p. 012068. IOP Publishing, 2019. https://doi.org/10.1088/1757-899X/469/1/012068

Baghbanzadeh, Mohammadali, Alimorad Rashidi, Davood Rashtchian, Roghayeh Lotfi, and Azadeh Amrollahi. "Synthesis of spherical silica/multiwall carbon nanotubes hybrid nanostructures and investigation of thermal conductivity of related nanofluids." Thermochimica acta 549 (2012): 87-94. https://doi.org/10.1016/j.tca.2012.09.006

Hamid, K. Abdul, W. H. Azmi, M. F. Nabil, Rizalman Mamat, and K. V. Sharma. "Experimental investigation of thermal conductivity and dynamic viscosity on nanoparticle mixture ratios of TiO2-SiO2 nanofluids." International Journal of Heat and Mass Transfer 116 (2018): 1143-1152. https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.087

Azmi, W. H., K. V. Sharma, P. K. Sarma, Rizalman Mamat, and G. Najafi. "Heat transfer and friction factor of water based TiO2 and SiO2 nanofluids under turbulent flow in a tube." International Communications in Heat and Mass Transfer 59 (2014): 30-38. https://doi.org/10.1016/j.icheatmasstransfer.2014.10.007

Mohamad, M., and W. Wan. "Heat transfer performance Of Tio2–SiO2 nanofluid in water?ethylene glycol mixture." J Mech Eng 5 (2018): 39-48.

Das, Sarit K., Nandy Putra, and Wilfried Roetzel. "Pool boiling characteristics of nano-fluids." International journal of heat and mass transfer 46, no. 5 (2003): 851-862. https://doi.org/10.1016/S0017-9310(02)00348-4

Ding, Yulong. "Hajar Alias, Dongsheng Wen, Richard A. Williams." Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). International Journal of Heat and Mass Transfer 49, no. 1-2 (2006): 240-250. https://doi.org/10.1016/j.ijheatmasstransfer.2005.07.009

Ding, Yulong, Haisheng Chen, Liang Wang, Chane-Yuan Yang, Yurong He, Wei Yang, Wai Peng Lee, Lingling Zhang, and Ran Huo. "Heat transfer intensification using nanofluids." KONA Powder and Particle Journal 25 (2007): 23-38. https://doi.org/10.14356/kona.2007006

Khdher, AbdolBaqi Mohammed, Nor Azwadi Che Sidik, Rizalman Mamat, and Wan Azmi Wan Hamzah. "Experimental and numerical study of thermo-hydraulic performance of circumferentially ribbed tube with Al2O3 nanofluid." International Communications in Heat and Mass Transfer 69 (2015): 34-40. https://doi.org/10.1016/j.icheatmasstransfer.2015.10.003

Wen, Dongsheng, and Yulong Ding. "Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions." International journal of heat and mass transfer 47, no. 24 (2004): 5181-5188. https://doi.org/10.1016/j.ijheatmasstransfer.2004.07.012

Mintsa, Honorine Angue, Gilles Roy, Cong Tam Nguyen, and Dominique Doucet. "New temperature dependent thermal conductivity data for water-based nanofluids." International journal of thermal sciences 48, no. 2 (2009): 363-371. https://doi.org/10.1016/j.ijthermalsci.2008.03.009

Pak, Bock Choon, and Young I. Cho. "Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles." Experimental Heat Transfer an International Journal 11, no. 2 (1998): 151-170. https://doi.org/10.1080/08916159808946559

Namburu, P. K., D. P. Kulkarni, A. Dandekar, and D. K. Das. "Experimental investigation of viscosity and specific heat of silicon dioxide nanofluids." Micro & Nano Letters 2, no. 3 (2007): 67-71. https://doi.org/10.1049/mnl:20070037

Yu, Wei, Huaqing Xie, Lifei Chen, and Yang Li. "Investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluid." Thermochimica Acta 491, no. 1-2 (2009): 92-96. https://doi.org/10.1016/j.tca.2009.03.007

Handbook—Fundamentals, A. S. H. R. A. E., and S. I. Edition. "chapter 21-22." American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta, Ga, USA (2009).

Reddy, M. Chandra Sekhara, and V. Vasudeva Rao. "Experimental studies on thermal conductivity of blends of ethylene glycol-water-based TiO2 nanofluids." International communications in heat and mass transfer 46 (2013): 31-36. https://doi.org/10.1016/j.icheatmasstransfer.2013.05.009

Downloads

Published

2021-03-25

How to Cite

Fikri, M. A. ., Faizal, W. M. ., Adli, H. K. ., Mamat, R., Azmi, W. H., Majid, Z. A. A. ., & Ramadhan, A. I. (2021). Characteristic of TiO2-SiO2 Nanofluid With Water/Ethylene Glycol Mixture for Solar Application. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 81(2), 1–13. https://doi.org/10.37934/arfmts.81.2.113

Issue

Section

Articles

Most read articles by the same author(s)