A Simulation Study on Temperature Uniformity of Photovoltaic Thermal Using Computational Fluid Dynamics


  • Mohd Afzanizam Mohd Rosli Fakulti Kejuruteraan Mekanikal, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • Irfan Alias Farhan Latif Fakulti Kejuruteraan Mekanikal, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • Muhammad Zaid Nawam Fakulti Kejuruteraan Mekanikal, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • Mohd Noor Asril Saadun Centre for Advanced Research on Energy, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • Hasila Jarimi Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
  • Mohd Khairul Anuar Sharif Jabatan Kerja Raya, Jalan Sultan Salahuddin, 50582 Kuala Lumpur, Malaysia
  • Sulaiman Ali Universitas Teuku Umar, Jl. Alue Peunyareng, Ujong Tanoh Darat, Meureubo, Kabupaten Aceh Barat, Aceh 23681, Indonesia




Temperature Distribution, Computational Fluid Dynamics, Simulation, Photovoltaic Thermal


The temperature distribution across the photovoltaic (PV) module in most cases is not uniform, leading to regions of hotspots. The cells in these regions perform less efficiently, leading to an overall lower PV module efficiency. They can also be permanently damaged due to high thermal stresses. To enable the high-efficiency operation and a longer lifetime of the PV module, the temperatures must not fluctuate wildly across the PV module. In this study, a custom absorber is designed based on literature to provide a more even temperature distribution across the PV module. This design is two standard sets of spiral absorbers connected. This design is relatively less complicated for this reason and it allows room for adjusting the pipe spacing without much complication. The absorber design is tested via computational fluid dynamics (CFD) simulation using ANSYS Fluent 19.2, and the simulation model is validated by an experimental study with the highest percentage error of 9.44%. The custom and the serpentine absorber utilized in the experiment are simulated under the same operating conditions having water as the working fluid. The custom absorber design is found to have a more uniform temperature distribution on more areas of the PV module as compared to the absorber design utilized in the experiment, which leads to a lower average surface temperature of the PV module. This results in an increase in thermal and electrical efficiency of the PV module by 3.21% and 0.65%, respectively.


Ahmad, Tanveer, and Dongdong Zhang. "A critical review of comparative global historical energy consumption and future demand: The story told so far." Energy Reports 6 (2020): 1973-1991. https://doi.org/10.1016/j.egyr.2020.07.020

Sardouei, Masoud Mohammadi, Hamid Mortezapour, and Kazem Jafari Naeimi. "Temperature distribution and efficiency assessment of different PVT water collector designs." S?dhan? 43, no. 6 (2018): 1-13. https://doi.org/10.1007/s12046-018-0826-x

Mbungu, Nsilulu T., Raj M. Naidoo, Ramesh C. Bansal, Mukwanga W. Siti, and Diambomba H. Tungadio. "An overview of renewable energy resources and grid integration for commercial building applications." Journal of Energy Storage 29 (2020): 101385. https://doi.org/10.1016/j.est.2020.101385

Walmsley, Timothy G., Michael RW Walmsley, Petar S. Varbanov, and Ji?í J. Klemeš. "Energy Ratio analysis and accounting for renewable and non-renewable electricity generation: A review." Renewable and Sustainable Energy Reviews 98 (2018): 328-345. https://doi.org/10.1016/j.rser.2018.09.034

Abdullah, Ahmed L., S. Misha, N. Tamaldin, M. A. M. Rosli, and F. A. Sachit. "Photovoltaic thermal/solar (PVT) collector (PVT) system based on fluid absorber design: A review." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 48, no. 2 (2018): 196-208.

Sachit, F. A., Noreffendy Tamaldin, M. A. M. Rosli, S. Misha, and A. L. Abdullah. "Current progress on flat-plate water collector design in photovoltaic thermal (PV/T) systems: A Review." Journal of Advanced Research in Dynamical and Control Systems 10 (2018): 680-694.

Hosseinzadeh, Mohammad, Ali Salari, Mohammad Sardarabadi, and Mohammad Passandideh-Fard. "Optimization and parametric analysis of a nanofluid based photovoltaic thermal system: 3D numerical model with experimental validation." Energy Conversion and Management 160 (2018): 93-108. https://doi.org/10.1016/j.enconman.2018.01.006

Tuncel, B., T. Ozden, R. S. Balog, and B. G. Akinoglu. "Dynamic thermal modelling of PV performance and effect of heat capacity on the module temperature." Case Studies in Thermal Engineering 22 (2020): 100754. https://doi.org/10.1016/j.csite.2020.100754

Bahaidarah, Haitham MS, Ahmer AB Baloch, and Palanichamy Gandhidasan. "Uniform cooling of photovoltaic panels: A review." Renewable and Sustainable Energy Reviews 57 (2016): 1520-1544. https://doi.org/10.1016/j.rser.2015.12.064

Al-Waeli, Ali H., K. Sopian, Hussein A. Kazem, and Miqdam T. Chaichan. "Photovoltaic solar thermal (PV/T) collectors past, present and future: A review." International Journal of Applied Engineering Research 11, no. 22 (2016): 10757-10765.

Syafiqah, Z., N. A. M. Amin, Y. M. Irwan, M. S. A. Majid, and N. A. Aziz. "Simulation study of air and water cooled photovoltaic panel using ANSYS." In Journal of Physics: Conference Series, vol. 908, no. 1, p. 012074. IOP Publishing, 2017. https://doi.org/10.1088/1742-6596/908/1/012074

Ahmed, Asmaa, Hasan Baig, Senthilarasu Sundaram, and Tapas K. Mallick. "Use of nanofluids in solar PV/thermal systems." International Journal of Photoenergy 2019 (2019): 1-18. https://doi.org/10.1155/2019/8039129

Hissouf, Mohamed, Monssif Najim, and Adil Charef. "Numerical study of a covered Photovoltaic-Thermal Collector (PVT) enhancement using nanofluids." Solar Energy 199 (2020): 115-127. https://doi.org/10.1016/j.solener.2020.01.083

Fudholi, Ahmad, Nur Farhana Mohd Razali, Mohammad H. Yazdi, Adnan Ibrahim, Mohd Hafidz Ruslan, Mohd Yusof Othman, and Kamaruzzaman Sopian. "TiO2/water-based photovoltaic thermal (PVT) collector: Novel theoretical approach." Energy 183 (2019): 305-314. https://doi.org/10.1016/j.energy.2019.06.143

Abdullah, Amira Lateef, S. Misha, N. Tamaldin, M. A. M. Rosli, and F. A. Sachit. "Theoretical study and indoor experimental validation of performance of the new photovoltaic thermal solar collector (PVT) based water system." Case Studies in Thermal Engineering 18 (2020): 100595. https://doi.org/10.1016/j.csite.2020.100595

Misha, S., Amira Lateef Abdullah, N. Tamaldin, M. A. M. Rosli, and F. A. Sachit. "Simulation CFD and experimental investigation of PVT water system under natural Malaysian weather conditions." Energy Reports 6 (2020): 28-44. https://doi.org/10.1016/j.egyr.2019.11.162

Rosli, Mohd Afzanizam Mohd, Yap Joon Ping, Suhaimi Misha, Mohd Zaid Akop, Kamaruzzaman Sopian, Sohif Mat, Ali Najah Al-Shamani, and Muhammad Asraf Saruni. "Simulation Study of Computational Fluid Dynamics on Photovoltaic Thermal Water Collector with Different Designs of Absorber Tube." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 52, no. 1 (2018): 12-22.

Poredoš, Primož, Urban Tomc, Nada Petelin, Boris Vidrih, Uroš Flisar, and Andrej Kitanovski. "Numerical and experimental investigation of the energy and exergy performance of solar thermal, photovoltaic and photovoltaic-thermal modules based on roll-bond heat exchangers." Energy Conversion and Management 210 (2020): 112674. https://doi.org/10.1016/j.enconman.2020.112674

Shukla, A., Karunesh Kant, Atul Sharma, and Pascal Henry Biwole. "Cooling methodologies of photovoltaic module for enhancing electrical efficiency: A review." Solar Energy Materials and Solar Cells 160 (2017): 275-286. https://doi.org/10.1016/j.solmat.2016.10.047

Zhu, Li, Robert F. Boehm, Yiping Wang, Christopher Halford, and Yong Sun. "Water immersion cooling of PV cells in a high concentration system." Solar Energy Materials and Solar Cells 95, no. 2 (2011): 538-545. https://doi.org/10.1016/j.solmat.2010.08.037

Wang, Gang, Fasi Wang, Fan Shen, Zeshao Chen, and Peng Hu. "Novel design and thermodynamic analysis of a solar concentration PV and thermal combined system based on compact linear Fresnel reflector." Energy 180 (2019): 133-148. https://doi.org/10.1016/j.energy.2019.05.082

Valizadeh, Mohammad, Faramarz Sarhaddi, and Mohsen Mahdavi Adeli. "Exergy performance assessment of a linear parabolic trough photovoltaic thermal collector." Renewable Energy 138 (2019): 1028-1041. https://doi.org/10.1016/j.renene.2019.02.039

Yu, Y., H. Yang, J. Peng, and E. Long. "Performance comparisons of two flat-plate photovoltaic thermal collectors with different channel configurations." Energy 175 (2019): 300-308. https://doi.org/10.1016/j.energy.2019.03.054

Abd El-Samie, Mostafa M., Xing Ju, Zheyang Zhang, Saadelnour Abdueljabbar Adam, Xinyu Pan, and Chao Xu. "Three-dimensional numerical investigation of a hybrid low concentrated photovoltaic/thermal system." Energy 190 (2020): 116436. https://doi.org/10.1016/j.energy.2019.116436

Bellos, Evangelos, and Christos Tzivanidis. "Alternative designs of parabolic trough solar collectors." Progress in Energy and Combustion Science 71 (2019): 81-117. https://doi.org/10.1016/j.pecs.2018.11.001

Adam, Saadelnour Abdueljabbar, Xing Ju, Zheyang Zhang, Mostafa M. Abd El-Samie, and Chao Xu. "Theoretical investigation of different CPVT configurations based on liquid absorption spectral beam filter." Energy 189 (2019): 116259. https://doi.org/10.1016/j.energy.2019.116259

Jaaz, Ahed Hameed, Husam Abdulrasool Hasan, Kamaruzzaman Sopian, Mohd Hafidz Bin Haji Ruslan, and Saleem Hussain Zaidi. "Design and development of compound parabolic concentrating for photovoltaic solar collector." Renewable and Sustainable Energy Reviews 76 (2017): 1108-1121. https://doi.org/10.1016/j.rser.2017.03.127

Jaaz, Ahed Hameed, Kamaruzzaman Sopian, and Tayser Sumer Gaaz. "Study of the electrical and thermal performances of photovoltaic thermal collector-compound parabolic concentrated." Results in Physics 9 (2018): 500-510. https://doi.org/10.1016/j.rinp.2018.03.004

Proell, M., P. Osgyan, H. Karrer, and C. J. Brabec. "Experimental efficiency of a low concentrating CPC PVT flat plate collector." Solar Energy 147 (2017): 463-469. https://doi.org/10.1016/j.solener.2017.03.055

Yazdanifard, Farideh, Ehsan Ebrahimnia-Bajestan, and Mehran Ameri. "Performance of a parabolic trough concentrating photovoltaic/thermal system: effects of flow regime, design parameters, and using nanofluids." Energy Conversion and Management 148 (2017): 1265-1277. https://doi.org/10.1016/j.enconman.2017.06.075

Zhou, Jicheng, Haoyun Ke, and Xiaoqing Deng. "Experimental and CFD investigation on temperature distribution of a serpentine tube type photovoltaic/thermal collector." Solar Energy 174 (2018): 735-742. https://doi.org/10.1016/j.solener.2018.09.063

Mohammed, Humaid, Manish Kumar, and Rajesh Gupta. "Bypass diode effect on temperature distribution in crystalline silicon photovoltaic module under partial shading." Solar Energy 208 (2020): 182-194. https://doi.org/10.1016/j.solener.2020.07.087

Zhou, Jicheng, Qiang Yi, Yunyun Wang, and Zhibin Ye. "Temperature distribution of photovoltaic module based on finite element simulation." Solar Energy 111 (2015): 97-103. https://doi.org/10.1016/j.solener.2014.10.040

Amanlou, Yasaman, Teymour Tavakoli Hashjin, Barat Ghobadian, and G. Najafi. "Air cooling low concentrated photovoltaic/thermal (LCPV/T) solar collector to approach uniform temperature distribution on the PV plate." Applied Thermal Engineering 141 (2018): 413-421. https://doi.org/10.1016/j.applthermaleng.2018.05.070

Fayaz, Hussain, Rehena Nasrin, Nasrudin Abd Rahim, and Md Hasanuzzaman. "Energy and exergy analysis of the PVT system: Effect of nanofluid flow rate." Solar Energy 169 (2018): 217-230. https://doi.org/10.1016/j.solener.2018.05.004

Filipovi?, Petar, Damir Dovi?, Borjan Ranilovi?, and Ivan Horvat. "Numerical and experimental approach for evaluation of thermal performances of a polymer solar collector." Renewable and Sustainable Energy Reviews 112 (2019): 127-139. https://doi.org/10.1016/j.rser.2019.05.023

Khanjari, Y., F. Pourfayaz, and A. B. Kasaeian. "Numerical investigation on using of nanofluid in a water-cooled photovoltaic thermal system." Energy Conversion and Management 122 (2016): 263-278. https://doi.org/10.1016/j.enconman.2016.05.083

Sardarabadi, Mohammad, and Mohammad Passandideh-Fard. "Experimental and numerical study of metal-oxides/water nanofluids as coolant in photovoltaic thermal systems (PVT)." Solar Energy Materials and Solar Cells 157 (2016): 533-542. https://doi.org/10.1016/j.solmat.2016.07.008

Evans, D. L. "Simplified method for predicting photovoltaic array output." Solar Energy 27, no. 6 (1981): 555-560. https://doi.org/10.1016/0038-092X(81)90051-7

Bayrak, Fatih, Nidal Abu-Hamdeh, Khaled A. Alnefaie, and Hakan F. Öztop. "A review on exergy analysis of solar electricity production." Renewable and Sustainable Energy Reviews 74 (2017): 755-770. https://doi.org/10.1016/j.rser.2017.03.012

Bahaidarah, H., Abdul Subhan, P. Gandhidasan, and S. Rehman. "Performance evaluation of a PV (photovoltaic) module by back surface water cooling for hot climatic conditions." Energy 59 (2013): 445-453. https://doi.org/10.1016/j.energy.2013.07.050




How to Cite

Mohd Rosli, M. A. ., Latif, I. A. F., Nawam, M. Z. ., Saadun, M. N. A. ., Jarimi, H. ., Sharif, M. K. A. ., & Ali, S. . (2021). A Simulation Study on Temperature Uniformity of Photovoltaic Thermal Using Computational Fluid Dynamics. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 82(1), 21–38. https://doi.org/10.37934/arfmts.82.1.2138




Most read articles by the same author(s)