Temperature and Concentration Dependent Viscosity of Microcrystalline Cellulose in Water

Authors

  • Wan Nor Suhaila Wan Aziz Unit Kawalselia Radiasi Perubatan, Pahang State Health Department, Jalan IM/4, Bandar Indera Mahkota, 25582, Kuantan, Pahang, Malaysia
  • Shahrul Kadri Ayop The Department of Physics, Faculty of Science and Mathematics, Sultan Idris Education University, 35900 Tanjong Malim, Perak, Malaysia
  • Rosazley Ramly The Department of Physics, Faculty of Science and Mathematics, Sultan Idris Education University, 35900 Tanjong Malim, Perak, Malaysia

DOI:

https://doi.org/10.37934/arfmts.80.2.7481

Keywords:

Viscosity, magnetic bearing rheometer, cellulose, microcrystalline

Abstract

The viscosity of cellulose behaves differently and uniquely in various conditions. In this paper, we aim to report the viscosity measurement and related properties of low concentration of microcrystalline cellulose (MCC) in water using a magnetic bearing rheometer. Dynamic viscosities for MCC diluted in water at varying concentrations were measured using the standard rheometry technique. The viscosity of the MCC solution was found highly dependent on its concentration and the experiment temperature. This varieties behaviour and properties offers benefits to the current growing rapidly technology applications such as in food, pharmaceutical cosmetics and textile.

References

Trache, Djalal, M. Hazwan Hussin, Caryn Tan Hui Chuin, Sumiyyah Sabar, MR Nurul Fazita, Owolabi FA Taiwo, T. M. Hassan, and MK Mohamad Haafiz. "Microcrystalline cellulose: Isolation, characterization and bio-composites application—A review." International Journal of Biological Macromolecules 93 (2016): 789-804. https://doi.org/10.1016/j.ijbiomac.2016.09.056

Vigo, Tyrone L., and Barbara J. Kinzig, eds. Composite applications: the role of matrix, fiber, and interface. VCH, 1992.

Cataldi, Annalisa, Andrea Dorigato, Flavio Deflorian, and Alessandro Pegoretti. "Thermo-mechanical properties of innovative microcrystalline cellulose filled composites for art protection and restoration." Journal of materials science 49, no. 5 (2014): 2035-2044. https://doi.org/10.1007/s10853-013-7892-6

Rafiee, Zahra, and Valiollah Keshavarz. "Synthesis and characterization of polyurethane/microcrystalline cellulose bionanocomposites." Progress in Organic Coatings 86 (2015): 190-193. https://doi.org/10.1016/j.porgcoat.2015.05.013

Cataldi, Annalisa, Andrea Dorigato, Flavio Deflorian, and Alessandro Pegoretti. "Innovative microcrystalline cellulose composites as lining adhesives for canvas." Polymer Engineering & Science 55, no. 6 (2015): 1349-1354. https://doi.org/10.1002/pen.24074

Hoyos, Catalina Gómez, Emilien Cristia, and Analía Vázquez. "Effect of cellulose microcrystalline particles on properties of cement based composites." Materials & Design 51 (2013): 810-818. https://doi.org/10.1016/j.matdes.2013.04.060

Bai, Wen, and Kaichang Li. "Partial replacement of silica with microcrystalline cellulose in rubber composites." Composites Part A: Applied Science and Manufacturing 40, no. 10 (2009): 1597-1605. https://doi.org/10.1016/j.compositesa.2009.07.006

Choe, Deokyeong, Young Min Kim, Jae Eun Nam, Keonwook Nam, Chul Soo Shin, and Young Hoon Roh. "Synthesis of high-strength microcrystalline cellulose hydrogel by viscosity adjustment." Carbohydrate Polymers 180 (2018): 231-237. https://doi.org/10.1016/j.carbpol.2017.10.017

Peppas, Nicholas A., J. Zach Hilt, Ali Khademhosseini, and Robert Langer. "Hydrogels in biology and medicine: from molecular principles to bionanotechnology." Advanced Materials 18, no. 11 (2006): 1345-1360. https://doi.org/10.1002/adma.200501612

Seliktar, Dror. "Designing cell-compatible hydrogels for biomedical applications." Science 336, no. 6085 (2012): 1124-1128. https://doi.org/10.1126/science.1214804

Sun, Jeong-Yun, Xuanhe Zhao, Widusha RK Illeperuma, Ovijit Chaudhuri, Kyu Hwan Oh, David J. Mooney, Joost J. Vlassak, and Zhigang Suo. "Highly stretchable and tough hydrogels." Nature 489, no. 7414 (2012): 133-136. https://doi.org/10.1038/nature11409

Zhao, Xuanhe. "Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks." Soft Matter 10, no. 5 (2014): 672-687. https://doi.org/10.1039/C3SM52272E

Kamata, Hiroyuki, Yuki Akagi, Yuko Kayasuga-Kariya, Ung-il Chung, and Takamasa Sakai. "Nonswellable" hydrogel without mechanical hysteresis." Science 343, no. 6173 (2014): 873-875. https://doi.org/10.1126/science.1247811

Zhang, Xiaoqing, Xiaolin Wu, Dachao Gao, and Kenong Xia. "Bulk cellulose plastic materials from processing cellulose powder using back pressure-equal channel angular pressing." Carbohydrate Polymers 87, no. 4 (2012): 2470-2476. https://doi.org/10.1016/j.carbpol.2011.11.019

Scatolino, Mário Vanoli, Danillo Wisky Silva, Lina Bufalino, Gustavo Henrique Denzin Tonoli, and Lourival Marin Mendes. "Influence of cellulose viscosity and residual lignin on water absorption of nanofibril films." Procedia Engineering 200 (2017): 155-161. https://doi.org/10.1016/j.proeng.2017.07.023

Pouyet, Frédéric, Dominique Lachenal, Satyajit Das, and Christine Chirat. "Minimizing viscosity loss during totally chlorine-free bleaching of hardwood kraft pulp." BioResources 8, no. 1 (2013): 238-249. https://doi.org/10.15376/biores.8.1.238-249

Sukamta, Sukamta. "Computational fluid dynamics (CFD) and experimental study of two-phase flow patterns gas-liquid with low viscosity in a horizontal capillary pipe." CFD Letters 11, no. 8 (2019): 16-23.

Maksom, Mohammad Syahadan, Nurul Fitriah Nasir, Norzelawati Asmuin, Muhammad Faqhrurrazi Abd Rahman, and Riyadhthusollehan Khairulfuaad. “Biodiesel Composition Effects on Density and Viscosity of Diesel-Biodiesel Blend A CFD Study." CFD Letters 12, no. 4 (2020): 100–109. https://doi.org/10.37934/cfdl.12.4.100109

Benjumea, Pedro, John Agudelo, and Andres Agudelo. "Basic properties of palm oil biodiesel–diesel blends." Fuel 87, no. 10-11 (2008): 2069-2075. https://doi.org/10.1016/j.fuel.2007.11.004

Caulfield, Daniel F., Rodney E. Jacobson, Karl D. Sears, and John H. Underwood. "Woodpulp fibres as reinforcements for high-melting engineering thermoplastics for ‘under-the-hood’automotive applications." The Polymer Processing. Montreal, Canada: The Polymer Processing Society (2001): 1-10.

Kiziltas, Alper, Douglas J. Gardner, Yousoo Han, and Han-Seung Yang. "Mechanical properties of microcrystalline cellulose (MCC) filled engineering thermoplastic composites." Journal of Polymers and the Environment 22, no. 3 (2014): 365-372. https://doi.org/10.1007/s10924-014-0676-5

Aziz, Wan Nor Suhaila Wan, Shahrul Kadri Ayop, and Sugeng Riyanto. "The Potential Of Optical Tweezer (OT) For Viscoelastivity Measurement of Nanocellulose Solution." Jurnal Teknologi 74, no. 8 (2015). https://doi.org/10.11113/jt.v74.4722

Wehrman, Matthew D., Seth Lindberg, and Kelly M. Schultz. "Quantifying the dynamic transition of hydrogenated castor oil gels measured via multiple particle tracking microrheology." Soft Matter 12, no. 30 (2016): 6463-6472. https://doi.org/10.1039/C6SM00978F

Barnes, Howard A. "A handbook of elementary rheology. Institute of Non-Newtonian Fluid Mechanics." University of Wales (2000).

Vajjha, Ravikanth S., Debendra K. Das, and Godwin A. Chukwu. "An experimental determination of the viscosity of propylene glycol/water based nanofluids and development of new correlations." Journal of Fluids Engineering 137, no. 8 (2015). https://doi.org/10.1115/1.4029928

Qiao, Congde, Guangxin Chen, Jianlong Zhang, and Jinshui Yao. "Structure and rheological properties of cellulose nanocrystals suspension." Food Hydrocolloids 55 (2016): 19-25. https://doi.org/10.1016/j.foodhyd.2015.11.005

Rudraraju, Varma S., and Christy M. Wyandt. "Rheological characterization of Microcrystalline Cellulose/Sodiumcarboxymethyl cellulose hydrogels using a controlled stress rheometer: part I." International Journal of Pharmaceutics 292, no. 1-2 (2005): 53-61. https://doi.org/10.1016/j.ijpharm.2004.10.011

Jianan, Chen, Yan Shaoqiong, and Ruan Jinyue. "A study on the preparation, structure, and properties of microcrystalline cellulose." Journal of Macromolecular Science, Part A: Pure and Applied Chemistry 33, no. 12 (1996): 1851-1862. https://doi.org/10.1080/10601329608011011

Romero, Carmen M., and Alejandro Beltrán. "Effect of Temperature and Concentration on The Viscosity of Aqueous Solutions of 3-Aminopropanoic Acid, 4-Aminobutanoic Acid, 5-Aminopentanoic Acid, 6-Aminohexanoic." Revista Colombiana de Química 41, no. 1 (2012): 123-131.

Watanabe, Akihiko, Shigeaki Morita, and Yukihiro Ozaki. "Temperature-dependent structural changes in hydrogen bonds in microcrystalline cellulose studied by infrared and near-infrared spectroscopy with perturbation-correlation moving-window two-dimensional correlation analysis." Applied Spectroscopy 60, no. 6 (2006): 611-618. https://doi.org/10.1366/000370206777670549

Downloads

Published

2021-02-15

How to Cite

Wan Aziz, W. N. S. ., Ayop, S. K. ., & Ramly, R. . (2021). Temperature and Concentration Dependent Viscosity of Microcrystalline Cellulose in Water. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 80(2), 74–81. https://doi.org/10.37934/arfmts.80.2.7481

Issue

Section

Articles