A Review of CZTS Thin Film Solar Cell Technology
DOI:
https://doi.org/10.37934/arfmts.81.1.7387Keywords:
CZTS, thin film, solar cell, absorber layerAbstract
Copper Zinc Tin Sulfide (CZTS) solar cells have recently attracted attention as a potential low-cost earth abundant replacement for CIGS cells. This is due to their constituent’s Zn and Sn are non-toxic and earth-abundant compare to the elements of In and Ga in CIGS. Thus, aiming to analyse solar cells free from the environmental contaminant, CZTS is viewed as a potential candidate as the absorber for the next generation thin film solar cells. However, the conversion efficiency of CZTS based solar cells reported which is relatively low (highest conversion efficiency recorded is 12.5%) from the theoretical conversion efficiency limit of 32.2%. This is due to the low fill factor (FF), open circuit voltage (Voc) and current density (Jsc). In this study analysis of the different CZTS based solar cells and its synthesis methods will be reviewed. The effect of the compositional change and various structure in the CZTS, different buffer layers with their interfaces are thoroughly studied. The challenges regarding improving the conversion efficiency of CZTS solar cells and their future in the thin film solar cell application are discussed.
References
Bär, M., I. Repins, M. A. Contreras, L. Weinhardt, R. Noufi, and C. Heske. "Chemical and electronic surface structure of 20%-efficient Cu (In, Ga) Se 2 thin film solar cell absorbers." Applied Physics Letters 95, no. 5 (2009): 05210. https://doi.org/10.1063/1.3194153
Mitzi, David B., Min Yuan, Wei Liu, Andrew J. Kellock, S. Jay Chey, Vaughn Deline, and Alex G. Schrott. "A high?efficiency solution?deposited thin?film photovoltaic device." Advanced Materials 20, no. 19 (2008): 3657-3662. https://doi.org/10.1002/adma.200800555
Green, Martin A., Keith Emery, Yoshihiro Hishikawa, Wilhelm Warta, and Ewan D. Dunlop. "Solar cell efficiency tables (Version 45)." Progress in photovoltaics: research and applications 23, no. 1 (2015): 1-9. https://doi.org/10.1002/pip.2573
Guo, Qijie, Hugh W. Hillhouse, and Rakesh Agrawal. "Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells." Journal of the American Chemical Society 131, no. 33 (2009): 11672-11673. https://doi.org/10.1021/ja904981r
Fedawy, Mostafa, Shereen Mostafa Ali, and Tarek Abdolkader. "Efficiency Enhancement of GaAs Solar Cell using Si3N4 Anti-reflection Coating." Journal of Advanced Research in Materials Science 42, no. 1 (2018): 1-7.
Aboul-Dahab, M., Mina Dawoud, S. H. Zainud-Deen, and H. A. Malhat. "Tapered Metal Nanoantenna Structures for Absorption Enhancement in GaAs Thin-Film Solar Cells." Journal of Advanced Research in Applied Mechanics 44, no. 1 (2018): 1-7.
Bhattacharya, Raghu N., Miguel A. Contreras, and Glenn Teeter. "18.5% copper indium gallium diselenide (CIGS) device using single-layer, chemical-bath-deposited ZnS (O, OH)." Japanese journal of applied physics 43, no. 11B (2004): L1475. https://doi.org/10.1143/JJAP.43.L1475
Washio, Tsukasa, Tomokazu Shinji, Shin Tajima, Tatsuo Fukano, Tomoyoshi Motohiro, Kazuo Jimbo, and Hironori Katagiri. "6% Efficiency Cu 2 ZnSnS 4-based thin film solar cells using oxide precursors by open atmosphere type CVD." Journal of Materials Chemistry 22, no. 9 (2012): 4021-4024. https://doi.org/10.1039/c2jm16454j
Lincot, Daniel, Jean-François Guillemoles, S. Taunier, D. Guimard, J. Sicx-Kurdi, A. Chaumont, O. Roussel et al. "Chalcopyrite thin film solar cells by electrodeposition." Solar Energy 77, no. 6 (2004): 725-737. https://doi.org/10.1016/j.solener.2004.05.024
Cunningham, D., M. Rubcich, and D. Skinner. "Cadmium telluride PV module manufacturing at BP Solar." Progress in Photovoltaics: Research and Applications 10, no. 2 (2002): 159-168. https://doi.org/10.1002/pip.417
Ahmed, Shafaat, Kathleen B. Reuter, Oki Gunawan, Lian Guo, Lubomyr T. Romankiw, and Hariklia Deligianni. "A high efficiency electrodeposited Cu2ZnSnS4 solar cell." Advanced Energy Materials 2, no. 2 (2012): 253-259. https://doi.org/10.1002/aenm.201100526
Farinella, Marta, Rosalinda Inguanta, Tiziana Spanò, P. Livreri, S. Piazza, and C. Sunseri. "Electrochemical deposition of CZTS thin films on flexible substrate." Energy Procedia 44 (2014): 105-110. https://doi.org/10.1016/j.egypro.2013.12.015
Ge, Jie, and Yanfa Yan. "Controllable multinary alloy electrodeposition for thin-film solar cell fabrication: a case study of kesterite Cu2ZnSnS4." iScience 1 (2018): 55-71. https://doi.org/10.1016/j.isci.2018.02.002
Schäfer, W., and Rudolf Nitsche. "Tetrahedral quaternary chalcogenides of the type Cu2? II? IV? S4 (Se4)." Materials Research Bulletin 9, no. 5 (1974): 645-654. https://doi.org/10.1016/0025-5408(74)90135-4
Wang, K., O. Gunawan, T. Todorov, B. Shin, S. J. Chey, N. A. Bojarczuk, D. Mitzi, and S. Guha. "Thermally evaporated Cu 2 ZnSnS 4 solar cells." Applied Physics Letters 97, no. 14 (2010): 143508. https://doi.org/10.1063/1.3499284
Shin, Byungha, Oki Gunawan, Yu Zhu, Nestor A. Bojarczuk, S. Jay Chey, and Supratik Guha. "Thin film solar cell with 8.4% power conversion efficiency using an earth?abundant Cu2ZnSnS4 absorber." Progress in Photovoltaics: Research and Applications 21, no. 1 (2013): 72-76. https://doi.org/10.1002/pip.1174
Tiwari, Kunal J., Raju Chetty, Ramesh Chandra Mallik, and P. Malar. "Solid state synthesis and e-beam evaporation growth of Cu2ZnSnSe4 for solar energy absorber applications." Solar Energy 153 (2017): 173-180. https://doi.org/10.1016/j.solener.2017.05.042
Jimbo, Kazuo, Ryoichi Kimura, Tsuyoshi Kamimura, Satoru Yamada, Win Shwe Maw, Hideaki Araki, Koichiro Oishi, and Hironori Katagiri. "Cu2ZnSnS4-type thin film solar cells using abundant materials." Thin solid films 515, no. 15 (2007): 5997-5999. https://doi.org/10.1016/j.tsf.2006.12.103
Katagiri, Hironori, Kazuo Jimbo, Satoru Yamada, Tsuyoshi Kamimura, Win Shwe Maw, Tatsuo Fukano, Tadashi Ito, and Tomoyoshi Motohiro. "Enhanced conversion efficiencies of Cu2ZnSnS4-based thin film solar cells by using preferential etching technique." Applied physics express 1, no. 4 (2008): 041201. https://doi.org/10.1143/APEX.1.041201
Sun, Rujun, Daming Zhuang, Ming Zhao, Qianming Gong, Mike Scarpulla, Yaowei Wei, Guoan Ren, and Yixuan Wu. "Beyond 11% efficient Cu2ZnSn (Se, S) 4 thin film solar cells by cadmium alloying." Solar Energy Materials and Solar Cells 174 (2018): 494-498. https://doi.org/10.1016/j.solmat.2017.09.043
Seboui, Zeineb, Yvan Cuminal, and Najoua Kamoun-Turki. "Physical properties of Cu2ZnSnS4 thin films deposited by spray pyrolysis technique." Journal of Renewable and Sustainable Energy 5, no. 2 (2013): 023113. https://doi.org/10.1063/1.4795399
Nguyen, Thi Hiep, Takato Kawaguchi, Jakapan Chantana, Takashi Minemoto, Takashi Harada, Shuji Nakanishi, and Shigeru Ikeda. "Structural and Solar Cell Properties of a Ag-Containing Cu2ZnSnS4 Thin Film Derived from Spray Pyrolysis." ACS applied materials & interfaces 10, no. 6 (2018): 5455-5463. https://doi.org/10.1021/acsami.7b14929
Moholkar, A. V., S. S. Shinde, A. R. Babar, Kyu-Ung Sim, Ye-bin Kwon, K. Y. Rajpure, P. S. Patil, C. H. Bhosale, and J. H. Kim. "Development of CZTS thin films solar cells by pulsed laser deposition: influence of pulse repetition rate." Solar Energy 85, no. 7 (2011): 1354-1363. https://doi.org/10.1016/j.solener.2011.03.017
Cazzaniga, Andrea, Andrea Crovetto, Chang Yan, Kaiwen Sun, Xiaojing Hao, Joan Ramis Estelrich, Stela Canulescu et al. "Ultra-thin Cu2ZnSnS4 solar cell by pulsed laser deposition." Solar Energy Materials and Solar Cells 166 (2017): 91-99. https://doi.org/10.1016/j.solmat.2017.03.002
Lokhande, A. C., R. B. V. Chalapathy, J. S. Jang, P. T. Babar, M. G. Gang, C. D. Lokhande, and Jin Hyeok Kim. "Fabrication of pulsed laser deposited Ge doped CZTSSe thin film based solar cells: Influence of selenization treatment." Solar Energy Materials and Solar Cells 161 (2017): 355-367. https://doi.org/10.1016/j.solmat.2016.12.016
Agawane, G. L., S. A. Vanalakar, A. S. Kamble, A. V. Moholkar, and J. H. Kim. "Fabrication of Cu2 (ZnxMg1-x) SnS4 thin films by pulsed laser deposition technique for solar cell applications." Materials Science in Semiconductor Processing 76 (2018): 50-54. https://doi.org/10.1016/j.mssp.2017.12.010
Guo, Qijie, Grayson M. Ford, Wei-Chang Yang, Bryce C. Walker, Eric A. Stach, Hugh W. Hillhouse, and Rakesh Agrawal. "Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals." Journal of the American Chemical Society 132, no. 49 (2010): 17384-17386. https://doi.org/10.1021/ja108427b
Todorov, Teodor K., Kathleen B. Reuter, and David B. Mitzi. "High?efficiency solar cell with earth?abundant liquid?processed absorber." Advanced materials 22, no. 20 (2010): E156-E159. https://doi.org/10.1002/adma.200904155
Barkhouse, D. Aaron R., Oki Gunawan, Tayfun Gokmen, Teodor K. Todorov, and David B. Mitzi. "Device characteristics of a 10.1% hydrazine?processed Cu2ZnSn (Se, S) 4 solar cell." Progress in Photovoltaics: Research and Applications 20, no. 1 (2012): 6-11. https://doi.org/10.1002/pip.1160
Wang, Wei, Mark T. Winkler, Oki Gunawan, Tayfun Gokmen, Teodor K. Todorov, Yu Zhu, and David B. Mitzi. "Device characteristics of CZTSSe thin?film solar cells with 12.6% efficiency." Advanced Energy Materials 4, no. 7 (2014): 1301465. https://doi.org/10.1002/aenm.201301465
Lee, Seul Gi, Jongmin Kim, Huyn Suk Woo, Yongcheol Jo, A. I. Inamdar, S. M. Pawar, Hyung Sang Kim, Woong Jung, and Hyun Sik Im. "Structural, morphological, compositional, and optical properties of single step electrodeposited Cu2ZnSnS4 (CZTS) thin films for solar cell application." Current Applied Physics 14, no. 3 (2014): 254-258. https://doi.org/10.1016/j.cap.2013.11.028
Sun, R., et al., Beyond 11% efficient Cu 2 ZnSn (Se, S) 4 thin film solar cells by cadmium alloying. Solar Energy Materials and Solar Cells, 2018. 174: p. 494-498. https://doi.org/10.1016/j.solmat.2017.09.043
Sun, Kaiwen, Fangyang Liu, Chang Yan, Fangzhou Zhou, Jialiang Huang, Yansong Shen, Rong Liu, and Xiaojing Hao. "Influence of sodium incorporation on kesterite Cu2ZnSnS4 solar cells fabricated on stainless steel substrates." Solar Energy Materials and Solar Cells 157 (2016): 565-571. https://doi.org/10.1016/j.solmat.2016.07.036
Liu, Xu, Jialiang Huang, Fangzhou Zhou, Fangyang Liu, Kaiwen Sun, Chang Yan, John A. Stride, and Xiaojing Hao. "Understanding the key factors of enhancing phase and compositional controllability for 6% efficient pure-sulfide Cu2ZnSnS4 solar cells prepared from quaternary wurtzite nanocrystals." Chemistry of Materials 28, no. 11 (2016): 3649-3658. https://doi.org/10.1021/acs.chemmater.5b04620
Ericson, Tove, Fredrik Larsson, Tobias Törndahl, Christopher Frisk, Jes Larsen, Volodymyr Kosyak, Carl Hägglund, Shuyi Li, and Charlotte Platzer?Björkman. "Zinc?Tin?Oxide Buffer Layer and Low Temperature Post Annealing Resulting in a 9.0% Efficient Cd?Free Cu2ZnSnS4 Solar Cell." Solar RRL 1, no. 5 (2017): 1700001. https://doi.org/10.1002/solr.201700001
Hong, Chang Woo, Seung Wook Shin, Mahesh P. Suryawanshi, Myeng Gil Gang, Jaeyeong Heo, and Jin Hyeok Kim. "Chemically deposited CdS buffer/kesterite Cu2ZnSnS4 solar cells: relationship between CdS thickness and device performance." ACS applied materials & interfaces 9, no. 42 (2017): 36733-36744. https://doi.org/10.1021/acsami.7b09266
Erkan, Mehmet Eray, Vardaan Chawla, and Michael A. Scarpulla. "Reduced defect density at the CZTSSe/CdS interface by atomic layer deposition of Al2O3." Journal of Applied Physics 119, no. 19 (2016): 194504. https://doi.org/10.1063/1.4948947
Crovetto, Andrea, Chang Yan, Beniamino Iandolo, Fangzhou Zhou, John Stride, Jørgen Schou, Xiaojing Hao, and Ole Hansen. "Lattice-matched Cu2ZnSnS4/CeO2 solar cell with open circuit voltage boost." Applied Physics Letters 109, no. 23 (2016): 233904. https://doi.org/10.1063/1.4971779
Messaoud, Khaled Ben, Marie Buffière, Guy Brammertz, Nick Lenaers, Hans-Gerd Boyen, Sylvester Sahayaraj, Marc Meuris, Mosbah Amlouk, and Jef Poortmans. "Synthesis and characterization of (Cd, Zn) S buffer layer for Cu2ZnSnSe4 solar cells." Journal of Physics D: Applied Physics 50, no. 28 (2017): 285501. https://doi.org/10.1088/1361-6463/aa76b7
Li, Jianjun, Xiaoru Liu, Wei Liu, Li Wu, Binghui Ge, Shuping Lin, Shoushuai Gao et al. "Restraining the Band Fluctuation of CBD?Zn (O, S) Layer: Modifying the Hetero?Junction Interface for High Performance Cu2ZnSnSe4 Solar Cells with Cd?Free Buffer Layer." Solar Rrl 1, no. 10 (2017): 1700075. https://doi.org/10.1002/solr.201700075
Bras, Patrice, and Jan Sterner. "Influence of H2S annealing and buffer layer on CZTS solar cells sputtered from a quaternary compound target." In 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), pp. 0328-0331. IEEE, 2014. https://doi.org/10.1109/PVSC.2014.6924924
Nagoya, A., R. Asahi, and G. Kresse. "First-principles study of Cu2ZnSnS4 and the related band offsets for photovoltaic applications." Journal of Physics: Condensed Matter 23, no. 40 (2011): 404203. https://doi.org/10.1088/0953-8984/23/40/404203
Kim, Jongmin, C. Park, S. M. Pawar, Akbar I. Inamdar, Yongcheol Jo, J. Han, JinPyo Hong et al. "Optimization of sputtered ZnS buffer for Cu2ZnSnS4 thin film solar cells." Thin Solid Films 566 (2014): 88-92. https://doi.org/10.1016/j.tsf.2014.07.024
Ericson, Tove, Jonathan J. Scragg, Adam Hultqvist, Jörn Timo Wätjen, Piotr Szaniawski, Tobias Törndahl, and Charlotte Platzer-Björkman. "Zn (O, S) Buffer layers and thickness variations of CdS buffer for Cu2ZnSnS4 solar cells." IEEE Journal of Photovoltaics 4, no. 1 (2013): 465-469. https://doi.org/10.1109/JPHOTOV.2013.2283058
Sun, Kaiwen, Chang Yan, Fangyang Liu, Jialiang Huang, Fangzhou Zhou, John A. Stride, Martin Green, and Xiaojing Hao. "Over 9% efficient kesterite Cu2ZnSnS4 solar cell fabricated by using Zn1–xCdxS buffer layer." Advanced Energy Materials 6, no. 12 (2016): 1600046. https://doi.org/10.1002/aenm.201600046
Hiroi, Homare, Noriyuki Sakai, Takuya Kato, and Hiroki Sugimoto. "High voltage Cu 2 ZnSnS 4 submodules by hybrid buffer layer." In 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC), pp. 0863-0866. IEEE, 2013. https://doi.org/10.1109/PVSC.2013.6744281
Yan, Chang, Fangyang Liu, Kaiwen Sun, Ning Song, John A. Stride, Fangzhou Zhou, Xiaojing Hao, and Martin Green. "Boosting the efficiency of pure sulfide CZTS solar cells using the In/Cd-based hybrid buffers." Solar Energy Materials and Solar Cells 144 (2016): 700-706. https://doi.org/10.1016/j.solmat.2015.10.019
Platzer-Björkman, Charlotte, Christoper Frisk, J. K. Larsen, Tove Ericson, S-Y. Li, J. J. S. Scragg, Jan Keller, Fredrik Larsson, and Tobias Törndahl. "Reduced interface recombination in Cu2ZnSnS4 solar cells with atomic layer deposition Zn1? x Sn x O y buffer layers." Applied Physics Letters 107, no. 24 (2015): 243904. https://doi.org/10.1063/1.4937998
Liu, Xiaolei, Hongtao Cui, Wei Li, Ning Song, Fangyang Liu, Gavin Conibeer, and Xiaojing Hao. "Improving Cu2ZnSnS4 (CZTS) solar cell performance by an ultrathin ZnO intermediate layer between CZTS absorber and Mo back contact." physica status solidi (RRL)–Rapid Research Letters 8, no. 12 (2014): 966-970. https://doi.org/10.1002/pssr.201409052
Yang, Kee?Jeong, Jun?Hyoung Sim, Boram Jeon, Dae?Ho Son, Dae?Hwan Kim, Shi?Joon Sung, Dae?Kue Hwang et al. "Effects of Na and MoS2 on Cu2ZnSnS4 thin?film solar cell." Progress in Photovoltaics: Research and Applications 23, no. 7 (2015): 862-873. https://doi.org/10.1002/pip.2500
Scragg, Jonathan J., Tomas Kubart, J. Timo Wa?tjen, Tove Ericson, Margareta K. Linnarsson, and Charlotte Platzer-Bjo?rkman. "Effects of back contact instability on Cu2ZnSnS4 devices and processes." Chemistry of Materials 25, no. 15 (2013): 3162-3171. https://doi.org/10.1021/cm4015223
Zhou, Fangzhou, Fangqin Zeng, Xu Liu, Fangyang Liu, Ning Song, Chang Yan, Aobo Pu, Jongsung Park, Kaiwen Sun, and Xiaojing Hao. "Improvement of J sc in a Cu2ZnSnS4 Solar Cell by Using a Thin Carbon Intermediate Layer at the Cu2ZnSnS4/Mo Interface." ACS applied materials & interfaces 7, no. 41 (2015): 22868-22873. https://doi.org/10.1021/acsami.5b05652
Jia, Jinhuan, Yongfeng Li, Bin Yao, Zhanhui Ding, Rui Deng, Yuhong Jiang, and Yingrui Sui. "Band offsets of Ag2ZnSnSe4/CdS heterojunction: An experimental and first-principles study." Journal of Applied Physics 121, no. 21 (2017): 215305. https://doi.org/10.1063/1.4984315
Chen, Shiyou, Ji-Hui Yang, Xin-Gao Gong, Aron Walsh, and Su-Huai Wei. "Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu 2 ZnSnS 4." Physical Review B 81, no. 24 (2010): 245204. https://doi.org/10.1103/PhysRevB.81.245204
Scofield, John H., A. Duda, D. Albin, B. L. Ballard, and P. K. Predecki. "Sputtered molybdenum bilayer back contact for copper indium diselenide-based polycrystalline thin-film solar cells." Thin solid films 260, no. 1 (1995): 26-31. https://doi.org/10.1016/0040-6090(94)06462-8
Hoffman, R. A., J. C. Lin, and J. P. Chambers. "The effect of ion bombardment on the microstructure and properties of molybdenum films." Thin Solid Films 206, no. 1-2 (1991): 230-235. https://doi.org/10.1016/0040-6090(91)90427-Y
Jackson, Philip, Dimitrios Hariskos, Erwin Lotter, Stefan Paetel, Roland Wuerz, Richard Menner, Wiltraud Wischmann, and Michael Powalla. "New world record efficiency for Cu (In, Ga) Se2 thin?film solar cells beyond 20%." Progress in Photovoltaics: Research and Applications 19, no. 7 (2011): 894-897. https://doi.org/10.1002/pip.1078
Raud, S., and M-A. Nicolet. "Study of the CuInSe2/Mo thin film contact stability." Thin Solid Films 201, no. 2 (1991): 361-371. https://doi.org/10.1016/0040-6090(91)90124-G
Tong, Jun, Hai-Lin Luo, Zhu-An Xu, Hao Zeng, Xu-Dong Xiao, and Chun-Lei Yang. "The effect of thermal annealing of Mo film on the CuInSe2 layer texture and device performance." Solar Energy Materials and Solar Cells 119 (2013): 190-195. https://doi.org/10.1016/j.solmat.2013.06.039
Cui, Hongtao, Xiaolei Liu, Ning Song, Ningda Li, Fangyang Liu, and Xiaojing Hao. "Impact of rapid thermal annealing of Mo coated soda lime glass substrate on device performance of evaporated Cu2ZnSnS4 thin film solar cells." Materials Letters 125 (2014): 40-43. https://doi.org/10.1016/j.matlet.2014.03.122
Patel, Malkeshkumar, and Abhijit Ray. "Enhancement of output performance of Cu2ZnSnS4 thin film solar cells—A numerical simulation approach and comparison to experiments." Physica B: Condensed Matter 407, no. 21 (2012): 4391-4397. https://doi.org/10.1016/j.physb.2012.07.042
Herz, K., A. Eicke, F. Kessler, R. Wächter, and M. Powalla. "Diffusion barriers for CIGS solar cells on metallic substrates." Thin Solid Films 431 (2003): 392-397. https://doi.org/10.1016/S0040-6090(03)00259-1
Gaucher, Alexandre, Andrea Cattoni, Christophe Dupuis, Wanghua Chen, Romain Cariou, Martin Foldyna, Lo??c Lalouat et al. "Ultrathin epitaxial silicon solar cells with inverted nanopyramid arrays for efficient light trapping." Nano letters 16, no. 9 (2016): 5358-5364. https://doi.org/10.1021/acs.nanolett.6b01240
Chen, Wanghua, Romain Cariou, Martin Foldyna, Valerie Depauw, Christos Trompoukis, Emmanuel Drouard, Loic Lalouat et al. "Nanophotonics-based low-temperature PECVD epitaxial crystalline silicon solar cells." Journal of Physics D: Applied Physics 49, no. 12 (2016): 125603. https://doi.org/10.1088/0022-3727/49/12/125603
Collins, R. W., A. S. Ferlauto, G. M. Ferreira, Chi Chen, Joohyun Koh, R. J. Koval, Yeeheng Lee, J. M. Pearce, and C. R. Wronski. "Evolution of microstructure and phase in amorphous, protocrystalline, and microcrystalline silicon studied by real time spectroscopic ellipsometry." Solar energy materials and solar cells 78, no. 1-4 (2003): 143-180. https://doi.org/10.1016/S0927-0248(02)00436-1
Wang, Hongxia. "Progress in thin film solar cells based on." International journal of Photoenergy 2011 (2011). https://doi.org/10.1155/2011/801292
Yeh, Min-Yen, Po-Hsun Lei, Shao-Hsein Lin, and Chyi-Da Yang. "Copper-zinc-tin-sulfur thin film using spin-coating technology." Materials 9, no. 7 (2016): 526. https://doi.org/10.3390/ma9070526
Anta, Juan A., Elena Guillen, and Ramon Tena-Zaera. "ZnO-based dye-sensitized solar cells." The Journal of Physical Chemistry C 116, no. 21 (2012): 11413-11425. https://doi.org/10.1021/jp3010025
Akram, Muhammad Aftab, Sofia Javed, Mohammad Islam, Mohammad Mujahid, and Amna Safdar. "Arrays of CZTS sensitized ZnO/ZnS and ZnO/ZnSe core/shell nanorods for liquid junction nanowire solar cells." Solar Energy Materials and Solar Cells 146 (2016): 121-128. https://doi.org/10.1016/j.solmat.2015.11.034
Maeda, Tsuyoshi, Satoshi Nakamura, and Takahiro Wada. "First-principles study on Cd doping in Cu2ZnSnS4 and Cu2ZnSnSe4." Japanese Journal of Applied Physics 51, no. 10S (2012): 10NC11. https://doi.org/10.7567/JJAP.51.10NC11
Shockley, William, and Hans J. Queisser. "Detailed balance limit of efficiency of p?n junction solar cells." Journal of applied physics 32, no. 3 (1961): 510-519. https://doi.org/10.1063/1.1736034
Wallace, Suzanne K., David B. Mitzi, and Aron Walsh. "The steady rise of kesterite solar cells." ACS Energy Letters 2, no. 4 (2017): 776-779. https://doi.org/10.1021/acsenergylett.7b00131
Hamid, Nur Najiha Abdul, Syahida Suhaimi, and Nadhrah Md Yatim. "Effect of natural dye sensitizers towards the improvement of dye-sensitized solar cell (DSSC) efficiency." In AIP Conference Proceedings, vol. 1972, no. 1, p. 030009. AIP Publishing LLC, 2018. https://doi.org/10.1063/1.5041230
Yatim, Nadhrah Md, Nur Zahidah Izzati Mohd Sallehin, Syahida Suhaimi, and Mohd Azman Hashim. "A review of ZT measurement for bulk thermoelectric material." In AIP Conference Proceedings, vol. 1972, no. 1, p. 030002. AIP Publishing LLC, 2018. https://doi.org/10.1063/1.5041223
Sallehin, Nur Zahidah Izzati Mohd, Nadhrah Md Yatim, and Syahida Suhaimi. "A review on fabrication methods for segmented thermoelectric structure." In AIP Conference Proceedings, vol. 1972, no. 1, p. 030003. AIP Publishing LLC, 2018. https://doi.org/10.1063/1.5041224
Yatim, NADHRAH Md, SITI RAHMAH Md Nizar, and Syahida Suhaimi. "PCM-Based for Heat Storage in Solar-Thermal Converter." In Solid State Phenomena, vol. 307, pp. 297-303. Trans Tech Publications Ltd, 2020. https://doi.org/10.4028/www.scientific.net/SSP.307.297
