Torrefaction Temperature and Holding Time Effect on Khaya Senegalensis Biomass

Authors

  • Adli Azimi Abdul Rahman Department of Mechanical Engineering Technology, Faculty of Engineering Technology, Universiti Malaysia Perlis, 02100 Padang Besar, Perlis, Malaysia
  • Ras Izzati Ismail Department of Mechanical Engineering Technology, Faculty of Engineering Technology, Universiti Malaysia Perlis, 02100 Padang Besar, Perlis, Malaysia
  • Abdul Razak Shaari Department of Mechanical Engineering Technology, Faculty of Engineering Technology, Universiti Malaysia Perlis, 02100 Padang Besar, Perlis, Malaysia

DOI:

https://doi.org/10.37934/arfmts.81.1.150157

Keywords:

Torrefaction, a thermal pretreatment, biomass, Khaya senegalensis, temperature, holding time, fuel pellets

Abstract

Khaya senegalensis is fast growing plant, can be planted in marginal land and grow easily in Malaysia. Therefore, it has the potential to be developed as dedicated energy crops. This study was conducted to determine the effect of torrefaction in upgrading the quality of Khaya senegalensis biomass. Torrefaction has been known as one of the most promising pre-treatments for biomass. In this experiment, the biomass sample was torrefied in the muffle furnace at four different temperatures (225, 250, 275 and 300°C) and three durations (30, 60 and 90 minutes). The results show that both torrefaction temperature and duration posed strong impact on the biomass quality. It was found that the volatile matters of the biomass reduce significantly as the torrefaction severity increase. On the other hand, the ash and carbon content increase with the increasing temperature and duration. Most importantly the calorific value of the biomass sample amplifies to 22.26Mj/kg from 16.11Mj/kg of untreated sample when torrefied at 300°C for 90 minutes.

References

Herbert, GM Joselin, and A. Unni Krishnan. "Quantifying environmental performance of biomass energy." Renewable and Sustainable Energy Reviews 59 (2016): 292-308. https://doi.org/10.1016/j.rser.2015.12.254

Sansaniwal, S. K., Pal, K., Rosen, M. A., & Tyagi, S. K. (2017). Recent advances in the development of biomass gasification technology: A comprehensive review. Renewable and sustainable energy reviews, 72, 363-384. https://doi.org/10.1016/j.rser.2017.01.038

Glithero, N. J., Paul Wilson, and Stephen J. Ramsden. "Optimal combinable and dedicated energy crop scenarios for marginal land." Applied Energy 147 (2015): 82-91. https://doi.org/10.1016/j.apenergy.2015.01.119

Jiang, R., WANG, T. T., Jin, S. H. A. O., Sheng, G. U. O., Wei, Z. H. U., YU, Y. J., ... & Hatano, R. (2017). Modeling the biomass of energy crops: Descriptions, strengths and prospective. Journal of integrative agriculture, 16(6), 1197-1210. https://doi.org/10.1016/S2095-3119(16)61592-7

Suzuki, Kazunobu, Nobuyuki Tsuji, Yoshihito Shirai, Mohd Ali Hassan, and Mitsuru Osaki. "Evaluation of biomass energy potential towards achieving sustainability in biomass energy utilization in Sabah, Malaysia." Biomass and Bioenergy 97 (2017): 149-154. https://doi.org/10.1016/j.biombioe.2016.12.023

Ky-Dembele, Catherine, Jules Bayala, Patrice Savadogo, Mulualem Tigabu, Per Christer Odén, and Issaka Joseph Boussim. "Comparison of growth responses of Khaya senegalensis seedlings and stecklings to four irrigation regimes." Silva Fennica 44, no. 5 (2010): 787-798. https://doi.org/10.14214/sf.121

Abdullah, Rosazlin, Che Fauziah Ishak, Wan Rasidah Kadir, and Rosenani Abu Bakar. "Application of raw and composted recycled paper mill sludge on the growth of Khaya senegalensis and their effects on soil nutrients and heavy metals." International Journal of Agriculture and Biology 18, no. 1 (2016): 52-60. https://doi.org/10.17957/IJAB/15.0061

Hupa, Mikko, Oskar Karlström, and Emil Vainio. "Biomass combustion technology development–It is all about chemical details." Proceedings of the Combustion institute 36, no. 1 (2017): 113-134. https://doi.org/10.1016/j.proci.2016.06.152

García, Roberto, Consuelo Pizarro, Antonio G. Lavín, and Julio L. Bueno. "Biomass sources for thermal conversion. Techno-economical overview." Fuel 195 (2017): 182-189. https://doi.org/10.1016/j.fuel.2017.01.063

Bhutto, Abdul Waheed, Khadija Qureshi, Khanji Harijan, Rashid Abro, Tauqeer Abbas, Aqeel Ahmed Bazmi, Sadia Karim, and Guangren Yu. "Insight into progress in pre-treatment of lignocellulosic biomass." Energy 122 (2017): 724-745. https://doi.org/10.1016/j.energy.2017.01.005

Chen, Wei-Hsin, Yi-Qing Zhuang, Shih-Hsien Liu, Tarng-Tzuen Juang, and Chi-Ming Tsai. "Product characteristics from the torrefaction of oil palm fiber pellets in inert and oxidative atmospheres." Bioresource technology 199 (2016): 367-374. https://doi.org/10.1016/j.biortech.2015.08.066

Proskurina, Svetlana, Jussi Heinimö, Fabian Schipfer, and Esa Vakkilainen. "Biomass for industrial applications: The role of torrefaction." Renewable Energy 111 (2017): 265-274. https://doi.org/10.1016/j.renene.2017.04.015

Isemin, Rafail, Alexander Mikhalev, Dmitry Klimov, Panagiotis Grammelis, Nikolaos Margaritis, Dimitrios-Sotirios Kourkoumpas, and Viktor Zaichenko. "Torrefaction and combustion of pellets made of a mixture of coal sludge and straw." Fuel 210 (2017): 859-865. https://doi.org/10.1016/j.fuel.2017.09.032

Matali, S., N. A. Rahman, S. S. Idris, N. Yaacob, and A. B. Alias. "Lignocellulosic biomass solid fuel properties enhancement via torrefaction." Procedia Engineering 148 (2016): 671-678. https://doi.org/10.1016/j.proeng.2016.06.550

Matali, S., N. A. Rahman, S. S. Idris, N. Yaacob, and A. B. Alias. "Lignocellulosic biomass solid fuel properties enhancement via torrefaction." Procedia Engineering 148 (2016): 671-678. https://doi.org/10.1016/j.proeng.2016.06.550

Castellano, J. M?, M. Gómez, M. Fernández, L. S. Esteban, and J. E. Carrasco. "Study on the effects of raw materials composition and pelletization conditions on the quality and properties of pellets obtained from different woody and non woody biomasses." Fuel 139 (2015): 629-636. https://doi.org/10.1016/j.fuel.2014.09.033

Johansson, Ann-Christine, Henrik Wiinikka, Linda Sandström, Magnus Marklund, Olov GW Öhrman, and Jimmy Narvesjö. "Characterization of pyrolysis products produced from different Nordic biomass types in a cyclone pilot plant." Fuel processing technology 146 (2016): 9-19. https://doi.org/10.1016/j.fuproc.2016.02.006

Chen, Dengyu, Zhongcheng Zheng, Kexin Fu, Ze Zeng, Jiajia Wang, and Mengting Lu. "Torrefaction of biomass stalk and its effect on the yield and quality of pyrolysis products." Fuel 159 (2015): 27-32. https://doi.org/10.1016/j.fuel.2015.06.078

Kajina, Wanida, Patrick Rousset, Wei-Hsin Chen, Thitima Sornpitak, and Jean Michel Commandré. "Coupled effect of torrefaction and blending on chemical and energy properties for combustion of major open burned agriculture residues in Thailand." Renewable energy 118 (2018): 113-121. https://doi.org/10.1016/j.renene.2017.11.006

Hansted, Ana Larissa Santiago, Thiago Aguiar Cacuro, Gabriela Tami Nakashima, Vladimir Eliodoro Costa, Hiroyuki Yamamoto, and Fábio Minoru Yamaji. "Use of a lignocellulosic residue as solid fuel: The effect of ash content in the energy potential." Industrial Crops and Products 116 (2018): 209-214. https://doi.org/10.1016/j.indcrop.2018.02.042

Huang, Yu-Fong, Pei-Hsin Cheng, Pei-Te Chiueh, and Shang-Lien Lo. "Leucaena biochar produced by microwave torrefaction: Fuel properties and energy efficiency." Applied energy 204 (2017): 1018-1025. https://doi.org/10.1016/j.apenergy.2017.03.007

Tumuluru, Jaya Shankar. "Effect of deep drying and torrefaction temperature on proximate, ultimate composition, and heating value of 2-mm lodgepole pine (Pinus contorta) Grind." Bioengineering 3, no. 2 (2016): 16. https://doi.org/10.3390/bioengineering3020016

Cahyanti, Margareta Novian, Tharaka Rama Krishna C. Doddapaneni, and Timo Kikas. "Biomass torrefaction: An overview on process parameters, economic and environmental aspects and recent advancements." Bioresource technology 301 (2020): 122737. https://doi.org/10.1016/j.biortech.2020.122737

Wannapeera, Janewit, and Nakorn Worasuwannarak. "Examinations of chemical properties and pyrolysis behaviors of torrefied woody biomass prepared at the same torrefaction mass yields." Journal of Analytical and Applied Pyrolysis 115 (2015): 279-287. https://doi.org/10.1016/j.jaap.2015.08.007

Van der Stelt, M. J. C., Heiko Gerhauser, J. H. A. Kiel, and K. J. Ptasinski. "Biomass upgrading by torrefaction for the production of biofuels: A review." Biomass and bioenergy 35, no. 9 (2011): 3748-3762. https://doi.org/10.1016/j.biombioe.2011.06.023

Park, Junyeong, Jiajia Meng, Kwang Hun Lim, Orlando J. Rojas, and Sunkyu Park. "Transformation of lignocellulosic biomass during torrefaction." Journal of Analytical and Applied Pyrolysis 100 (2013): 199-206. https://doi.org/10.1016/j.jaap.2012.12.024

Downloads

Published

2021-03-16

How to Cite

Abdul Rahman, A. A. ., Ismail, R. I. ., & Shaari, A. R. . (2021). Torrefaction Temperature and Holding Time Effect on Khaya Senegalensis Biomass. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 81(1), 150–157. https://doi.org/10.37934/arfmts.81.1.150157

Issue

Section

Articles