Nanotechnology for Molecular Imaging of Atherosclerosis: Current Design and Approaches

Authors

  • Mardhiah Maslizan Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
  • Intan Diana Mat Azmi Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
  • Adila Mohamad Jaafar Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
  • Muhammad Salahuddin Haris Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang Darul Makmur, Malaysia

DOI:

https://doi.org/10.37934/arfmts.81.2.124138

Keywords:

Nanotechnology, atherosclerosis, nanoparticles, nanomedicines imaging

Abstract

Atherosclerosis complications such as myocardial infarction or stroke is still one of the most critical causes of death worldwide. Advance and innovative diagnostic technologies are urgently required to discover an early stage of the disease, such as plaque instability and thrombosis. A combination of molecular imaging probes based on well-designed nanomaterials with leading-edge imaging methods is currently concreting the direction for novel and distinctive approaches to examine the inflammatory growth in atherosclerosis. Over the past several decades, an exceptional understanding of the biological nature of atherosclerosis provides unique opportunities to better treat atherosclerotic disease with targeted imaging and nanomedicines. Consequently, tremendous development has been initiated in the nanotechnology application; the leading engineering tools working at molecular range, which is designed for diagnostic and therapeutic approach, called theranostic. This review underlying ideas involving the potential and development of molecular imaging technologies that had been invented for studying atherosclerosis. We envisage that many molecular imaging methods will become valuable assistants to the clinical management of targeted treatment in the atherosclerosis disease together with their challenges and future perspective in clinical translation.

References

World Health Organization?. "World health statistics 2020: monitoring health for the SDGs, sustainable development goals." Geneva: World Health Organization (2020).

Thomas, Hana, Jamie Diamond, Adrianna Vieco, Shaoli Chaudhuri, Eliezer Shinnar, Sara Cromer, Pablo Perel et al. "Global Atlas of Cardiovascular Disease 2000-2016: The Path to Prevention and Control." Global Heart 13, no. 3 (2018): 143-163. https://doi.org/10.1016/j.gheart.2018.09.511

Grobbee, D. E. "Global Capacity Building for Global Challenges in Cardiovascular Disease." Global Heart 14, no. 4 (2019): 345-346. https://doi.org/10.1016/j.gheart.2019.10.005

Basnet, Rajesh, Sandhya Khadka, Yuchun Wang, and Radheshyam Gupta. "Research Progress on Diagnosis and Treatment of Atherosclerosis." Science Letters 8, no. 1 (2020): 18-22.

Zdrojewicz, Zygmunt, Mateusz Waracki, Bartosz Bugaj, Damian Pypno, and Krzysztof Caba?a. "Medical applications of nanotechnology." Advances in Hygiene & Experimental Medicine/Postepy Higieny i Medycyny Doswiadczalnej 69 (2015): 1196-1204. https://doi.org/10.5604/17322693.1177169

Wang, Ji, Yu-Xia Kang, Wen Pan, Wan Lei, Bin Feng, and Xiao-Juan Wang. "Enhancement of anti-inflammatory activity of curcumin using phosphatidylserine-containing nanoparticles in cultured macrophages." International Journal of Molecular Sciences 17, no. 6 (2016): 969. https://doi.org/10.3390/ijms17060969

The Royal Society & The Royal Academy of Engineering. "Nanoscience and nanotechnologies: opportunities and uncertainties." The Royal Society. Clyvedon Press, Cardiff, UK (2004).

Zia, Adil, Yuao Wu, Tuan Nguyen, Xiaowei Wang, Karlheinz Peter, and Hang T. Ta. "The choice of targets and ligands for site-specific delivery of nanomedicine to atherosclerosis." Cardiovascular research 116, no. 13 (2020): 2055-2068. https://doi.org/10.1093/cvr/cvaa047

Jamalidinan, Fatemehsadat, Ali Fatehi Hassanabad, Christopher J. François, and Julio Garcia. "Four-dimensional-flow Magnetic Resonance Imaging of the Aortic Valve and Thoracic Aorta." Radiologic Clinics 58, no. 4 (2020): 753-763. https://doi.org/10.1016/j.rcl.2020.02.008

MacRitchie, Neil, Gianluca Grassia, Jonathan Noonan, Paul Garside, Duncan Graham, and Pasquale Maffia. "Molecular imaging of atherosclerosis: spotlight on Raman spectroscopy and surface-enhanced Raman scattering." Heart 104, no. 6 (2018): 460-467. https://doi.org/10.1136/heartjnl-2017-311447

Chen, L., Z. Jiang, O. U. Akakuru, L. Yang, J. Li, S. Ma, and A. Wu. "Recent progress in the detection and treatment of atherosclerosis by nanoparticles." Materials Today Chemistry 17 (2020): 100280. https://doi.org/10.1016/j.mtchem.2020.100280

Schnitzler, Johan G., Kim E. Dzobo, Nick S. Nurmohamed, Erik SG Stroes, and Jeffrey Kroon. "Surmounting the endothelial barrier for delivery of drugs and imaging tracers." Atherosclerosis (2020): 1-9. https://doi.org/10.1016/j.atherosclerosis.2020.04.025

Ou, Le-chun, Shan Zhong, Jing-song Ou, and Jin-wei Tian. "Application of targeted therapy strategies with nanomedicine delivery for atherosclerosis." Acta Pharmacologica Sinica (2020): 1-8. https://doi.org/10.1038/s41401-020-0436-0

Xu, Wan, Shuihua Zhang, Quan Zhou, and Wenli Chen. "VHPKQHR peptide modified magnetic mesoporous nanoparticles for MRI detection of atherosclerosis lesions." Artificial Cells, Nanomedicine, and Biotechnology 47, no. 1 (2019): 2440-2448. https://doi.org/10.1080/21691401.2019.1626411

Pellico, Juan, Irene Fernández-Barahona, Marina Benito, Ángel Gaitán-Simón, Lucía Gutiérrez, Jesús Ruiz-Cabello, and Fernando Herranz. "Unambiguous detection of atherosclerosis using bioorthogonal nanomaterials." Nanomedicine: Nanotechnology, Biology and Medicine 17 (2019): 26-35. https://doi.org/10.1016/j.nano.2018.12.015

Wei, Qiuzhe, Jing Wang, Wei Shi, Bo Zhang, Huiwen Jiang, Mengyi Du, Heng Mei, and Yu Hu. "Improved in vivo detection of atherosclerotic plaques with a tissue factor-targeting magnetic nanoprobe." Acta Biomaterialia 90 (2019): 324-336. https://doi.org/10.1016/j.actbio.2019.04.014

Sherin, Sainulabdeen, Sreedharan Balachandran, and Annie Abraham. "Curcumin incorporated titanium dioxide nanoparticles as MRI contrasting agent for early diagnosis of atherosclerosis-rat model." Veterinary and Animal Science (2020): 100090. https://doi.org/10.1016/j.vas.2020.100090

Weissleder, Ralph, G. Elizondo, J. Wittenberg, C. A. Rabito, H. H. Bengele, and L. Josephson. "Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging." Radiology 175, no. 2 (1990): 489-493. https://doi.org/10.1148/radiology.175.2.2326474

Anzai, Yoshimi, Martin R. Prince, Thomas L. Chenevert, Jeffrey H. Maki, Frank Londy Manette London, and Stuart J. McLachlan. "MR angiography with an ultrasmall superparamagnetic iron oxide blood pool agent." Journal of Magnetic Resonance Imaging 7, no. 1 (1997): 209-214. https://doi.org/10.1002/jmri.1880070132

Ruehm, Stefan G., Claire Corot, Peter Vogt, Stefan Kolb, and Jo?rg F. Debatin. "Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits." Circulation 103, no. 3 (2001): 415-422. https://doi.org/10.1161/01.CIR.103.3.415

Lanza, Gregory M., Christine H. Lorenz, Stefan E. Fischer, Michael J. Scott, William P. Cacheris, Robert J. Kaufmann, Patrick J. Gaffney, and Samuel A. Wickline. "Enhanced detection of thrombi with a novel fibrin-targeted magnetic resonance imaging agent." Academic Radiology 5 (1998): S173-S176. https://doi.org/10.1016/S1076-6332(98)80097-4

Yu, Xin, Sheng?Kwei Song, Junjie Chen, Michael J. Scott, Ralph J. Fuhrhop, Christopher S. Hall, Patrick J. Gaffney, Samuel A. Wickline, and Gregory M. Lanza. "High?resolution MRI characterization of human thrombus using a novel fibrin?targeted paramagnetic nanoparticle contrast agent." Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine 44, no. 6 (2000): 867-872. https://doi.org/10.1002/1522-2594(200012)44:6<867::AID-MRM7>3.0.CO;2-P

Van Tilborg, Geralda AF, Esad Vucic, Gustav J. Strijkers, David P. Cormode, Venkatesh Mani, Torjus Skajaa, Chris PM Reutelingsperger, Zahi A. Fayad, Willem JM Mulder, and Klaas Nicolay. "Annexin A5-functionalized bimodal nanoparticles for MRI and fluorescence imaging of atherosclerotic plaques." Bioconjugate Chemistry 21, no. 10 (2010): 1794-1803. https://doi.org/10.1021/bc100091q

Wang, Kezheng, Dipanjan Pan, Anne H. Schmieder, Angana Senpan, Shelton D. Caruthers, Grace Cui, John S. Allen, Huiying Zhang, Baozhong Shen, and Gregory M. Lanza. "Atherosclerotic neovasculature MR imaging with mixed manganese-gadolinium nanocolloids in hyperlipidemic rabbits." Nanomedicine: Nanotechnology, Biology and Medicine 11, no. 3 (2015): 569-578. https://doi.org/10.1016/j.nano.2014.12.008

Hyafil, Fabien, Jean-Christophe Cornily, Jonathan E. Feig, Ronald Gordon, Esad Vucic, Vardan Amirbekian, Edward A. Fisher, Valentin Fuster, Laurent J. Feldman, and Zahi A. Fayad. "Noninvasive detection of macrophages using a nanoparticulate contrast agent for computed tomography." Nature Medicine 13, no. 5 (2007): 636-641. https://doi.org/10.1038/nm1571

Uchida, Masaki, Hisanori Kosuge, Masahiro Terashima, Deborah A. Willits, Lars O. Liepold, Mark J. Young, Michael V. McConnell, and Trevor Douglas. "Protein cage nanoparticles bearing the LyP-1 peptide for enhanced imaging of macrophage-rich vascular lesions." ACS Nano 5, no. 4 (2011): 2493-2502. https://doi.org/10.1021/nn102863y

Qin, Huan, Yue Zhao, Jian Zhang, Xiao Pan, Sihua Yang, and Da Xing. "Inflammation-targeted gold nanorods for intravascular photoacoustic imaging detection of matrix metalloproteinase-2 (MMP2) in atherosclerotic plaques." Nanomedicine: Nanotechnology, Biology and Medicine 12, no. 7 (2016): 1765-1774. https://doi.org/10.1016/j.nano.2016.02.016

Wei, Qiuzhe, Jing Wang, Wei Shi, Bo Zhang, Huiwen Jiang, Mengyi Du, Heng Mei, and Yu Hu. "Improved in vivo detection of atherosclerotic plaques with a tissue factor-targeting magnetic nanoprobe." Acta Biomaterialia 90 (2019): 324-336. https://doi.org/10.1016/j.actbio.2019.04.014

Banik, Bhabatosh, Bapurao Surnar, Brett W. Askins, Mainak Banerjee, and Shanta Dhar. "Dual-Targeted Synthetic Nanoparticles for Cardiovascular Diseases." ACS Applied Materials & Interfaces 12, no. 6 (2020): 6852-6862. https://doi.org/10.1021/acsami.9b19036

Murray, Christopher JL, and Alan D. Lopez. "Alternative projections of mortality and disability by cause 1990-2020: Global Burden of Disease Study." The Lancet 349, no. 9064 (1997): 1498-1504. https://doi.org/10.1016/S0140-6736(96)07492-2

Tsimikas, Sotirios. "Noninvasive imaging of oxidized low-density lipoprotein in atherosclerotic plaques with tagged oxidation-specific antibodies." The American Journal of Cardiology 90, no. 10 (2002): L22-L27. https://doi.org/10.1016/S0002-9149(02)02958-2

Wickline, Samuel A., and Gregory M. Lanza. "Nanotechnology for Molecular Imaging and Targeted Therapy." Circulation 107 (2003): 1092-1095. https://doi.org/10.1161/01.CIR.0000059651.17045.77

Choudhury, Robin P., Valentin Fuster, and Zahi A. Fayad. "Molecular, cellular and functional imaging of atherothrombosis." Nature Reviews Drug Discovery 3, no. 11 (2004): 913-925. https://doi.org/10.1038/nrd1548

Davies, John R., James H. Rudd, and Peter L. Weissberg. "Molecular and metabolic imaging of atherosclerosis." Journal of Nuclear Medicine 45, no. 11 (2004): 1898-1907.

Lindner, Jonathan R. "Microbubbles in medical imaging: current applications and future directions." Nature Reviews Drug Discovery 3, no. 6 (2004): 527-533. https://doi.org/10.1038/nrd1417

Strauss, H. William, Ravinder K. Grewal, and Neeta Pandit-Taskar. "Molecular imaging in nuclear cardiology." In Seminars in Nuclear Medicine, vol. 34, no. 1, pp. 47-55. WB Saunders, 2004. https://doi.org/10.1053/j.semnuclmed.2003.09.006

Dobrucki, Lawrence W., and Albert J. Sinusas. "Cardiovascular molecular imaging." In Seminars in Nuclear Medicine, vol. 35, no. 1, pp. 73-81. WB Saunders, 2005. https://doi.org/10.1053/j.semnuclmed.2004.09.006

Yoo, Sang Pil, Federico Pineda, John C. Barrett, Christopher Poon, Matthew Tirrell, and Eun Ji Chung. "Gadolinium-functionalized peptide amphiphile micelles for multimodal imaging of atherosclerotic lesions." ACS Omega 1, no. 5 (2016): 996-1003. https://doi.org/10.1021/acsomega.6b00210

Rashid, Imran, Ghassan J. Maghzal, Yung-Chih Chen, David Cheng, Jihan Talib, Darren Newington, Minqin Ren et al. "Myeloperoxidase is a potential molecular imaging and therapeutic target for the identification and stabilization of high-risk atherosclerotic plaque." European Heart Journal 39, no. 35 (2018): 3301-3310. https://doi.org/10.1093/eurheartj/ehy419

Prévot, Geoffrey, Tina Kauss, Cyril Lorenzato, Alexandra Gaubert, Mélusine Larivière, Julie Baillet, Jeanny Laroche-Traineau et al. "Iron oxide core oil-in-water nanoemulsion as tracer for atherosclerosis MPI and MRI imaging." International Journal of Pharmaceutics 532, no. 2 (2017): 669-676. https://doi.org/10.1016/j.ijpharm.2017.09.010

Beldman, Thijs J., Max L. Senders, Amr Alaarg, Carlos Pe?rez-Medina, Jun Tang, Yiming Zhao, Francois Fay et al. "Hyaluronan nanoparticles selectively target plaque-associated macrophages and improve plaque stability in atherosclerosis." ACS Nano 11, no. 6 (2017): 5785-5799.

Chhour, Peter, Pratap C. Naha, Sean M. O'Neill, Harold I. Litt, Muredach P. Reilly, Victor A. Ferrari, and David P. Cormode. "Labeling monocytes with gold nanoparticles to track their recruitment in atherosclerosis with computed tomography." Biomaterials 87 (2016): 93-103. https://doi.org/10.1016/j.biomaterials.2016.02.009

Liang, Minmin, Hui Tan, Jun Zhou, Tao Wang, Demin Duan, Kelong Fan, Jiuyang He et al. "Bioengineered H-ferritin nanocages for quantitative imaging of vulnerable plaques in atherosclerosis." ACS Nano 12, no. 9 (2018): 9300-9308. https://doi.org/10.1021/acsnano.8b04158

Anselmo, Aaron C., Christa Lynn Modery-Pawlowski, Stefano Menegatti, Sunny Kumar, Douglas R. Vogus, Lewis L. Tian, Ming Chen, Todd M. Squires, Anirban Sen Gupta, and Samir Mitragotri. "Platelet-like nanoparticles: mimicking shape, flexibility, and surface biology of platelets to target vascular injuries." ACS Nano 8, no. 11 (2014): 11243-11253. https://doi.org/10.1021/nn503732m

Wang, Kezheng, Dipanjan Pan, Anne H. Schmieder, Angana Senpan, Shelton D. Caruthers, Grace Cui, John S. Allen, Huiying Zhang, Baozhong Shen, and Gregory M. Lanza. "Atherosclerotic neovasculature MR imaging with mixed manganese-gadolinium nanocolloids in hyperlipidemic rabbits." Nanomedicine: Nanotechnology, Biology and Medicine 11, no. 3 (2015): 569-578. https://doi.org/10.1016/j.nano.2014.12.008

Wei, Xiaoli, Man Ying, Diana Dehaini, Yuanyuan Su, Ashley V. Kroll, Jiarong Zhou, Weiwei Gao, Ronnie H. Fang, Shu Chien, and Liangfang Zhang. "Nanoparticle functionalization with platelet membrane enables multifactored biological targeting and detection of atherosclerosis." ACS Nano 12, no. 1 (2018): 109-116. https://doi.org/10.1021/acsnano.7b07720

Carrascosa, Patricia M., Carlos M. Capuñay, Pablo Garcia-Merletti, Jorge Carrascosa, and Mario J. Garcia. "Characterization of coronary atherosclerotic plaques by multidetector computed tomography." The American Journal of Cardiology 97, no. 5 (2006): 598-602. https://doi.org/10.1016/j.amjcard.2005.09.096

Pohle, Karsten, Stephan Achenbach, Briain MacNeill, Dieter Ropers, Maros Ferencik, Fabian Moselewski, Udo Hoffmann, Thomas J. Brady, Ik-kyung Jang, and Werner G. Daniel. "Characterization of non-calcified coronary atherosclerotic plaque by multi-detector row CT: comparison to IVUS." Atherosclerosis 190, no. 1 (2007): 174-180. https://doi.org/10.1016/j.atherosclerosis.2006.01.013

Arad, Yadon, Kenneth J. Goodman, Marguerite Roth, David Newstein, and Alan D. Guerci. "Coronary calcification, coronary disease risk factors, C-reactive protein, and atherosclerotic cardiovascular disease events: the St. Francis Heart Study." Journal of the American College of Cardiology 46, no. 1 (2005): 158-165. https://doi.org/10.1016/j.jacc.2005.02.088

Leber, Alexander W., Andreas Knez, Franz von Ziegler, Alexander Becker, Konstantin Nikolaou, Stephan Paul, Bernd Wintersperger et al. "Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography: a comparative study with quantitative coronary angiography and intravascular ultrasound." Journal of the American College of Cardiology 46, no. 1 (2005): 147-154. https://doi.org/10.1016/j.jacc.2005.03.071

Leber, Alexander W., Andreas Knez, Alexander Becker, Christoph Becker, Franz von Ziegler, Konstantin Nikolaou, Carsten Rist et al. "Accuracy of multidetector spiral computed tomography in identifying and differentiating the composition of coronary atherosclerotic plaques: a comparative study with intracoronary ultrasound." Journal of the American College of Cardiology 43, no. 7 (2004): 1241-1247. https://doi.org/10.1016/j.jacc.2003.10.059

Cormode, David P., Ewald Roessl, Axel Thran, Torjus Skajaa, Ronald E. Gordon, Jens-Peter Schlomka, Valentin Fuster et al. "Atherosclerotic plaque composition: analysis with multicolor CT and targeted gold nanoparticles." Radiology 256, no. 3 (2010): 774-782. https://doi.org/10.1148/radiol.10092473

Choudhury, Robin P., Valentin Fuster, Juan J. Badimon, Edward A. Fisher, and Zahi A. Fayad. "MRI and characterization of atherosclerotic plaque: emerging applications and molecular imaging." Arteriosclerosis, Thrombosis, and Vascular Biology 22, no. 7 (2002): 1065-1074. https://doi.org/10.1161/01.ATV.0000019735.54479.2F

Yuan, Chun, Shao-xiong Zhang, Nayak L. Polissar, Denise Echelard, Geraldo Ortiz, Joseph W. Davis, Elizabeth Ellington, Marina S. Ferguson, and Thomas S. Hatsukami. "Identification of fibrous cap rupture with magnetic resonance imaging is highly associated with recent transient ischemic attack or stroke." Circulation 105, no. 2 (2002): 181-185. https://doi.org/10.1161/hc0202.102121

Xu, Wan, Shuihua Zhang, Quan Zhou, and Wenli Chen. "VHPKQHR peptide modified magnetic mesoporous nanoparticles for MRI detection of atherosclerosis lesions." Artificial Cells, Nanomedicine, and Biotechnology 47, no. 1 (2019): 2440-2448. https://doi.org/10.1080/21691401.2019.1626411

Corti, Roberto, Zahi A. Fayad, Valentin Fuster, Stephen G. Worthley, Gerard Helft, James Chesebro, Michele Mercuri, and Juan J. Badimon. "Effects of lipid-lowering by simvastatin on human atherosclerotic lesions: a longitudinal study by high-resolution, noninvasive magnetic resonance imaging." Circulation 104, no. 3 (2001): 249-252. https://doi.org/10.1161/01.CIR.104.3.249

Chen, Wei, David P. Cormode, Zahi A. Fayad, and Willem JM Mulder. "Nanoparticles as magnetic resonance imaging contrast agents for vascular and cardiac diseases." Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 3, no. 2 (2011): 146-161. https://doi.org/10.1002/wnan.114

Kooi, Marianne Eline, V. C. Cappendijk, K. B. J. M. Cleutjens, A. G. H. Kessels, P. J. E. H. M. Kitslaar, M. Borgers, P. M. Frederik, M. J. A. P. Daemen, and J. M. A. Van Engelshoven. "Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging." Circulation 107, no. 19 (2003): 2453-2458. https://doi.org/10.1161/01.CIR.0000068315.98705.CC

Nahrendorf, Matthias, Farouc A. Jaffer, Kimberly A. Kelly, David E. Sosnovik, Elena Aikawa, Peter Libby, and Ralph Weissleder. "Noninvasive vascular cell adhesion molecule-1 imaging identifies inflammatory activation of cells in atherosclerosis." Circulation 114, no. 14 (2006): 1504-1511. https://doi.org/10.1161/CIRCULATIONAHA.106.646380

McAteer, Martina A., and Robin P. Choudhury. "Targeted molecular imaging of vascular inflammation in cardiovascular disease using nano-and micro-sized agents." Vascular Pharmacology 58, no. 1-2 (2013): 31-38. https://doi.org/10.1016/j.vph.2012.10.005

Ametamey, Simon M., Michael Honer, and Pius August Schubiger. "Molecular imaging with PET." Chemical Reviews 108, no. 5 (2008): 1501-1516. https://doi.org/10.1021/cr0782426

Zhao, Jianhong, Junwei Chen, Shengnan Ma, Qianqian Liu, Lixian Huang, Xiani Chen, Kaiyan Lou, and Wei Wang. "Recent developments in multimodality fluorescence imaging probes." Acta Pharmaceutica Sinica B 8, no. 3 (2018): 320-338. https://doi.org/10.1016/j.apsb.2018.03.010

Pimlott, Sally L., and Andrew Sutherland. "Molecular tracers for the PET and SPECT imaging of disease." Chemical Society Reviews 40, no. 1 (2011): 149-162. https://doi.org/10.1039/B922628C

Lu, Yu-Chen, Cheng-Xiong Yang, and Xiu-Ping Yan. "Radiopaque tantalum oxide coated persistent luminescent nanoparticles as multimodal probes for in vivo near-infrared luminescence and computed tomography bioimaging." Nanoscale 7, no. 42 (2015): 17929-17937. https://doi.org/10.1039/C5NR05623C

Hu, Bo, Dayuan Li, Tatsuya Sawamura, and Jawahar L. Mehta. "Oxidized LDL through LOX-1 modulates LDL-receptor expression in human coronary artery endothelial cells." Biochemical and Biophysical Research Communications 307, no. 4 (2003): 1008-1012. https://doi.org/10.1016/S0006-291X(03)01295-6

Li, Dayuan, Amit R. Patel, Alexander L. Klibanov, Christopher M. Kramer, Mirta Ruiz, Bum-Yong Kang, Jawahar L. Mehta, George A. Beller, David K. Glover, and Craig H. Meyer. "Molecular imaging of atherosclerotic plaques targeted to oxidized LDL receptor LOX-1 by SPECT/CT and magnetic resonance." Circulation: Cardiovascular Imaging 3, no. 4 (2010): 464-472. https://doi.org/10.1161/CIRCIMAGING.109.896654

Escobedo, Jorge O., Oleksandr Rusin, Soojin Lim, and Robert M. Strongin. "NIR dyes for bioimaging applications." Current Opinion in Chemical Biology 14, no. 1 (2010): 64-70. https://doi.org/10.1016/j.cbpa.2009.10.022

Xu, Yuling, Mei Tian, Hong Zhang, Yuling Xiao, Xuechuan Hong, and Yao Sun. "Recent development on peptide-based probes for multifunctional biomedical imaging." Chinese Chemical Letters 29, no. 7 (2018): 1093-1097. https://doi.org/10.1016/j.cclet.2018.03.032

Hilderbrand, Scott A., and Ralph Weissleder. "Near-infrared fluorescence: application to in vivo molecular imaging." Current Opinion in Chemical Biology 14, no. 1 (2010): 71-79. https://doi.org/10.1016/j.cbpa.2009.09.029

Frangioni, John V. "In vivo near-infrared fluorescence imaging." Current Opinion in Chemical Biology 7, no. 5 (2003): 626-634. https://doi.org/10.1016/j.cbpa.2003.08.007

Pansare, Vikram J., Shahram Hejazi, William J. Faenza, and Robert K. Prud'homme. "Review of long-wavelength optical and NIR imaging materials: contrast agents, fluorophores, and multifunctional nano carriers." Chemistry of Materials 24, no. 5 (2012): 812-827. https://doi.org/10.1021/cm2028367

Dip, Fernando D., Mayank Roy, Steven Perrins, Rama Rao Ganga, Emanuele Lo Menzo, Samuel Szomstein, and Raul Rosenthal. "Technical description and feasibility of laparoscopic adrenal contouring using fluorescence imaging." Surgical Endoscopy 29, no. 3 (2015): 569-574. https://doi.org/10.1007/s00464-014-3699-z

Zhang, Shuihua, Wan Xu, Peng Gao, Wenli Chen, and Quan Zhou. "Construction of dual nanomedicines for the imaging and alleviation of atherosclerosis." Artificial Cells, Nanomedicine, and Biotechnology 48, no. 1 (2020): 169-179. https://doi.org/10.1080/21691401.2019.1699823

Resch-Genger, Ute, Markus Grabolle, Sara Cavaliere-Jaricot, Roland Nitschke, and Thomas Nann. "Quantum dots versus organic dyes as fluorescent labels." Nature Methods 5, no. 9 (2008): 763-775. https://doi.org/10.1038/nmeth.1248

Gonçalves, M. Sameiro T. "Fluorescent labeling of biomolecules with organic probes." Chemical Reviews 109, no. 1 (2009): 190-212. https://doi.org/10.1021/cr0783840

Zhang, Shuihua, Wan Xu, Peng Gao, Wenli Chen, and Quan Zhou. "Construction of dual nanomedicines for the imaging and alleviation of atherosclerosis." Artificial Cells, Nanomedicine, and Biotechnology 48, no. 1 (2020): 169-179. https://doi.org/10.1080/21691401.2019.1699823

Cho, Eun Chul, Charles Glaus, Jingyi Chen, Michael J. Welch, and Younan Xia. "Inorganic nanoparticle-based contrast agents for molecular imaging." Trends in Molecular Medicine 16, no. 12 (2010): 561-573. https://doi.org/10.1016/j.molmed.2010.09.004

Zheng, Cuifang, Mingbin Zheng, Ping Gong, Dongxue Jia, Pengfei Zhang, Bihua Shi, Zonghai Sheng, Yifan Ma, and Lintao Cai. "Indocyanine green-loaded biodegradable tumor targeting nanoprobes for in vitro and in vivo imaging." Biomaterials 33, no. 22 (2012): 5603-5609. https://doi.org/10.1016/j.biomaterials.2012.04.044

Ikeda, Hiroyuki, Akira Ishii, Kohei Sano, Hideo Chihara, Daisuke Arai, Yu Abekura, Hidehisa Nishi, Masahiro Ono, Hideo Saji, and Susumu Miyamoto. "Activatable fluorescence imaging of macrophages in atherosclerotic plaques using iron oxide nanoparticles conjugated with indocyanine green." Atherosclerosis 275 (2018): 1-10. https://doi.org/10.1016/j.atherosclerosis.2018.05.028

Ma, Sai, Seyed Mohammad Motevalli, Jiangwei Chen, Meng-Qi Xu, Yabin Wang, Jing Feng, Ya Qiu et al. "Precise theranostic nanomedicines for inhibiting vulnerable atherosclerotic plaque progression through regulation of vascular smooth muscle cell phenotype switching." Theranostics 8, no. 13 (2018): 3693-3706. https://doi.org/10.7150/thno.24364

Liu, Yonggang, Taylor Hanley, Hao Chen, Steven R. Long, Sanjiv S. Gambhir, Zhen Cheng, Joseph C. Wu, Georges El Fakhri, Bahman Anvari, and Raiyan T. Zaman. "Non-Invasive Photoacoustic Imaging of In Vivo Mice with Erythrocyte Derived Optical Nanoparticles to Detect CAD/MI." Scientific Reports 10, no. 1 (2020): 1-9. https://doi.org/10.1038/s41598-020-62868-1

Yu, Xin, Sheng?Kwei Song, Junjie Chen, Michael J. Scott, Ralph J. Fuhrhop, Christopher S. Hall, Patrick J. Gaffney, Samuel A. Wickline, and Gregory M. Lanza. "High?resolution MRI characterization of human thrombus using a novel fibrin?targeted paramagnetic nanoparticle contrast agent." Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine 44, no. 6 (2000): 867-872. https://doi.org/10.1002/1522-2594(200012)44:6<867::AID-MRM7>3.0.CO;2-P

Gao, Cheng, Qiaoxian Huang, Conghui Liu, Cheryl HT Kwong, Ludan Yue, Jian-Bo Wan, Simon MY Lee, and Ruibing Wang. "Treatment of atherosclerosis by macrophage-biomimetic nanoparticles via targeted pharmacotherapy and sequestration of proinflammatory cytokines." Nature Communications 11, no. 1 (2020): 1-14. https://doi.org/10.1038/s41467-020-16439-7

Khraishah, Haitham, and Farouc A. Jaffer. "Intravascular molecular imaging to detect high-risk vulnerable plaques: current knowledge and future perspectives." Current Cardiovascular Imaging Reports 13, no. 2 (2020): 1-10. https://doi.org/10.1007/s12410-020-9527-z

Larivière, Mélusine, Cyril Samuel Lorenzato, Laurent Adumeau, Samuel Bonnet, Audrey Hémadou, Marie-Josée Jacobin-Valat, Abdelmajid Noubhani et al. "Multimodal molecular imaging of atherosclerosis: Nanoparticles functionalized with scFv fragments of an anti-?IIb?3 antibody." Nanomedicine: Nanotechnology, Biology and Medicine 22 (2019): 102082. https://doi.org/10.1016/j.nano.2019.102082

Zhang, Juchen, Zengying Qiao, Peipei Yang, Jie Pan, Lei Wang, and Hao Wang. "Recent advances in near?infrared absorption nanomaterials as photoacoustic contrast agents for biomedical imaging." Chinese Journal of Chemistry 33, no. 1 (2015): 35-52.

Downloads

Published

2021-04-01

How to Cite

Maslizan, M. ., Mat Azmi, I. D., Mohamad Jaafar, A. ., & Haris, M. S. . (2021). Nanotechnology for Molecular Imaging of Atherosclerosis: Current Design and Approaches. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 81(2), 124–138. https://doi.org/10.37934/arfmts.81.2.124138

Issue

Section

Articles