Characteristics of Spray Angle and Discharge Coefficient of Pressure-Swirl Atomizer

Authors

  • Zulkifli Abdul Ghaffar Faculty of Mechanical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia
  • Salmiah Kasolang Faculty of Mechanical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia
  • Ahmad Hussein Abdul Hamid Faculty of Mechanical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia

DOI:

https://doi.org/10.37934/arfmts.85.2.107114

Keywords:

Pressure-swirl atomizer, Spray angle, Discharge coefficient, Atomizer geometrical constant

Abstract

A widely distributed spray is an important feature for an atomizer which is required in various applications such as gas cooling, gas turbine combustion, and fluidized bed granulator. Pressure-swirl atomizer is an example of atomizer which provides a wide spray angle through the swirling effect inside the atomizer. One of the important parameters affecting spray angle is atomizer geometrical constant, K. Another important parameter of pressure-swirl atomizer is discharge coefficient, Cd. Discharge coefficient describes the throughput of the liquid flow. An experimental test-rig was constructed to conduct the performance test of the atomizer. Acquired images were analysed using image-processing software. It was found that K has inverse relation with spray angle and direct relation with Cd. Prediction of spray angle and Cd using existing correlations also yields similar trends with the experimental results, but some parameters still need to be considered to perform an accurate prediction.

Author Biographies

Zulkifli Abdul Ghaffar, Faculty of Mechanical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia

zulkiflighaffar@gmail.com

Salmiah Kasolang, Faculty of Mechanical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia

salmiahk@uitm.edu.my

Ahmad Hussein Abdul Hamid, Faculty of Mechanical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia

hussein@uitm.edu.my

References

Schick, Rudolf J., and Keith F. Knasiak. "Spray Characterization for Wet Compression Gas Cooling Applications." In Eighth International Conference on Liquid Atomization and Spray Systems, Pasadena, CA. 2000.

Da Silva Couto, Heraldo, Pedro Teixeira Lacava, Demetrio Bastos-Netto, and Amilcar Porto Pimenta. "Experimental evaluation of a low pressure-swirl atomizer applied engineering design procedure." Journal of propulsion and power 25, no. 2 (2009): 358-364. https://doi.org/10.2514/1.37018

Jumadi, Rozita, Amir Khalid, Norrizam Jaat, Iqbal Shahridzuan Abdullah, Nofrizalidris Darlis, Bukhari Manshoor, Azahari Razali, Azwan Sapit, and Ridwan Saputra Nursal. "Analysis of Spray Characteristics and High Ambient Pressure in Gasoline Direct Injection using Computational Fluid Dynamics." CFD Letters 12, no. 5 (2020): 36-51. https://doi.org/10.37934/cfdl.12.5.3651

Chen, S. K., A. H. Lefebvre, and J. Rollbuhler. "Factors influencing the effective spray cone angle of pressure-swirl atomizers." (1992): 97-103. https://doi.org/10.1115/1.2906313

Juslin, Laura, Osmo Antikainen, Pasi Merkku, and Jouko Yliruusi. "Droplet size measurement: I. Effect of three independent variables on droplet size distribution and spray angle from a pneumatic nozzle." International journal of pharmaceutics 123, no. 2 (1995): 247-256. https://doi.org/10.1016/0378-5173(95)00081-S

Hamid, Ahmad Hussein Abdul, and Rahim Atan. "Spray characteristics of jet–swirl nozzles for thrust chamber injector." Aerospace Science and Technology 13, no. 4-5 (2009): 192-196. https://doi.org/10.1016/j.ast.2008.10.003

Rizk, N. K., and A. H. Lefebvre. "Prediction of velocity coefficient and spray cone angle for simplex swirl atomizers." International Journal of Turbo and Jet Engines 4, no. 1-2 (1987): 65-74. https://doi.org/10.1515/TJJ.1987.4.1-2.65

Dombrowski, Norman, and David Hasson. "The flow characteristics of swirl (centrifugal) spray pressure nozzles with low viscosity liquids." AIChE Journal 15, no. 4 (1969): 604-611. https://doi.org/10.1002/aic.690150424

Liao, Y., A. T. Sakman, S. M. Jeng, M. A. Jog, and M. A. Benjamin. "A comprehensive model to predict simplex atomizer performance." (1999): 285-294. https://doi.org/10.1115/1.2817119

Hong, Moongeun, Jaehyoung Jeon, and Soo Yong Lee. "Discharge coefficient of pressure-swirl atomizers with low nozzle opening coefficients." Journal of Propulsion and Power 28, no. 1 (2012): 213-218. https://doi.org/10.2514/1.B34168

Hammad, Farid A., Kai Sun, Jan Jedelsky, and Tianyou Wang. "The Effect of Geometrical, Operational, Mixing Methods, and Rheological Parameters on Discharge Coefficients of Internal-Mixing Twin-Fluid Atomizers." Processes 8, no. 5 (2020): 563. https://doi.org/10.3390/pr8050563

Rizk, N. K., and Arthur Henry Lefebvre. "Internal flow characteristics of simplex swirl atomizers." Journal of Propulsion and Power 1, no. 3 (1985): 193-199. https://doi.org/10.2514/3.22780

Hedland, M. R. "Flow Transmitter Installations and Programming Instructions, vol." (2008).

Ghaffar, Zulkifli Abdul, Salmiah Kasolang, and Ahmad Hussein Abdul Hamid. "Characteristics of swirl effervescent atomizer spray angle." In Applied Mechanics and Materials, vol. 607, pp. 108-111. Trans Tech Publications Ltd, 2014. https://doi.org/10.4028/www.scientific.net/AMM.607.108

Dafsari, Reza Alidoost, Hyung Ju Lee, Jeongsik Han, Dong-Chang Park, and Jeekeun Lee. "Viscosity effect on the pressure swirl atomization of an alternative aviation fuel." Fuel 240 (2019): 179-191. https://doi.org/10.1016/j.fuel.2018.11.132

Zhang, Tao, Bo Dong, Xiaohong Chen, Zhonghua Qiu, Rui Jiang, and Weizhong Li. "Spray characteristics of pressure-swirl nozzles at different nozzle diameters." Applied thermal engineering 121 (2017): 984-991. https://doi.org/10.1016/j.applthermaleng.2017.04.089

Downloads

Published

2021-08-09

How to Cite

Abdul Ghaffar, Z., Kasolang, S. ., & Abdul Hamid, A. H. (2021). Characteristics of Spray Angle and Discharge Coefficient of Pressure-Swirl Atomizer. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 85(2), 107–114. https://doi.org/10.37934/arfmts.85.2.107114

Issue

Section

Articles

Most read articles by the same author(s)