Statistical and Simulation Analysis on Dimple Configurations Performance of Heat Dissipation

Authors

  • Mohd Shahir Kasim Advanced Manufacturing Centre, Universiti Teknikal Malaysia Melaka, 76100, Hang Tuah Jaya, Melaka, Malaysia
  • Nur Husnina Najeah Husshini Advanced Manufacturing Centre, Universiti Teknikal Malaysia Melaka, 76100, Hang Tuah Jaya, Melaka, Malaysia
  • Raja Izamshah Advanced Manufacturing Centre, Universiti Teknikal Malaysia Melaka, 76100, Hang Tuah Jaya, Melaka, Malaysia
  • Hema Nanthini Ganesan Fakulti Kejuruteraan Pembuatan, Universiti Teknikal Malaysia Melaka, 76100, Hang Tuah Jaya, Melaka, Malaysia
  • Muhamad Ammar Farhan Maula Mohd Azam Fakulti Kejuruteraan Pembuatan, Universiti Teknikal Malaysia Melaka, 76100, Hang Tuah Jaya, Melaka, Malaysia
  • Mohammad Shah All Hafiz Fakulti Kejuruteraan Pembuatan, Universiti Teknikal Malaysia Melaka, 76100, Hang Tuah Jaya, Melaka, Malaysia
  • Ghazali Omar Advanced Manufacturing Centre, Universiti Teknikal Malaysia Melaka, 76100, Hang Tuah Jaya, Melaka, Malaysia
  • Mohd Al Hafiz Mohd Nawi Faculty of Mechanical Engineering Technology, Universiti Malaysia Perlis, 02100 Padang Besar, Perlis, Malaysia

DOI:

https://doi.org/10.37934/arfmts.86.2.7490

Keywords:

Heat transfer enhancement technique, Passive method, Heat exchanger, Nusselt number

Abstract

This paper presents an investigation on cooling effect and flow structure of the spherical dimple configuration during air flow on the Aluminium surface. It is prominently known that applying dimples profile causes an enhancement in heat transfer over a plain surface. A three level of Box-Behnken response surface methodology was performed to find the correlation between the input and output variables. A total of 17 different combinations of these inputs were performed throughout the experiment. The variable inputs to be investigated namely: dimple diameter of 10 - 14 mm, dimple orientation angle of 60°- 90°, and airflow velocity of 16 - 18 m/s to observe the response on the cooling time. The Aluminium block was heated to 60°C and cooled down by air flow at room temperature. The ANOVA was used to identify the significant effect of each parameter. CFD software was used as a simulation tool to analyze the flow structure and Reynolds number that associate with the heat transfer rate to support the statistical findings. Based on the result, all the input parameters are found to be significantly dominated by air flow velocity. Staggered arrangement dimple profile surface improves cooling effect by 63% over the plain flat surface. The increment in Reynolds number will increase the heat transfer which then shortening the cooling time.

Author Biographies

Mohd Shahir Kasim, Advanced Manufacturing Centre, Universiti Teknikal Malaysia Melaka, 76100, Hang Tuah Jaya, Melaka, Malaysia

shahir@utem.edu.my

Nur Husnina Najeah Husshini, Advanced Manufacturing Centre, Universiti Teknikal Malaysia Melaka, 76100, Hang Tuah Jaya, Melaka, Malaysia

husnina.najeah@yahoo.com

Raja Izamshah, Advanced Manufacturing Centre, Universiti Teknikal Malaysia Melaka, 76100, Hang Tuah Jaya, Melaka, Malaysia

izamshah@utem.edu.my

Hema Nanthini Ganesan, Fakulti Kejuruteraan Pembuatan, Universiti Teknikal Malaysia Melaka, 76100, Hang Tuah Jaya, Melaka, Malaysia

shameera_maya@yahoo.com

Muhamad Ammar Farhan Maula Mohd Azam, Fakulti Kejuruteraan Pembuatan, Universiti Teknikal Malaysia Melaka, 76100, Hang Tuah Jaya, Melaka, Malaysia

ammarfc94@gmail.com

Mohammad Shah All Hafiz, Fakulti Kejuruteraan Pembuatan, Universiti Teknikal Malaysia Melaka, 76100, Hang Tuah Jaya, Melaka, Malaysia

shahshahrim93@gmail.com

Ghazali Omar, Advanced Manufacturing Centre, Universiti Teknikal Malaysia Melaka, 76100, Hang Tuah Jaya, Melaka, Malaysia

ghazali@utem.edu.my

Mohd Al Hafiz Mohd Nawi, Faculty of Mechanical Engineering Technology, Universiti Malaysia Perlis, 02100 Padang Besar, Perlis, Malaysia

alhafiznawi@unimap.edu.my

References

Bergman, Theodore L., Frank P. Incropera, David P. DeWitt, and Adrienne S. Lavine. Fundamentals of heat and mass transfer. John Wiley & Sons, 2011.

Sheikholeslami, Mohsen, Mofid Gorji-Bandpy, and Davood Domiri Ganji. "Review of heat transfer enhancement methods: Focus on passive methods using swirl flow devices." Renewable and Sustainable Energy Reviews 49 (2015): 444-469. https://doi.org/10.1016/j.rser.2015.04.113

Sonawane, Tejas, Prafulla Patil, Abhay Chavhan, and B. M. Dusane. "A review on heat transfer enhancement by passive methods." International Research Journal of Engineering and Technology 3, no. 9 (2016): 1567-1574.

Vlachou, Maria C., John S. Lioumbas, and Thodoris D. Karapantsios. "Heat transfer enhancement in boiling over modified surfaces: a critical review." Interfacial Phenomena and Heat Transfer 3, no. 4 (2015). https://doi.org/10.1615/InterfacPhenomHeatTransfer.2016014133

Nadeem Pathan and Sanjay Mitkari. "Heat Transfer Enhancement by Using Dimple Surface." Int. J. Trend Sci. Res. Dev. 2, no. 3 (2018): 2267-2270. https://doi.org/10.31142/ijtsrd12739

Narato, Pathomporn, Makatar Wae-hayee, and Chayut Nuntadusit. "Flow and Heat Transfer Characteristic of Inclined Oval Trench Dimples With Numerical Simulation." CFD Letters 12, no. 11 (2020): 61-71. https://doi.org/10.37934/cfdl.12.11.6171

Sardar, Hasibur Rahman, and Abdul Razak Kaladgi. "Forced convection heat transfer analysis through dimpled surfaces with different arrangements." American Journal of Energy Engineering 3, no. 3 (2015): 37-45. https://doi.org/10.11648/j.ajee.20150303.12

Kuethe, A. "Boundary layer control of flow separation and heat exchange." U.S. Patent 3,741,285, issued June 26, 1973.

Beves, C. C., T. J. Barber, and E. Leonardi. "An investigation of flow over two-dimensional circular cavity." In 15th Australasian Fluid Mechanics Conference, the University of Sydney, Australia, pp. 13-17. 2004.

Paranjape, Abhijit S., Ninad C. Maniar, Deval A. Pandya, and Brian H. Dennis. "Numerical Simulation of Laminar Flow Heat Transfer Enhancement Using Surface Modification." In International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 46285, p. V01AT02A011. American Society of Mechanical Engineers, 2014. https://doi.org/10.1115/DETC2014-35432

Choi, Jin, Woo-Pyung Jeon, and Haecheon Choi. "Mechanism of drag reduction by dimples on a sphere." Physics of Fluids 18, no. 4 (2006): 041702. https://doi.org/10.1063/1.2191848

Mahmood, G. I., M. L. Hill, D. L. Nelson, P. M. Ligrani, H-K. Moon, and B. Glezer. "Local heat transfer and flow structure on and above a dimpled surface in a channel." J. Turbomach. 123, no. 1 (2001): 115-123. https://doi.org/10.1115/1.1333694

Ghani, J. A., M. N. B. Derani, and W. M. F. Mahmood. "Dimples and heat transfer efficiency." Material Sci & Eng Int J 1, no. 2 (2018): 2-5. https://doi.org/10.15406/mseij.2018.02.00051

Ligrani, P. M., J. L. Harrison, G. I. Mahmmod, and M. L. Hill. "Flow structure due to dimple depressions on a channel surface." Physics of fluids 13, no. 11 (2001): 3442-3451. https://doi.org/10.1063/1.1404139

Katkhaw, Nopparat, Nat Vorayos, Tanongkiat Kiatsiriroat, Yottana Khunatorn, Damorn Bunturat, and Atipoang Nuntaphan. "Heat transfer behavior of flat plate having 45 ellipsoidal dimpled surfaces." Case Studies in Thermal Engineering 2 (2014): 67-74. https://doi.org/10.1016/j.csite.2013.12.002

Bi, C., G. H. Tang, and W. Q. Tao. "Heat transfer enhancement in mini-channel heat sinks with dimples and cylindrical grooves." Applied Thermal Engineering 55, no. 1-2 (2013): 121-132. https://doi.org/10.1016/j.applthermaleng.2013.03.007

Hu, Jianjun, and Guangqiu Zhang. "Performance improvement of solar air collector based on airflow reorganization: A review." Applied Thermal Engineering 155 (2019): 592-611. https://doi.org/10.1016/j.applthermaleng.2019.04.021

Mahmood, G. I., and P. M. Ligrani. "Heat transfer in a dimpled channel: combined influences of aspect ratio, temperature ratio, Reynolds number, and flow structure." International Journal of Heat and mass transfer 45, no. 10 (2002): 2011-2020. https://doi.org/10.1016/S0017-9310(01)00314-3

Ligrani, P. M., G. I. Mahmood, J. L. Harrison, C. M. Clayton, and D. L. Nelson. "Flow structure and local Nusselt number variations in a channel with dimples and protrusions on opposite walls." International Journal of Heat and Mass Transfer 44, no. 23 (2001): 4413-4425. https://doi.org/10.1016/S0017-9310(01)00101-6

Coy, Edward B., and Stephen A. Danczyz. "Measurements of the effectiveness of concave spherical dimples for enhancement heat transfer." Journal of Propulsion and Power 27, no. 5 (2011): 955-958. https://doi.org/10.2514/1.B34255

Patil, Pooja, and Padmakar Deshmukh. "An experimental study of heat transfer enhancement in the circular channel with almond shape dimples." IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) 11 (2014): 48-57. https://doi.org/10.9790/1684-11514857

Chyu, M. K., Y. Yu, H. Ding, J. P. Downs, and F. O. Soechting. "Concavity enhanced heat transfer in an internal cooling passage." In Turbo Expo: Power for Land, Sea, and Air, vol. 78705, p. V003T09A080. American Society of Mechanical Engineers, 1997.

Khan, Amjad, Mohammed Zakir Bellary, Mohammad Ziaullah, and Abdul Razak Kaladgi. "An experimental study on heat transfer enhancement of flat plates using dimples." American Journal of Electrical Power and Energy Systems 4, no. 4 (2015): 34-38. https://doi.org/10.11648/j.epes.20150404.11

Kul'gina, L. M. "Experimental Investigation of Heat Transfer Enhancement by Forced Vibrations." Heat Transfer Research 33, no. 5&6 (2002). https://doi.org/10.1615/HeatTransRes.v33.i5-6.80

Pandey, Ashish Kumar. "A Computational Fluid Dynamics Study of Fluid Flow and Heat Transfer in a Micro Channel." PhD diss., 2011.

Burgess, N. K., M. M. Oliveira, and P. M. Ligrani. "Nusselt number behavior on deep dimpled surfaces within a channel." J. Heat Transfer 125, no. 1 (2003): 11-18. https://doi.org/10.1115/1.1527904

Alam, AZM Shariful, Md Kamrul Islam, Md Yousuf Mia, and Kazi Afzalur Rahman. "Simulation on heat transfer enhancement in a circular tube for laminar flow with and without insert." In Proceedings of the International Conference on Mechanical Engineering and Renewable Energy, pp. 1-3. 2014.

Downloads

Published

2021-08-26

How to Cite

Kasim, M. S., Husshini, N. H. N., Izamshah, R., Ganesan, H. N., Mohd Azam, M. A. F. M., All Hafiz, M. S., Omar, G., & Mohd Nawi, M. A. H. (2021). Statistical and Simulation Analysis on Dimple Configurations Performance of Heat Dissipation. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 86(2), 74–90. https://doi.org/10.37934/arfmts.86.2.7490

Issue

Section

Articles

Most read articles by the same author(s)