Template Synthesis of Ni Nanowires: Characterization and Modelling

Authors

  • Nurhanis Sofiah Abd Ghafar College of Engineering, Universiti Malaysia Pahang, 26300 Gambang, Kuantan, Pahang, Malaysia
  • Santhi Ulakanathan Faculty of Mechanical & Automotive Engineering Technology, Universiti Malaysia Pahang, 26600, Pekan, Pahang, Malaysia
  • Mahendran Samykano College of Engineering, Universiti Malaysia Pahang, 26300 Gambang, Kuantan, Pahang, Malaysia
  • Kumaran Kadirgama Faculty of Mechanical & Automotive Engineering Technology, Universiti Malaysia Pahang, 26600, Pekan, Pahang, Malaysia
  • Hussein A. Mohammed School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia
  • Wai Keng Ngui College of Engineering, Universiti Malaysia Pahang, 26300 Gambang, Kuantan, Pahang, Malaysia

DOI:

https://doi.org/10.37934/arfmts.77.2.7690

Keywords:

Nickel Nanowires, Template-Assisted Electrodeposition, Mechanical Properties

Abstract

Template-assisted electrochemical deposition is a straight forward approach for the synthesis of 1D nanostructures (e.g., nanowire, nanorod, and nanobelt) with controllable morphology. This approach is suitable for mass production as it works at ambient pressure and temperature with the properties of synthesized 1D nanostructures being influenced by synthesis conditions during the electrochemical deposition process. This work aims to investigate the influence of stabilizing agent concentration and heating temperature towards the physical behavior of Nickel (Ni) nanowires synthesized via a template-assisted electrochemical deposition approach. In this research, the electrolyte bath was prepared in three different concentrations of the stabilizing agent (6 g/L, 40 g/L and 70 g/L), and the deposition bath temperature used was 30°C, 70°C, and 110°C respectively. The elemental composition was determined using Energy Dispersive X-ray (EDX) analysis to investigate the percentage of pure Ni element in the synthesized nanowires. The diameter, surface texture, and growth length of the synthesized Ni nanowires were characterized using Field Emission Scanning Electron Microscope (FESEM). X-ray diffractions (XRD) was used for crystal size and crystal orientation analysis. Additionally, the mechanical properties of Ni nanowires were extracted via molecular dynamic simulation. Growth length of Ni nanowires found to be significantly improved as the heating temperature increased, but it decreased when stabilizer agent concentration is high. The diffraction patterns for all synthesis conditions exhibited the synthesis Ni nanowires are polycrystalline as the crystalline planes with Miller indices of 111, 200, and 220. All the investigated nanowires showed ductile failure behavior, a typical behavior at larger length scales of Ni.

References

Barrigo?n, Enrique, Magnus Heurlin, Zhaoxia Bi, Bo Monemar, and Lars Samuelson. "Synthesis and applications of III–V nanowires." Chemical reviews 119, no. 15 (2019): 9170-9220. https://doi.org/10.1021/acs.chemrev.9b00075

Yu, Kesong, Xuelei Pan, Guobin Zhang, Xiaobin Liao, Xunbiao Zhou, Mengyu Yan, Lin Xu, and Liqiang Mai. "Nanowires in energy storage devices: structures, synthesis, and applications." Advanced Energy Materials 8, no. 32 (2018): 1802369. https://doi.org/10.1002/aenm.201802369

Bera, Debasis, Suresh C. Kuiry, and Sudipta Seal. "Synthesis of nanostructured materials using template-assisted electrodeposition." Jom 56, no. 1 (2004): 49-53. https://doi.org/10.1007/s11837-004-0273-5

Sofiah, A. G. N., M. Samykano, K. Kadirgama, R. V. Mohan, and N. A. C. Lah. "Metallic nanowires: mechanical properties–theory and experiment." Applied Materials Today 11 (2018): 320-337. https://doi.org/10.1016/j.apmt.2018.03.004

Ashley, Michael J., Matthew N. O’Brien, Konrad R. Hedderick, Jarad A. Mason, Michael B. Ross, and Chad A. Mirkin. "Templated synthesis of uniform perovskite nanowire arrays." Journal of the American Chemical Society 138, no. 32 (2016): 10096-10099. https://doi.org/10.1021/jacs.6b05901

Wang, Huan, Sifei Zhuo, Yu Liang, Xiling Han, and Bin Zhang. "General Self?Template Synthesis of Transition?Metal Oxide and Chalcogenide Mesoporous Nanotubes with Enhanced Electrochemical Performances." Angewandte Chemie 128, no. 31 (2016): 9201-9205. https://doi.org/10.1002/ange.201603197

Irshad, M. I., F. Ahmad, N. M. Mohamed, and M. Z. Abdullah. "Preparation and structural characterization of template assisted electrodeposited copper nanowires." Int. J. Electrochem. Sci 9, no. 5 (2014): 2548-2555.

?i?man, ?lkay. "Template-assisted electrochemical synthesis of semiconductor nanowires." Nanowires: Implementations Appl (2011): 41-58. https://doi.org/10.5772/20551

Zheng, M. J., L. D. Zhang, G. H. Li, and W. Z. Shen. "Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique." Chemical Physics Letters 363, no. 1-2 (2002): 123-128. https://doi.org/10.1016/S0009-2614(02)01106-5

Al-Salman, Rihab, Heino Sommer, Torsten Brezesinski, and Ju?rgen Janek. "Template-free electrochemical synthesis of high aspect ratio Sn nanowires in ionic liquids: a general route to large-area metal and semimetal nanowire arrays?." Chemistry of Materials 27, no. 11 (2015): 3830-3837. https://doi.org/10.1021/acs.chemmater.5b00200

Wang, Zi-Long, Rui Guo, Liang-Xin Ding, Ye-Xiang Tong, and Gao-Ren Li. "Controllable template-assisted electrodeposition of single-and multi-walled nanotube arrays for electrochemical energy storage." Scientific reports 3 (2013): 1204. https://doi.org/10.1038/srep01204

Sofiah, A. G. N., J. Kananathan, M. Samykano, S. Ulakanathan, N. A. C. Lah, W. S. W. Harun, K. Sudhakar, K. Kadirgama, W. K. Ngui, and J. P. Siregar. "Electrochemical deposited nickel nanowires: influence of deposition bath temperature on the morphology and physical properties." Materials Science and Engineering Vol 257 (2017): 012032. https://doi.org/10.1088/1757-899X/257/1/012032

Zhang, Zhiyuan, Mu Gu, Yahua Hu, Xiaolin Liu, Shiming Huang, Bo Liu, and Chen Ni. "Template synthesis and luminescence of ordered Lu3Al5O12: Ce3+ nanowire arrays." Materials Letters 166 (2016): 158-162. https://doi.org/10.1016/j.matlet.2015.12.072

Guo Yuanyuan, Wang Ming, Mao Xiaobo, Jiang Yuexiu, Wang Chen, and Yang Yanlian. "Growth Mechanism for Controlled Synthesis of Metal Nanotube and Nanowire Arrays Using Anodic Aluminum Oxide Templates." Acta Phys Chim 26, no. 07 (2010): 2037- 2043. https://doi.org/10.3866/PKU.WHXB20100734

Mu, Cheng, and Junhui He. "Synthesis of Single Crystal Metal Sulfide Nanowires and Nanowire Arrays by Chemical Precipitation in Templates." Journal of nanoscience and nanotechnology 10, no. 12 (2010): 8191-8198.

https://doi.org/10.1166/jnn.2010.2655

Bograchev, Daniil A., Vladimir M. Volgin, and Alexey D. Davydov. "Simple model of mass transfer in template synthesis of metal ordered nanowire arrays." Electrochimica Acta 96 (2013): 1-7. https://doi.org/10.1016/j.electacta.2013.02.079

Choi, Jinsub, Guido Sauer, Petra Göring, Kornelius Nielsch, Ralf B. Wehrspohn, and Ulrich Gösele. "Monodisperse metal nanowire arrays on Si by integration of template synthesis with silicon technology." Journal of Materials Chemistry 13, no. 5 (2003): 1100-1103. https://doi.org/10.1039/b301611k

Li, Xiangdong, Guowen Meng, Shengyong Qin, Qiaoling Xu, Zhaoqin Chu, Xiaoguang Zhu, Mingguang Kong, and An-Ping Li. "Nanochannel-Directed Growth of Multi-Segment Nanowire Heterojunctions of Metallic Au1–x Ge x and Semiconducting Ge." ACS nano 6, no. 1 (2012): 831-836. https://doi.org/10.1021/nn2043466

Sharma, Gaurav, Michael V. Pishko, and Craig A. Grimes. "Fabrication of metallic nanowire arrays by electrodeposition into nanoporous alumina membranes: effect of barrier layer." Journal of materials science 42, no. 13 (2007): 4738-4744. https://doi.org/10.1007/s10853-006-0769-1

Kline, Timothy R., Mingliang Tian, Jinguo Wang, Ayusman Sen, Moses WH Chan, and Thomas E. Mallouk. "Template-grown metal nanowires." Inorganic chemistry 45, no. 19 (2006): 7555-7565. https://doi.org/10.1021/ic0601384

Martin, Benjamin R., Daniel J. Dermody, Brian D. Reiss, Mingming Fang, L. Andrew Lyon, Michael J. Natan, and Thomas E. Mallouk. "Orthogonal self?assembly on colloidal gold?platinum nanorods." Advanced Materials 11, no. 12 (1999): 1021-1025. https://doi.org/10.1021/cm960166s

Ertan, Asli, Surendra N. Tewari, and Orhan Talu. "Electrodeposition of nickel nanowires and nanotubes using various templates." Journal of Experimental Nanoscience 3, no. 4 (2008): 287-295. https://doi.org/10.1080/17458080802570617

Pearson, Douglas H., and Ronald J. Tonucci. "Nanochannel glass replica membranes." Science 270, no. 5233 (1995): 68-70. https://doi.org/10.1126/science.270.5233.68

Wang, D., W. L. Zhou, B. F. McCaughy, J. E. Hampsey, X. Ji, Y. B. Jiang, H. Xu, J. Tang, and R. H. Schmehl. "O, Connor, C.; Brinker, CJ; Lu, Y. Electrodeposition of Metallic Nanowire Thin Films Using Mesoporous Silica Templates." Adv. Mater 15, no. 2 (2003): 130. https://doi.org/10.1002/adma.200390025

Chakravorty, D., S. Basu, B. N. Pal, P. K. Mukherjee, B. Ghosh, K. Chatterjee, A. Bose, Santanu Bhattacharya, and A. Banerjee. "Synthesis of nanocomposites using glasses and mica as templates." Bulletin of Materials Science 31, no. 3 (2008): 263-276. https://doi.org/10.1007/s12034-008-0044-y

Soler-Illia, G. J. A., E. L. Crepaldi, D. Grosso, and C. Sanchez. "Block copolymer-templated mesoporous oxides." Interf. Sci 8 (2003): 109. https://doi.org/10.1016/S1359-0294(03)00002-5

Narayanan, T. N., M. M. Shaijumon, Lijie Ci, P. M. Ajayan, and M. R. Anantharaman. "On the growth mechanism of nickel and cobalt nanowires and comparison of their magnetic properties." Nano Research 1, no. 6 (2008): 465-473. https://doi.org/10.1007/s12274-008-8049-9

García, Miguel, Pilar Batalla, and Alberto Escarpa. "Metallic and polymeric nanowires for electrochemical sensing and biosensing." TrAC Trends in Analytical Chemistry 57 (2014): 6-22. https://doi.org/10.1016/j.trac.2014.01.004

Zhang, Qi, Qi-Kai Li, and Mo Li. "Internal stress and its effect on mechanical strength of metallic glass nanowires." Acta Materialia 91 (2015): 174-182. https://doi.org/10.1016/j.actamat.2015.03.029

Wu, Hengan, Xiuxi Wang, Haiyi Liang, and Guangyong Liu. "Progress in mechanical behavior of metal nanowire." ACTA METALLURGICA SINICA-CHINESE EDITION- 38, no. 9 (2002): 903-907.

Yao, Yin, and Shaohua Chen. "Surface effect in the bending of nanowires." Mechanics of Materials 100 (2016): 12-21. https://doi.org/10.1016/j.mechmat.2016.06.005

Weber, Florian, Igor Schestakow, Franz Roters, and Dierk Raabe. "Texture evolution during bending of a single crystal copper nanowire studied by EBSD and crystal plasticity finite element simulations." Advanced Engineering Materials 10, no. 8 (2008): 737-741..

https://doi.org/10.1002/adem.200800102

Huang, Dan, Qing Zhang, and Pizhong Qiao. "Molecular dynamics evaluation of strain rate and size effects on mechanical properties of FCC nickel nanowires." Computational Materials Science 50, no. 3 (2011): 903-910.

https://doi.org/10.1016/j.commatsci.2010.10.028

Sofiah, A. G., M. Samykano, J. Rivas Murillo, N. A. Lah, D. Ramasamy, K. Kadirgama, and M. M. Rahman. "Effect of the Length on the Tensile Deformation of Nickel Nanowires Using Molecular Dynamics Simulations." Advanced Science Letters 23, no. 11 (2017): 11549-11552.

https://doi.org/10.1166/asl.2017.10326

Setoodeh, AliReza, Hamed Attariani, and Mostafa Khosrownejad. "Nickel nanowires under uniaxial loads: A molecular dynamics simulation study." Computational Materials Science 44, no. 2 (2008): 378-384.

https://doi.org/10.1016/j.commatsci.2008.03.035

Zhan, Haifei, Yuantong Gu, Cheng Yan, and Prasad KDV Yarlagadda. "Tensile properties of Si nanowires with faulted stacking layers." Science of Advanced Materials 6, no. 7 (2014): 1489-1492.

https://doi.org/10.1166/sam.2014.1800

Ji, J., W. C. Cooper, D. B. Dreisinger, and E. Peters. "Surface pH measurements during nickel electrodeposition." Journal of Applied electrochemistry 25, no. 7 (1995): 642-650.

https://doi.org/10.1007/BF00241925

Toimil-Molares, Maria Eugenia. "Characterization and properties of micro-and nanowires of controlled size, composition, and geometry fabricated by electrodeposition and ion-track technology." Beilstein journal of nanotechnology 3, no. 1 (2012): 860-883.

https://doi.org/10.3762/bjnano.3.97

Cortés, Andrea, Gonzalo Riveros, Juan L. Palma, Juliano C. Denardin, Ricardo E. Marotti, Enrique A. Dalchiele, and Humberto Gómez. "Single-crystal growth of nickel nanowires: influence of deposition conditions on structural and magnetic properties." Journal of nanoscience and nanotechnology 9, no. 3 (2009): 1992-2000.

https://doi.org/10.1166/jnn.2009.374

Wang, Jin-Guo, Ming-Liang Tian, Nitesh Kumar, and Thomas E. Mallouk. "Controllable template synthesis of superconducting Zn nanowires with different microstructures by electrochemical deposition." Nano letters 5, no. 7 (2005): 1247-1253.

https://doi.org/10.1021/nl050918u

Dayeh, Shadi A., Edward T. Yu, and Deli Wang. "III? V nanowire growth mechanism: V/III ratio and temperature effects." Nano letters 7, no. 8 (2007): 2486-2490.

https://doi.org/10.1021/nl0712668

Li, Zhiyang, Calvin Leung, Fan Gao, and Zhiyong Gu. "Effects of nanowire length and surface roughness on the electrochemical sensor properties of nafion-free, vertically aligned Pt nanowire array electrodes." Sensors 15, no. 9 (2015): 22473-22489.

https://doi.org/10.3390/s150922473

Šupicová, Magdalena, Roland Rozik, Libuše Trnková, Renáta Ori?áková, and Miriam Gálová. "Influence of boric acid on the electrochemical deposition of Ni." Journal of Solid State Electrochemistry 10, no. 2 (2006): 61-68.

https://doi.org/10.1007/s10008-005-0656-8

Tsuru, Y., M. Nomura, and F. R. Foulkes. "Effects of boric acid on hydrogen evolution and internal stress in films deposited from a nickel sulfamate bath." Journal of Applied Electrochemistry 32, no. 6 (2002): 629-634.

https://doi.org/10.1023/A:1020130205866

Hertzberg, Richard W., and Frank E. Hauser. "Deformation and fracture mechanics of engineering materials." (1977): 96-96.

Branício, Paulo S., and José-Pedro Rino. "Large deformation and amorphization of Ni nanowires under uniaxial strain: a molecular dynamics study." Physical review B 62, no. 24 (2000): 16950.

https://doi.org/10.1103/PhysRevB.62.16950

Wang, Wei-dong, Cheng-long Yi, and Kang-qi Fan. "Molecular dynamics study on temperature and strain rate dependences of mechanical tensile properties of ultrathin nickel nanowires." Trans Nonferrous Metals Soc China 23, no. 11 (2013): 3353-3361.

https://doi.org/10.1016/S1003-6326(13)62875-7

Mohan, Ram, and Yu Liang. "Tensile and flexural deformation of nickel nanowires via molecular dynamics simulations." In Cutting Edge Nanotechnology. IntechOpen, 2010.

https://doi.org/10.5772/8863

Dupont, V., and F. Sansoz. "Molecular dynamics study of crystal plasticity during nanoindentation in Ni nanowires." Journal of Materials Research 24, no. 3 (2009): 948.

https://doi.org/10.1557/jmr.2009.0103

Downloads

Published

2020-11-15

How to Cite

Abd Ghafar, N. S., Ulakanathan, S., Samykano, M., Kadirgama, K., Mohammed, H. A., & Ngui, W. K. (2020). Template Synthesis of Ni Nanowires: Characterization and Modelling. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 77(2), 76–90. https://doi.org/10.37934/arfmts.77.2.7690

Issue

Section

Articles

Most read articles by the same author(s)