Experimental Investigation on Preparation and Stability of Al2O3 Nanofluid In Deionized Water and Ethylene Glycol

Authors

  • Wahaizad Safiei Faculty of Mechanical Engineering, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia
  • Md. Mustafizur Rahman Faculty of Mechanical Engineering, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia
  • M. A. Hadi Faculty of Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang, Malaysia
  • W. H. Azmi Faculty of Mechanical Engineering, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia
  • M. N. Arifin Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang, Malaysia

DOI:

https://doi.org/10.37934/arfmts.77.2.4762

Keywords:

Nanofluid, Deionized water, Ethylene glycol, Stability, Homogenous, UV-visible spectrophotometer

Abstract

Nanofluid has the potential as a cooling medium for the next generation fluid as it possesses many advantages in many engineering applications. However, one of the main challenges is to establish a well-dispersed nanoparticles system in a base fluid. The preparation technique of nanofluid plays an important part as it influences the measurement of thermal conductivity. Therefore, the objectives of this study are to evaluate the nanoparticle dispersion in different base fluid compositions and to determine the optimized suspension sonication time. In detail, 0.2 wt.% of Al2O3 nanofluid stability in the three ratios of base fluid (deionized water:ethylene glycol) 80:20, 70:30 and 60:40 were studied. The studies were based on a visual inspection and spectral absorbance analysis. It has clearly shown that the nanofluids prepared in 60:40 base fluid within 3 hours sonication time was the most stable suspension compared to other nanofluids. The visual inspection indicated nanofluid condition remains stable after 30 days. The spectral absorbance of nanofluids was recorded at 100 % for 5 days after preparation and remains above 95 % compared to the initial value, reflecting stable suspension. Hence the novelty of this work lies in the nanofluid stability based on sonication time and base fluid compositions.

References

Choi, Stephen US, and Jeffrey A. Eastman. "Enhancing Thermal Conductivity Of Fluids With Nanoparticles*." In ASME International Mechanical Engineering Congress & Expedition, November 12-17, 1995, San Francisco, CA.

Sözen, Adnan, Ataollah Khanlar?, and Erdem Çiftçi. "Heat transfer enhancement of plate heat exchanger utilizing kaolin-including working fluid." Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 233, no. 5 (2019): 626-634. https://doi.org/10.1177/0957650919832445

Ozdemir, Mustafa Bahadir, and Mustafa Emre Ergun. "Experimental and numerical investigations of thermal performance of Al2O3/water nanofluid for a combi boiler with double heat exchangers." International Journal of Numerical Methods for Heat & Fluid Flow (2019). https://doi.org/10.1108/HFF-05-2018-0189

Choon Pak, Bock, and Y. Cho. "Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles." Experimental Heat Transfer 11, no. 2 (1998): 151-170. https://doi.org/10.1080/08916159808946559

Munkhbayar, B., Md Riyad Tanshen, Jinseong Jeoun, Hanshik Chung, and Hyomin Jeong. "Surfactant-free dispersion of silver nanoparticles into MWCNT-aqueous nanofluids prepared by one-step technique and their thermal characteristics." Ceramics International 39, no. 6 (2013): 6415-6425. https://doi.org/10.1016/j.ceramint.2013.01.069

Alirezaie, Ali, Mohammad Hadi Hajmohammad, Mohammad Reza Hassani Ahangar, and Mohammad Hemmat Esfe. "Price-performance evaluation of thermal conductivity enhancement of nanofluids with different particle sizes." Applied Thermal Engineering 128 (2018): 373-380. https://doi.org/10.1016/j.applthermaleng.2017.08.143

Murshed, S. M. S., K. C. Leong, and C. Yang. "Enhanced thermal conductivity of TiO2-water based nanofluids." International Journal of Thermal Sciences 44, no. 4 (2005): 367-373. https://doi.org/10.1016/j.ijthermalsci.2004.12.005

Yu, Wei, Huaqing Xie, and Li-Hong Liu. "A review on nanofluids: Preparation, stability mechanisms, and applications." Journal of Nanomaterials 2012, no. 711 (2011): 128. https://doi.org/10.1155/2012/435873

Solangi, K. H., S. N. Kazi, M. R. Luhur, A. Badarudin, A. Amiri, Rad Sadri, M. N. M. Zubir, Samira Gharehkhani, and K. H. Teng. "A comprehensive review of thermo-physical properties and convective heat transfer to nanofluids." Energy 89 (2015): 1065-1086.

https://doi.org/10.1016/j.energy.2015.06.105

Sundar, L. Syam, K. V. Sharma, Manoj K. Singh, and A. C. M. Sousa. "Hybrid nanofluids preparation, thermal properties, heat transfer and friction factor-a review." Renewable and Sustainable Energy Reviews 68 (2017): 185-198.

https://doi.org/10.1016/j.rser.2016.09.108

Sidik, Nor Azwadi Che, H. A. Mohammed, Omer A. Alawi, and S. Samion. "A review on preparation methods and challenges of nanofluids." International Communications in Heat and Mass Transfer 54 (2014): 115-125. https://doi.org/10.1016/j.icheatmasstransfer.2014.03.002

Hosokawa, Masuo, Makio Naito, Kiyoshi Nogi, and Toyokazu Yokoyama, eds. Nanoparticle Technology Handbook. Elsevier, 2012.

Fuskele, Veeresh, and R. M. Sarviya. "Recent developments in nanoparticles synthesis, preparation and stability of nanofluids." Materials Today: Proceedings 4, no. 2 (2017): 4049-4060. https://doi.org/10.1016/j.matpr.2017.02.307

Maheshwary, P. B., C. C. Handa, and K. R. Nemade. "A comprehensive study of effect of concentration, particle size and particle shape on thermal conductivity of titania/water based nanofluid." Applied Thermal Engineering 119 (2017): 79-88.

https://doi.org/10.1016/j.applthermaleng.2017.03.054

Sonawane, Shriram S., Rohit S. Khedkar, and Kailas L. Wasewar. "Effect of sonication time on enhancement of effective thermal conductivity of nano TiO2-water, ethylene glycol, and paraffin oil nanofluids and models comparisons." Journal of Experimental Nanoscience 10, no. 4 (2015): 310-322. https://doi.org/10.1080/17458080.2013.832421

Hong, Jonggan, and Dongsik Kim. "Effects of aggregation on the thermal conductivity of alumina/water nanofluids." Thermochimica Acta 542 (2012): 28-32.

https://doi.org/10.1016/j.tca.2011.12.019

Dehkordi, Behnam Abasi Fard, and Ali Abdollahi. "Experimental investigation toward obtaining the effect of interfacial solid-liquid interaction and basefluid type on the thermal conductivity of CuO-loaded nanofluids." International Communications in Heat and Mass Transfer 97 (2018): 151-162. https://doi.org/10.1016/j.icheatmasstransfer.2018.08.001

Portinha, Daniel, François Boué, Laurent Bouteiller, Géraldine Carrot, Christophe Chassenieux, S. Pensec, and Günter Reiter. "Stable dispersions of highly anisotropic nanoparticles formed by cocrystallization of enantiomeric diblock copolymers." Macromolecules 40, no. 11 (2007): 4037-4042.

https://doi.org/10.1021/ma070467v

Liyanage, D. D., Rajika JKA Thamali, A. A. K. Kumbalatara, J. A. Weliwita, and S. Witharana. "An analysis of nanoparticle settling times in liquids." Journal of Nanomaterials 2016 (2016).

https://doi.org/10.1155/2016/7061838

Yu, Wei, Huaqing Xie, and Li-Hong Liu. "A review on nanofluids: Preparation, stability mechanisms, and applications." Journal of Nanomaterials 2012, no. 711 (2011): 128.

https://doi.org/10.1155/2012/435873

Lotfizadeh, Saba, and Themis Matsoukas. "A continuum Maxwell theory for the thermal conductivity of clustered nanocolloids." Journal of Nanoparticle Research 17, no. 6 (2015): 262.

https://doi.org/10.1007/s11051-015-3061-y

Jang, Seok Pil, and Stephen US Choi. "Role of Brownian motion in the enhanced thermal conductivity of nanofluids." Applied Physics Letters 84, no. 21 (2004): 4316-4318.

https://doi.org/10.1063/1.1756684

Lee, S., S. U. S. Choi, S. Li, and J. A. Eastman. "Measuring thermal conductivity of fluids containing oxide nanoparticles." Journal of Heat Transfer 121, no. 2 (1999).

https://doi.org/10.1115/1.2825978

Jiang, Linqin, Lian Gao, and Jing Sun. "Production of aqueous colloidal dispersions of carbon nanotubes." Journal of Colloid and Interface Science 260, no. 1 (2003): 89-94.

https://doi.org/10.1016/S0021-9797(02)00176-5

Razak, S., M. R. M. Nawi, and M. Z. A. Rehim. "Preparation technique of SiO2/HFE-7000 nanorefrigerant." Journal of Mechanical Engineering 5, no. 5 (2016): 132-140.

Chiam, H. W., W. H. Azmi, N. A. Usri, Rizalman Mamat, and N. M. Adam. "Thermal conductivity and viscosity of Al2O3 nanofluids for different based ratio of water and ethylene glycol mixture." Experimental Thermal and Fluid Science 81 (2017): 420-429.

https://doi.org/10.1016/j.expthermflusci.2016.09.013

Abdullah, Amirah, Imran Syakir Mohamad, Ahmad Yusairi Bani Hashim, Norli Abdullah, Ban Wei Poh, Mohamed Hafiz Md Isa, and Syazwani Zainal Abidin. "Thermal conductivity and viscosity of deionised water and ethylene glycol-based nanofluids." Journal of Mechanical Engineering and Sciences (JMES) 10 (2016): 2249-2261.

https://doi.org/10.15282/jmes.10.3.2016.4.0210

Ninham, Barry W. "On progress in forces since the DLVO theory." Advances in Colloid and Interface Science 83, no. 1-3 (1999): 1-17.

https://doi.org/10.1016/S0001-8686(99)00008-1

Missana, Tiziana, and Andrés Adell. "On the applicability of DLVO theory to the prediction of clay colloids stability." Journal of Colloid and Interface Science 230, no. 1 (2000): 150-156.

https://doi.org/10.1006/jcis.2000.7003

Redhwan, A. A. M., W. H. Azmi, M. Z. Sharif, N. N. M. Zawawi, and R. Mamat. "Sonication time effect towards stability of Al2O3/PAG and SiO2/PAG nanolubricants." Journal of Mechanical Engineering 5 (2018): 14-27.

Kwak, Kiyuel, and Chongyoup Kim. "Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol." Korea-Australia Rheology Journal 17, no. 2 (2005): 35-40.

Sadeghi, R., S. Gh Etemad, E. Keshavarzi, and M. Haghshenasfard. "Investigation of alumina nanofluid stability by UV-vis spectrum." Microfluidics and Nanofluidics 18, no. 5-6 (2015): 1023-1030.

https://doi.org/10.1007/s10404-014-1491-y

Kusters, Karl A., Sotiris E. Pratsinis, Steven G. Thoma, and Douglas M. Smith. "Ultrasonic fragmentation of agglomerate powders." Chemical Engineering Science 48, no. 24 (1993): 4119-4127.

https://doi.org/10.1016/0009-2509(93)80258-R

Das, Sarit K., Stephen U. Choi, Wenhua Yu, and T. Pradeep. Nanofluids: science and technology. John Wiley & Sons, 2007.

https://doi.org/10.1002/9780470180693

Rouxel, Didier, Rachid Hadji, Brice Vincent, and Yves Fort. "Effect of ultrasonication and dispersion stability on the cluster size of alumina nanoscale particles in aqueous solutions." Ultrasonics Sonochemistry 18, no. 1 (2011): 382-388.

https://doi.org/10.1016/j.ultsonch.2010.07.003

Usri, N. A., W. H. Azmi, Rizalman Mamat, K. Abdul Hamid, and G. Najafi. "Thermal conductivity enhancement of Al2O3 nanofluid in ethylene glycol and water mixture." Energy Procedia 79, no. Supplement C (2015): 397-402.

https://doi.org/10.1016/j.egypro.2015.11.509

Said, Z., A. Kamyar, and R. Saidur. "Experimental investigation on the stability and density of TiO2, Al2O3, SiO2 and TiSiO4." In IOP Conference Series: Earth and Environmental Science, vol. 16, no. 1, p. 012002. IOP Publishing, 2013.

https://doi.org/10.1088/1755-1315/16/1/012002

Zawawi, N. N. M., W. H. Azmi, A. A. M. Redhwan, M. Z. Sharif, and K. V. Sharma. "Thermo-physical properties of Al2O3-SiO2/PAG composite nanolubricant for refrigeration system." International Journal of Refrigeration 80 (2017): 1-10.

https://doi.org/10.1016/j.ijrefrig.2017.04.024

Li, Yanjiao, Simon Tung, Eric Schneider, and Shengqi Xi. "A review on development of nanofluid preparation and characterization." Powder Technology 196, no. 2 (2009): 89-101.

https://doi.org/10.1016/j.powtec.2009.07.025

Rastogi, Richa, Rahul Kaushal, S. K. Tripathi, Amit L. Sharma, Inderpreet Kaur, and Lalit M. Bharadwaj. "Comparative study of carbon nanotube dispersion using surfactants." Journal of Colloid and Interface Science 328, no. 2 (2008): 421-428.

https://doi.org/10.1016/j.jcis.2008.09.015

Leong, Kin Yuen, Hanafi Nurfadhillah Mohd, Sohaimi Risby Mohd, and Noor Hafizah Amer. "The effect of surfactant on stability and thermal conductivity of carbon nanotube based nanofluids." Thermal Science 20, no. 2 (2016): 429-436.

https://doi.org/10.2298/TSCI130914078L

Wu, Daxiong, Haitao Zhu, Liqiu Wang, and Lumei Liu. "Critical issues in nanofluids preparation, characterization and thermal conductivity." Current Nanoscience 5, no. 1 (2009): 103-112.

https://doi.org/10.2174/157341309787314548

Sharif, M. Z., W. H. Azmi, A. A. M. Redhwan, N. N. M. Zawawi, and R. Mamat. "Improvement of nanofluid stability using 4-step UV-vis spectral absorbency analysis." Journal of Mechanical Engineering (2017): 233-47.

Yang, Liu, Kai Du, Xiao Song Zhang, and Bo Cheng. "Preparation and stability of Al2O3 nano-particle suspension of ammonia-water solution." Applied Thermal Engineering 31, no. 17-18 (2011): 3643-3647.

https://doi.org/10.1016/j.applthermaleng.2010.11.031

Mahbubul, I. M., Tet Hien Chong, S. S. Khaleduzzaman, I. M. Shahrul, Rahman Saidur, B. D. Long, and Muhammad Afifi Amalina. "Effect of ultrasonication duration on colloidal structure and viscosity of alumina-water nanofluid." Industrial & Engineering Chemistry Research 53, no. 16 (2014): 6677-6684.

https://doi.org/10.1021/ie500705j

Yu, Wei, Huaqing Xie, Lifei Chen, and Yang Li. "Investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluid." Thermochimica Acta 491, no. 1-2 (2009): 92-96.

https://doi.org/10.1016/j.tca.2009.03.007

Hong, K. S., Tae-Keun Hong, and Ho-Soon Yang. "Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles." Applied Physics Letters 88, no. 3 (2006): 031901.

https://doi.org/10.1063/1.2166199

Zakaria, Irnie, W. H. Azmi, W. A. N. W. Mohamed, Rizalman Mamat, and G. Najafi. "Experimental investigation of thermal conductivity and electrical conductivity of Al2O3 nanofluid in water-ethylene glycol mixture for proton exchange membrane fuel cell application." International Communications in Heat and Mass Transfer 61 (2015): 61-68.

https://doi.org/10.1016/j.icheatmasstransfer.2014.12.015

Tahani, M., M. Vakili, and S. Khosrojerdi. "Experimental evaluation and ANN modeling of thermal conductivity of graphene oxide nanoplatelets/deionized water nanofluid." International Communications in Heat and Mass Transfer 76 (2016): 358-365.

https://doi.org/10.1016/j.icheatmasstransfer.2016.06.003

Zhu, Dongsheng, Xinfang Li, Nan Wang, Xianju Wang, Jinwei Gao, and Hua Li. "Dispersion behavior and thermal conductivity characteristics of Al2O3-H2O nanofluids." Current Applied Physics 9, no. 1 (2009): 131-139.

https://doi.org/10.1016/j.cap.2007.12.008

Komarov, V., S. Wang, and J. Tang. "Permittivity and measurements." Encyclopedia of RF and Microwave Engineering (2005).

https://doi.org/10.1002/0471654507.eme308

Downloads

Published

2020-11-15

How to Cite

Safiei, W., Rahman, M. M., Hadi, M. A., Azmi, W. H., & Arifin, M. N. (2020). Experimental Investigation on Preparation and Stability of Al2O3 Nanofluid In Deionized Water and Ethylene Glycol. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 77(2), 47–62. https://doi.org/10.37934/arfmts.77.2.4762

Issue

Section

Articles

Similar Articles

You may also start an advanced similarity search for this article.