Effect Of 3% Molybdenum (Mo) Nanoparticles on The Melting, Microstructure and Hardness Properties of As- Reflowed Low Mass Sn-58Bi (SB) Solder Alloy

Authors

  • Amares Singh Centre for Advanced Materials and Intelligent Manufacturing, Faculty of Engineering and Built Environment, SEGi University No. 9, Jalan Teknologi, Taman Sains Selangor, Kota Damansara PJU 5, 47810 Petaling Jaya, Selangor, Malaysia
  • Rajkumar Durairaj Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, 43000 Kajang, Selangor, Malaysia
  • Kuan Seng How Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, 43000 Kajang, Selangor, Malaysia

DOI:

https://doi.org/10.37934/arfmts.77.1.6987

Keywords:

low melting temperature, nanoparticles reinforcement, microstructure, mechanical properties, SnBi solder alloy

Abstract

The Sn-58Bi (SB) lead free solder alloy tested in this research with addition of 3% Molybdenum (Mo) nanoparticles equivalent to 0.6g mass to analyse the influences in the thermal, microstructure and microhardness. Elevation of 3.8°C was observed from the Differential Scanning Calorimetry (DSC) for the 3% Mo nanoparticles added SB solder alloy compared to the bare Sn-58Bi (SB) solder alloy that has a melting temperature of 142.25°C. The microstructures of the reinforced SB solder alloy were refined with closer lamellar structures of ?-Sn and Bi phases compared to the unreinforced SB solder. The SEM/EDX and X-ray Diffraction (XRD) results validate the presence of the 3% Mo nanoparticles in the SB solder. Mechanical properties by means of Vickers microhardness of the Mo reinforced solder alloy showed an increment in hardness value by 2% compared to the bare SB solder alloy. The presence of 3% Mo as discrete particles (dispersion strengthening) contributes to the increase on the hardness value. The introduction of 3% Mo in to the SB solder alloy resulted in increase in the hardness due to the refinement of the microstructure and at the same time allows low temperature soldering in the electronic packaging industry.

References

Fawzy, A., S. A. Fayek, M. Sobhy, E. Nassr, M. M. Mousa, and G. Saad. "Effect of ZnO nanoparticles addition on thermal, microstructure and tensile properties of Sn-3.5 Ag-0.5 Cu (SAC355) solder alloy." Journal of Materials Science: Materials in Electronics 24, no. 9 (2013): 3210-3218. https://doi.org/10.1007/s10854-013-1230-2

El-Daly, A. A., A. E. Hammad, G. S. Al-Ganainy, and A. A. Ibrahiem. "Design of lead-free candidate alloys for low-temperature soldering applications based on the hypoeutectic Sn-6.5 Zn alloy." Materials & Design (1980-2015) 56 (2014): 594-603. https://doi.org/10.1016/j.matdes.2013.11.064

El-Daly, A. A., A. Fawzy, S. F. Mansour, and M. J. Younis. "Novel SiC nanoparticles-containing Sn-1.0 Ag-0.5 Cu solder with good drop impact performance." Materials Science and Engineering: A 578 (2013): 62-71. https://doi.org/10.1016/j.msea.2013.04.022

Hammad, A. E. "Investigation of microstructure and mechanical properties of novel Sn-0.5 Ag-0.7 Cu solders containing small amount of Ni." Materials & Design 50 (2013): 108-116. https://doi.org/10.1016/j.matdes.2013.03.010

Hammad, A. E., and A. A. Ibrahiem. "Enhancing the microstructure and tensile creep resistance of Sn-3.0 Ag-0.5 Cu solder alloy by reinforcing nano-sized ZnO particles." Microelectronics Reliability 75 (2017): 187-194. https://doi.org/10.1016/j.microrel.2017.07.034

Haseeb, A. S. M. A., M. M. Arafat, S. L. Tay, and Y. M. Leong. "Effects of metallic nanoparticles on interfacial intermetallic compounds in tin-based solders for microelectronic packaging." Journal of Electronic Materials 46, no. 10 (2017): 5503-5518. https://doi.org/10.1007/s11664-017-5591-9

Abdelhadi, Ousama. "Size effects in tin-based lead-free solder joints: Kinetics of bond formation and mechanical characteristics." PhD diss., University of Alabama Libraries, 2013.

Abtew, Mulugeta, and Guna Selvaduray. "Lead-free solders in microelectronics." Materials Science and Engineering: R: Reports 27, no. 5-6 (2000): 95-141. https://doi.org/10.1016/S0927-796X(00)00010-3

Ahmed, Mansur, Tama Fouzder, Ahmed Sharif, Asit Kumar Gain, and Yan Cheong Chan. "Influence of Ag micro-particle additions on the microstructure, hardness and tensile properties of Sn-9Zn binary eutectic solder alloy." Microelectronics Reliability 50, no. 8 (2010): 1134-1141. https://doi.org/10.1016/j.microrel.2010.03.017

Amagai, Masazumi. "A study of nanoparticles in Sn-Ag based lead free solders." Microelectronics Reliability 48, no. 1 (2008): 1-16. https://doi.org/10.1016/j.microrel.2007.05.004

Ani, Fakhrozi Che, Azman Jalar, Abdullah Aziz Saad, Chu Yee Khor, Roslina Ismail, Zuraihana Bachok, Mohamad Aizat Abas, and Norinsan Kamil Othman. "SAC-xTiO2 nano-reinforced lead-free solder joint characterizations in ultra-fine package assembly." Soldering & Surface Mount Technology 30, no. 1 (2018): 1-13. https://doi.org/10.1108/SSMT-04-2017-0011

Bang, Junghwan, Dong-Yurl Yu, Yong-Ho Ko, Min-Su Kim, Hiroshi Nishikawa, and Chang-Woo Lee. "Intermetallic compound formation and mechanical property of Sn-Cu-xCr/Cu lead-free solder joint." Journal of Alloys and Compounds 728 (2017): 992-1001. https://doi.org/10.1016/j.jallcom.2017.09.011

Billah, Md Muktadir, Kazi Mohammad Shorowordi, and Ahmed Sharif. "Effect of micron size Ni particle addition in Sn-8Zn-3Bi lead-free solder alloy on the microstructure, thermal and mechanical properties." Journal of Alloys and Compounds 585 (2014): 32-39. https://doi.org/10.1016/j.jallcom.2013.09.131

Boettinger, W. J., U. R. Kattner, K-W. Moon, and J. H. Perepezko. DTA and Heat-flux DSC Measurements of Alloy Melting and Freezing. Washington: National Institute of Standards and Technology, 2006. https://doi.org/10.1016/B978-008044629-5/50005-7

Chellvarajoo, Srivalli, and M. Z. Abdullah. "Microstructure and mechanical properties of Pb-free Sn-3.0 Ag-0.5 Cu solder pastes added with NiO nanoparticles after reflow soldering process." Materials & Design 90 (2016): 499-507. https://doi.org/10.1016/j.matdes.2015.10.142

Chellvarajoo, Srivalli, and M. Z. Abdullah. "Investigation on nano-reinforced solder paste after reflow soldering part 1: Effects of nano-reinforced solder paste on melting, hardness, spreading rate, and wetting quality." Microelectronics Reliability 84 (2018): 230-237. https://doi.org/10.1016/j.microrel.2018.03.027

Chellvarajoo, Srivalli, M. Z. Abdullah, and C. Y. Khor. "Effects of diamond nanoparticles reinforcement into lead-free Sn-3.0 Ag-0.5 Cu solder pastes on microstructure and mechanical properties after reflow soldering process." Materials & Design 82 (2015): 206-215. https://doi.org/10.1016/j.matdes.2015.05.065

Chen, Guang, Hao Peng, Vadim V. Silberschmidt, Y. C. Chan, Changqing Liu, and Fengshun Wu. "Performance of Sn-3.0 Ag-0.5 Cu composite solder with TiC reinforcement: physical properties, solderability and microstructural evolution under isothermal ageing." Journal of Alloys and Compounds 685 (2016): 680-689. https://doi.org/10.1016/j.jallcom.2016.05.245

Cheng, Shunfeng, Chien-Ming Huang, and Michael Pecht. "A review of lead-free solders for electronics applications." Microelectronics Reliability 75 (2017): 77-95. https://doi.org/10.1016/j.microrel.2017.06.016

Ding, Min, Wenqing Xing, Xingye Yu, Le Ma, Wei Zuo, and Zhiqiang Ji. "Effect of micro alumina particles additions on the interfacial behavior and mechanical properties of Sn-9Zn-1Al2O3 nanoparticles on low temperature wetting and soldering of 6061 aluminum alloys." Journal of Alloys and Compounds 739 (2018): 481-488. https://doi.org/10.1016/j.jallcom.2017.12.247

Eid, E. A., A. N. Fouda, and El-Shazly M. Duraia. "Effect of adding 0.5 wt% ZnO nanoparticles, temperature and strain rate on tensile properties of Sn-5.0 wt% Sb-0.5 wt% Cu (SSC505) lead free solder alloy." Materials Science and Engineering: A 657 (2016): 104-114. https://doi.org/10.1016/j.msea.2016.01.081

Efzan, Ervina, and A. Marini. "A review of solder evolution in electronic application." International Journal of Engineering 1, no. 1 (2012): 2305-8269.

Noor, Ervina Efzan Mhd, and Amares Singh. "Review on the effect of alloying element and nanoparticle additions on the properties of Sn-Ag-Cu solder alloys." Soldering & Surface Mount Technology 26, no. 3 (2014): 147-161. https://doi.org/10.1108/SSMT-02-2014-0001

El-Daly, A. A., T. A. Elmosalami, W. M. Desoky, M. G. El-Shaarawy, and A. M. Abdraboh. "Tensile deformation behavior and melting property of nano-sized ZnO particles reinforced Sn-3.0 Ag-0.5 Cu lead-free solder." Materials Science and Engineering: A 618 (2014): 389-397. https://doi.org/10.1016/j.msea.2014.09.028

Khodabakhshi, F., R. Sayyadi, and N. Shahamat Javid. "Lead free Sn-Ag-Cu solders reinforced by Ni-coated graphene nanosheets prepared by mechanical alloying: Microstructural evolution and mechanical durability." Materials Science and Engineering: A 702 (2017): 371-385. https://doi.org/10.1016/j.msea.2017.07.024

Fathian, Zahra, Ali Maleki, and Behzad Niroumand. "Synthesis and characterization of ceramic nanoparticles reinforced lead-free solder." Ceramics International 43, no. 6 (2017): 5302-5310. https://doi.org/10.1016/j.ceramint.2017.01.067

Fouzder, Tama, Ismathullakhan Shafiq, Y. C. Chan, A. Sharif, and Winco KC Yung. "Influence of SrTiO3 nano-particles on the microstructure and shear strength of Sn-Ag-Cu solder on Au/Ni metallized Cu pads." Journal of Alloys and Compounds 509, no. 5 (2011): 1885-1892. https://doi.org/10.1016/j.jallcom.2010.10.081

Callister, William D., and David G. Rethwisch. Materials Science and Engineering 9th Ed. John Wiley & Sons Inc., 2007.

Sujan, G. K., A. S. M. A. Haseeb, Hiroshi Nishikawa, and M. A. Amalina. "Interfacial reaction, ball shear strength and fracture surface analysis of lead-free solder joints prepared using cobalt nanoparticle doped flux." Journal of Alloys and Compounds 695 (2017): 981-990. https://doi.org/10.1016/j.jallcom.2016.10.219

Gain, Asit Kumar, Yan Cheong Chan, and Winco KC Yung. "Effect of additions of ZrO2 nano-particles on the microstructure and shear strength of Sn-Ag-Cu solder on Au/Ni metallized Cu pads." Microelectronics Reliability 51, no. 12 (2011): 2306-2313. https://doi.org/10.1016/j.microrel.2011.03.042

Gancarz, Tomasz. "The effect of aging temperature on the phenomena occurring at the interface of solder SnZn with Na on Cu substrate." Materials Letters 171 (2016): 187-190. https://doi.org/10.1016/j.matlet.2016.02.066

Gao, Lili, Songbai Xue, Liang Zhang, Zhong Sheng, Feng Ji, Wei Dai, Sheng-lin Yu, and Guang Zeng. "Effect of alloying elements on properties and microstructures of SnAgCu solders." Microelectronic Engineering 87, no. 11 (2010): 2025-2034. https://doi.org/10.1016/j.mee.2010.04.007

Mohammed, Gh, and S. El-Gamal. "Influence of SiC nanoparticles addition on the microstructure, thermal and tensile properties of Sn-Zn-Ag solder alloy." Materials Research Express 5, no. 8 (2018): 086508. https://doi.org/10.1088/2053-1591/aad25c

Guo, Bingfeng, Anil Kunwar, Ning Zhao, Jun Chen, Yunpeng Wang, and Haitao Ma. "Effect of Ag3Sn nanoparticles and temperature on Cu6Sn5 IMC growth in Sn-xAg/Cu solder joints." Materials Research Bulletin 99 (2018): 239-248. https://doi.org/10.1016/j.materresbull.2017.11.022

Zou, H. F., Q. K. Zhang, and Z. F. Zhang. "Interfacial microstructure and mechanical properties of SnBi/Cu joints by alloying Cu substrate." Materials Science and Engineering: A 532 (2012): 167-177. https://doi.org/10.1016/j.msea.2011.10.078

Kotadia, H. R., O. Mokhtari, M. P. Clode, M. A. Green, and S. H. Mannan. "Intermetallic compound growth suppression at high temperature in SAC solders with Zn addition on Cu and Ni-P substrates." Journal of Alloys and Compounds 511, no. 1 (2012): 176-188. https://doi.org/10.1016/j.jallcom.2011.09.024

Tsukamoto, H., T. Nishimura, S. Suenaga, Stuart D. McDonald, Keith W. Sweatman, and Kazuhiro Nogita. "The influence of solder composition on the impact strength of lead-free solder ball grid array joints." Microelectronics Reliability 51, no. 3 (2011): 657-667. https://doi.org/10.1016/j.microrel.2010.10.012

Haseeb, A. S. M. A., M. M. Arafat, and Mohd Rafie Johan. "Stability of molybdenum nanoparticles in Sn-3.8 Ag-0.7 Cu solder during multiple reflow and their influence on interfacial intermetallic compounds." Materials Characterization 64 (2012): 27-35. https://doi.org/10.1016/j.matchar.2011.11.006

Haseeb, A. S. M. A., and Tay See Leng. "Effects of Co nanoparticle addition to Sn-3.8 Ag-0.7 Cu solder on interfacial structure after reflow and ageing." Intermetallics 19, no. 5 (2011): 707-712. https://doi.org/10.1016/j.intermet.2011.01.009

Huang, Huizhen, Gewang Shuai, Xiuqin Wei, and Chuanqiang Yin. "Effects of sulfur addition on the wettability and corrosion resistance of Sn-0.7 Cu lead-free solder." Microelectronics Reliability 74 (2017): 15-21. https://doi.org/10.1016/j.microrel.2017.05.010

Hu, Xiao, Sha Xu, Ying Yang, Zhong Chen, and Y. C. Chan. "Effect of TiO2 nanoparticle addition on electroless Ni-P under bump metallization for lead-free solder interconnection." Materials Science and Engineering: A 600 (2014): 67-75. https://doi.org/10.1016/j.msea.2014.02.011

Ichitsubo, Tetsu, Eiichiro Matsubara, Kozo Fujiwara, Masahiko Yamaguchi, Hisao Irie, Seishi Kumamoto, and Takaaki Anada. "Control of compound forming reaction at the interface between SnZn solder and Cu substrate." Journal of Alloys and Compounds 392, no. 1-2 (2005): 200-205. https://doi.org/10.1016/j.jallcom.2004.09.043

Shen, Jun, and Yan Cheong Chan. "Research advances in nano-composite solders." Microelectronics Reliability 49, no. 3 (2009): 223-234. https://doi.org/10.1016/j.microrel.2008.10.004

Shen, Jun, and Yan Cheong Chan. "Effects of ZrO2 nanoparticles on the mechanical properties of Sn-Zn solder joints on Au/Ni/Cu pads." Journal of Alloys and Compounds 477, no. 1-2 (2009): 552-559. https://doi.org/10.1016/j.jallcom.2008.10.140

Li, J. F., S. H. Mannan, M. P. Clode, D. C. Whalley, and D. A. Hutt. "Interfacial reactions between molten Sn-Bi-X solders and Cu substrates for liquid solder interconnects." Acta Materialia 54, no. 11 (2006): 2907-2922. https://doi.org/10.1016/j.actamat.2006.02.030

Jung, Do-Hyun, Ashutosh Sharma, and Jae-Pil Jung. "Influence of dual ceramic nanomaterials on the solderability and interfacial reactions between lead-free Sn-Ag-Cu and a Cu conductor." Journal of Alloys and Compounds 743 (2018): 300-313. https://doi.org/10.1016/j.jallcom.2018.02.017

Mehrabi, K., F. Khodabakhshi, E. Zareh, A. Shahbazkhan, and A. Simchi. "Effect of alumina nanoparticles on the microstructure and mechanical durability of meltspun lead-free solders based on tin alloys." Journal of Alloys and Compounds 688 (2016): 143-155. https://doi.org/10.1016/j.jallcom.2016.06.296

Kanlayasiri, Kannachai, and Nadee Meesathien. "Effects of zinc oxide nanoparticles on properties of SAC0307 lead-free solder paste." Advances in Materials Science and Engineering 2018 (2018): 1-10. https://doi.org/10.1155/2018/3750742

Kanlayasiri, Kannachai, and Kamtorn Sukpimai. "Effects of indium on the intermetallic layer between low-Ag SAC0307-xIn lead-free solders and Cu substrate." Journal of Alloys and Compounds 668 (2016): 169-175. https://doi.org/10.1016/j.jallcom.2016.01.231

Kotadia, Hiren R., Philip D. Howes, and Samjid H. Mannan. "A review: On the development of low melting temperature Pb-free solders." Microelectronics Reliability 54, no. 6-7 (2014): 1253-1273. https://doi.org/10.1016/j.microrel.2014.02.025

Kumar, K. Mohan, V. Kripesh, and Andrew AO Tay. "Single-wall carbon nanotube (SWCNT) functionalized Sn-Ag-Cu lead-free composite solders." Journal of Alloys and Compounds 450, no. 1-2 (2008): 229-237. https://doi.org/10.1016/j.jallcom.2006.10.123

Kumar, Santosh, Joseph Smetana, David Love, James Watkowski, Richard Parker, and Carol A. Handwerker. "Microvoid formation at solder-copper interfaces during annealing: a systematic study of the root cause." Journal of Electronic Materials 40, no. 12 (2011): 2415. https://doi.org/10.1007/s11664-011-1768-9

Tsao, L. C. "Suppressing effect of 0.5 wt.% nano-TiO2 addition into Sn-3.5 Ag-0.5 Cu solder alloy on the intermetallic growth with Cu substrate during isothermal aging." Journal of Alloys and Compounds 509, no. 33 (2011): 8441-8448. https://doi.org/10.1016/j.jallcom.2011.05.116

Tsao, L. C., C. H. Huang, C. H. Chung, and R. S. Chen. "Influence of TiO2 nanoparticles addition on the microstructural and mechanical properties of Sn0. 7Cu nano-composite solder." Materials Science and Engineering: A 545 (2012): 194-200. https://doi.org/10.1016/j.msea.2012.03.025

Tsao, L. C., S. Y. Chang, C. I. Lee, W. H. Sun, and C. H. Huang. "Effects of nano-Al2O3 additions on microstructure development and hardness of Sn3. 5Ag0. 5Cu solder." Materials & Design 31, no. 10 (2010): 4831-4835. https://doi.org/10.1016/j.matdes.2010.04.033

Liu, Jian-Chun, Gong Zhang, Zheng-Hong Wang, Ju-Sheng Ma, and Katsuaki Suganuma. "Thermal property, wettability and interfacial characterization of novel Sn-Zn-Bi-In alloys as low-temperature lead-free solders." Materials & Design 84 (2015): 331-339. https://doi.org/10.1016/j.matdes.2015.06.148

Liu, Ping, Pei Yao, and Jim Liu. "Effects of multiple reflows on interfacial reaction and shear strength of SnAgCu and SnPb solder joints with different PCB surface finishes." Journal of Alloys and Compounds 470, no. 1-2 (2009): 188-194. https://doi.org/10.1016/j.jallcom.2008.02.102

Li, Z. L., G. Y. Li, B. Li, L. X. Cheng, J. H. Huang, and Y. Tang. "Size effect on IMC growth in micro-scale Sn-3.0 Ag-0.5 Cu-0.1 TiO2 solder joints in reflow process." Journal of Alloys and Compounds 685 (2016): 983-991. https://doi.org/10.1016/j.jallcom.2016.06.295

Luo, Tingbi, Anmin Hu, Jing Hu, Ming Li, and Dali Mao. "Microstructure and mechanical properties of Sn-Zn-Bi-Cr lead-free solder." Microelectronics Reliability 52, no. 3 (2012): 585-588. https://doi.org/10.1016/j.microrel.2011.10.005

Lu, Yu, Le Ma, Shu-yong Li, Wei Zuo, Zhi-qiang Ji, and Min Ding. "Effect of Cu element addition on the interfacial behavior and mechanical properties of Sn9Zn-1Al2O3 soldering 6061 aluminum alloys: First-principle calculations and experimental research." Journal of Alloys and Compounds 765 (2018): 128-139. https://doi.org/10.1016/j.jallcom.2018.06.178

Ma, Dong-liang, and Ping Wu. "Effects of Zn addition on mechanical properties of eutectic Sn-58Bi solder during liquid-state aging." Transactions of Nonferrous Metals Society of China 25, no. 4 (2015): 1225-1233. https://doi.org/10.1016/S1003-6326(15)63719-0

Miao, Hui-Wei, and Jenq-Gong Duh. "Microstructure evolution in Sn-Bi and Sn-Bi-Cu solder joints under thermal aging." Materials Chemistry and Physics 71, no. 3 (2001): 255-271. https://doi.org/10.1016/S0254-0584(01)00298-X

MAA, Mohd Salleh, AM Mustafa Al Bakri, H. Kamarudin, M. Bnhussain, and Flora Somidin. "Solderability of Sn-0.7 Cu/Si3N4 lead-free composite solder on Cu-substrate." Physics Procedia 22 (2011): 299-304. https://doi.org/10.1016/j.phpro.2011.11.047

Salleh, MAA Mohd, AM Mustafa Al Bakri, M. H. Zan, Flora Somidin, Noor Farhani Mohd Alui, and Zainal Arifin Ahmad. "Mechanical properties of Sn-0.7 Cu/Si3N4 lead-free composite solder." Materials Science and Engineering: A 556 (2012): 633-637. https://doi.org/10.1016/j.msea.2012.07.039

Islam, Sheik Md Kazi Nazrul, Ahmed Sharif, and T. Alam. "Interfacial Microstructure, Microhardness and Tensile Properties of Al Micro-Particle Doped Sn-9Zn Eutectic Pb-Free Solder Alloy for Microelectronics Applications." Journal of Telecommunication, Electronic and Computer Engineering (JTEC) 4, no. 2 (2012): 35-39.

Ren, Guang, Ian J. Wilding, and Maurice N. Collins. "Alloying influences on low melt temperature SnZn and SnBi solder alloys for electronic interconnections." Journal of Alloys and Compounds 665 (2016): 251-260. https://doi.org/10.1016/j.jallcom.2016.01.006

Ren, Guang, and Maurice N. Collins. "On the mechanism of Sn tunnelling induced intermetallic formation between Sn-8Zn-3Bi solder alloys and Cu substrates." Journal of Alloys and Compounds 791 (2019): 559-566. https://doi.org/10.1016/j.jallcom.2019.03.244

Tay, S. L., A. S. M. A. Haseeb, Mohd Rafie Johan, P. R. Munroe, and Md Zakaria Quadir. "Influence of Ni nanoparticle on the morphology and growth of interfacial intermetallic compounds between Sn-3.8 Ag-0.7 Cu lead-free solder and copper substrate." Intermetallics 33 (2013): 8-15. https://doi.org/10.1016/j.intermet.2012.09.016

Chang, S. Y., C. C. Jain, T. H. Chuang, L. P. Feng, and L. C. Tsao. "Effect of addition of TiO2 nanoparticles on the microstructure, microhardness and interfacial reactions of Sn3. 5AgXCu solder." Materials & Design 32, no. 10 (2011): 4720-4727. https://doi.org/10.1016/j.matdes.2011.06.044

Shen, Jun, and Yan Cheong Chan. "Effect of metal/ceramic nanoparticle-doped fluxes on the wettability between Sn-Ag-Cu solder and a Cu layer." Journal of Alloys and Compounds 477, no. 1-2 (2009): 909-914. https://doi.org/10.1016/j.jallcom.2008.11.015

Shen, Lu, Asta Qili Foo, Shijie Wang, and Zhong Chen. "Enhancing creep resistance of SnBi solder alloy with non-reactive nano fillers: A study using nanoindentation." Journal of Alloys and Compounds 729 (2017): 498-506. https://doi.org/10.1016/j.jallcom.2017.09.177

Shin, Yue-Seon, Sehyung Lee, Sehoon Yoo, and Chang-Woo Lee. "Mechanical and microstructural properties of SiC-mixed Sn-Bi composite solder bumps by electroplating." In 2009 European Microelectronics and Packaging Conference, pp. 1-4. IEEE, 2009.

Amares, Singh, Durairaj Rajkumar, Mhd Noor Ervina Efzan, and Woong Sia Way. "Reliability Study of Lead Free Sn-3.8 Ag-0.7 Cu and Copper (Cu) Substrate based on the Microstructure, Physical and Mechanical Properties." Journal of Mechanical Engineering 5, no. 2 (2018): 169-180.

Yang, T. L., J. Y. Wu, C. C. Li, S. Yang, and C. R. Kao. "Low temperature bonding for high temperature applications by using SnBi solders." Journal of Alloys and Compounds 647 (2015): 681-685. https://doi.org/10.1016/j.jallcom.2015.05.249

Tan, Ai Ting, Ai Wen Tan, and Farazila Yusof. "Influence of nanoparticle addition on the formation and growth of intermetallic compounds (IMCs) in Cu/Sn-Ag-Cu/Cu solder joint during different thermal conditions." Science and Technology of Advanced Materials 16, no. 3 (2015): 033505. https://doi.org/10.1088/1468-6996/16/3/033505

Tang, Y., G. Y. Li, and Y. C. Pan. "Effects of TiO2 nanoparticles addition on microstructure, microhardness and tensile properties of Sn-3.0 Ag-0.5 Cu-xTiO2 composite solder." Materials & Design 55 (2014): 574-582. https://doi.org/10.1016/j.matdes.2013.10.033

Vuorinen, V., H. Yu, T. Laurila, and J. K. Kivilahti. "Formation of intermetallic compounds between liquid Sn and various CuNi x metallizations." Journal of Electronic Materials 37, no. 6 (2008): 792-805. https://doi.org/10.1007/s11664-008-0411-x

Chen, W. M., S. K. Kang, and C. R. Kao. "Effects of Ti addition to Sn-Ag and Sn-Cu solders." Journal of Alloys and Compounds 520 (2012): 244-249. https://doi.org/10.1016/j.jallcom.2012.01.032

Wang, Fengjiang, Ying Huang, and Chengchao Du. "Mechanical properties of SnBi-SnAgCu composition mixed solder joints using bending test." Materials Science and Engineering: A 668 (2016): 224-233. https://doi.org/10.1016/j.msea.2016.05.072

Wang, Shaobin, and Yao Yao. "Size effect of Sn3. 0Ag0. 5Cu solder joint on intermetallic layer growth." In 2017 18th International Conference on Electronic Packaging Technology (ICEPT), pp. 1547-1551. IEEE, 2017. https://doi.org/10.1109/ICEPT.2017.8046730

Wang, Yaoli, Guangxin Wang, Kexing Song, and Keke Zhang. "Effect of Ni addition on the wettability and microstructure of Sn2. 5Ag0. 7Cu0. 1RE solder alloy." Materials & Design 119 (2017): 219-224. https://doi.org/10.1016/j.matdes.2017.01.046

Wattanakornphaiboon, Anattiya, Rungsinee Canyook, and Kittichai Fakpan. "Effect of SnO2 reinforcement on creep property of Sn-Ag-Cu solders." Materials Today: Proceedings 5, no. 3 (2018): 9213-9219. https://doi.org/10.1016/j.matpr.2017.10.092

Chen, Wenxue, Songbai Xue, Hui Wang, and Yuhua Hu. "Effects of Ag on properties of Sn-9Zn lead-free solder." Rare Metal Materials and Engineering 39, no. 10 (2010): 1702-1706. https://doi.org/10.1016/S1875-5372(10)60127-0

Xing, Wen-qing, Xin-ye Yu, Heng Li, Le Ma, Wei Zuo, Peng Dong, Wen-xian Wang, and Min Ding. "Effect of nano Al2O3 additions on the interfacial behavior and mechanical properties of eutectic Sn-9Zn solder on low temperature wetting and soldering of 6061 aluminum alloys." Journal of Alloys and Compounds 695 (2017): 574-582. https://doi.org/10.1016/j.jallcom.2016.11.136

Xu, Lianyong, Xi Chen, Hongyang Jing, Lixia Wang, Jun Wei, and Yongdian Han. "Design and performance of Ag nanoparticle-modified graphene/SnAgCu lead-free solders." Materials Science and Engineering: A 667 (2016): 87-96. https://doi.org/10.1016/j.msea.2016.04.084

Xu, Sha, Yan Cheong Chan, Kaili Zhang, and K. C. Yung. "Interfacial intermetallic growth and mechanical properties of carbon nanotubes reinforced Sn3. 5Ag0. 5Cu solder joint under current stressing." Journal of Alloys and Compounds 595 (2014): 92-102. https://doi.org/10.1016/j.jallcom.2014.01.083

Tang, Y., S. M. Luo, W. F. Huang, Y. C. Pan, and G. Y. Li. "Effects of Mn nanoparticles on tensile properties of low-Ag Sn-0.3 Ag-0.7 Cu-xMn solder alloys and joints." Journal of Alloys and Compounds 719 (2017): 365-375. https://doi.org/10.1016/j.jallcom.2017.05.182

Yahaya, Muhamad Zamri, Fakhrozi Che Ani, Zambri Samsudin, Salim Sahin, Mohd Zulkifly Abdullah, and Ahmad Azmin Mohamad. "Hardness profiles of Sn-3.0 Ag-0.5 Cu-TiO2 composite solder by nanoindentation." Materials Science and Engineering: A 669 (2016): 178-186. https://doi.org/10.1016/j.msea.2016.05.081

Yang, Lizhuang, Wei Zhou, Yinghua Liang, Wenquan Cui, and Ping Wu. "Improved microstructure and mechanical properties for Sn58Bi solder alloy by addition of Ni-coated carbon nanotubes." Materials Science and Engineering: A 642 (2015): 7-15. https://doi.org/10.1016/j.msea.2015.06.080

Yang, Li, Lu Zhu, Yaocheng Zhang, Shiyuan Zhou, Guoqiang Wang, Sai Shen, and Xiaolong Shi. "Microstructure, IMCs layer and reliability of Sn-58Bi solder joint reinforced by Mo nanoparticles during thermal cycling." Materials Characterization 148 (2019): 280-291. https://doi.org/10.1016/j.matchar.2018.12.012

Yoon, Jeong-Won, and Seung-Boo Jung. "Reliability studies of Sn-9Zn/Cu solder joints with aging treatment." Journal of Alloys and Compounds 407, no. 1-2 (2006): 141-149. https://doi.org/10.1016/j.jallcom.2005.06.047

Li, Z. L., G. Y. Li, B. Li, L. X. Cheng, J. H. Huang, and Y. Tang. "Size effect on IMC growth in micro-scale Sn-3.0 Ag-0.5 Cu-0.1 TiO2 solder joints in reflow process." Journal of Alloys and Compounds 685 (2016): 983-991. https://doi.org/10.1016/j.jallcom.2016.06.295

Zhang, Liang, Cheng-wen He, Yong-huan Guo, Ji-guang Han, Yong-wei Zhang, and Xu-yan Wang. "Development of SnAg-based lead free solders in electronics packaging." Microelectronics Reliability 52, no. 3 (2012): 559-578. https://doi.org/10.1016/j.microrel.2011.10.006

Zhang, Liang, and King-Ning Tu. "Structure and properties of lead-free solders bearing micro and nano particles." Materials Science and Engineering: R: Reports 82 (2014): 1-32. https://doi.org/10.1016/j.mser.2014.06.001

Zhu, Ze, Yan-Cheong Chan, Zhong Chen, Chee-Lip Gan, and Fengshun Wu. "Effect of the size of carbon nanotubes (CNTs) on the microstructure and mechanical strength of CNTs-doped composite Sn0. 3Ag0. 7Cu-CNTs solder." Materials Science and Engineering: A 727 (2018): 160-169. https://doi.org/10.1016/j.msea.2018.05.002

Zou, Changdong, Yulai Gao, Bin Yang, and Qijie Zhai. "Melting and solidification properties of the nanoparticles of Sn3. 0Ag0. 5Cu lead-free solder alloy." Materials Characterization 61, no. 4 (2010): 474-480. https://doi.org/10.1016/j.matchar.2010.02.004

Downloads

Published

2021-04-23

How to Cite

Singh, A., Durairaj, R., & How, K. S. (2021). Effect Of 3% Molybdenum (Mo) Nanoparticles on The Melting, Microstructure and Hardness Properties of As- Reflowed Low Mass Sn-58Bi (SB) Solder Alloy. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 77(1), 69–87. https://doi.org/10.37934/arfmts.77.1.6987

Issue

Section

Articles