Thermal Degradation and Mechanical Characteristics of Sugarcane Bagasse Reinforced Biodegradable Potato Starch Composites
DOI:
https://doi.org/10.37934/arfmts.78.1.157166Keywords:
Thermoplastic starch, sugar cane bagasee, biodegradableAbstract
Global pollution due to the overwhelming usage of non-biodegradable plastics is getting severe nowadays. Hence, the aim of this paper is to develop an environmentally friendly composite material from potato starch and sugarcane bagasse. The composites were prepared by hot pressing at 145? for 60 min. The composites were characterize for their mechanical and thermal properties. In terms of thermal properties, thermogravimetric analysis shows that incorporation of sugarcane fiber has improved the thermal stability of the composites. Meanwhile, incorporation of sugarcane fibre form 0 to 15 wt.% has significantly improved the tensile and flexural properties of the composites. Scanning electron micrograph of the tensile fracture showed the fibre fracture and fibre “pull-out” from the composite. Overall, the biodegradable composites has shown improved functional characteristic than the origin material. This finding shows that this Sugarcane/Potato starch composites are potential alternative material for biodegradable product i. e biodegradable plastic packaging.
References
Jumaidin, Ridhwan, Mohd Sapuan Salit, Mohamed Saiful Firdaus, Ahmad Fuad Ab Ghani, Mohd Yuhazri Yaakob, Nazri Huzaimi Zakaria, Fudhail Abdul Munir, Azrul Abidin Zakaria, and Norhisyam Jenal. 2018. “Effect of Agar on Dynamic Mechanical Properties of Thermoplastic Sugar Palm Starch?: Thermal Behavior.” Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 47 (1): 89–96.
Jumaidin, R, S.M. Sapuan, Mohammad Jawaid, and Mohamad Ridzwan Ishak. 2017. “Effect of Agar on Flexural, Impact, and Thermogravimetric Properties of Thermoplastic Sugar Palm Starch.” Current Organic Synthesis 14 (2): 200–205. https://doi.org/10.2174/1570179413666160921110732
Thakur, Vijay Kumar, Manju Kumari Thakur, and Raju Kumar Gupta. 2014. “Review: Raw Natural Fiber-Based Polymer Composites.” International Journal of Polymer Analysis and Characterization. https://doi.org/10.1080/1023666X.2014.880016
Thermal, Mechanical, and Physical Properties of Seaweed/Sugar Palm Fibre Reinforced Thermoplastic Sugar Palm Starch/Agar Hybrid Composites.” International Journal of Biological Macromolecules 97: 606–15. https://doi.org/10.1016/j.ijbiomac.2017.01.079
Haque, E. 2017. “Development and Characterization of Thermoplastic SMC: M
Sanyang, M. L., S. M. Sapuan, M. Jawaid, M. R. Ishak, and J. Sahari. 2016. “Recent Developments in Sugar Palm (Arenga Pinnata) Based Biocomposites and Their Potential Industrial Applications: A Review.” Renewable and Sustainable Energy Reviews 54: 533–49. https://doi.org/10.1016/j.rser.2015.10.037
Yu, Long, Katherine Dean, and Lin Li. 2006. “Polymer Blends and Composites from Renewable Resources.” Progress in Polymer Science (Oxford) 31: 576–602. https://doi.org/10.1016/j.progpolymsci.2006.03.002
Asagekar, S. D., and V. K. Joshi. 2014. “Characteristics of Sugarcane Fibres.” Indian Journal of Fibre and Textile Research 39 (2): 180–84.
Sheikh Khalid, F., H.S. Herman, and N.B. Azmi. 2017. “Properties of Sugarcane Fiber on the Strength of the Normal and Lightweight Concrete.” MATEC Web of Conferences 103. https://doi.org/10.1051/matecconf/201710301021
Beilvert, A, F Chaubet, L Chaunier, S Guilois, G Pavon-Djavid, D Letourneur, A Meddahi-Pellé, and D Lourdin. 2014. “Shape-Memory Starch for Resorbable Biomedical Devices.” Carbohydrate Polymers 99 (January): 242–48. https://doi.org/10.1016/j.carbpol.2013.08.015
Edhirej, Ahmed, Salit Mohd Sapuan, Mohammad Jawaid, and Nur Ismarrubie Zahari. 2015. “Cassava: Its Polymer, Fiber, Composite, and Application.” Polymer Composites 16: 1–16.
Sahari, J, S M Sapuan, E S Zainudin, and M A Maleque. 2014. “Physico-Chemical and Thermal Properties of Starch Derived from Sugar Palm Tree ( Arenga Pinnata ) Physico-Chemical and Thermal Properties of Starch Derived from Sugar Palm Tree ( Arenga Pinnata ),” no. August. https://doi.org/10.14233/ajchem.2014.15652
Prachayawarakorn, J., N. Limsiriwong, R. Kongjindamunee, and S. Surakit. 2011. “Effect of Agar and Cotton Fiber on Properties of Thermoplastic Waxy Rice Starch Composites.” Journal of Polymers and the Environment 20 (1): 88–95. https://doi.org/10.1007/s10924-011-0371-8
Jumaidin, R., S.M. Sapuan, M. Jawaid, M.R. Ishak, and J. Sahari. 2016. “Characteristics of Thermoplastic Sugar Palm Starch/Agar Blend: Thermal, Tensile, and Physical Properties.” International Journal of Biological Macromolecules 89: 575–81. https://doi.org/10.1016/j.ijbiomac.2016.05.028
Teixeira, Eliangela De M, Daniel Pasquini, Antônio a S Curvelo, Elisângela Corradini, Mohamed N. Belgacem, and Alain Dufresne. 2009. “Cassava Bagasse Cellulose Nanofibrils Reinforced Thermoplastic Cassava Starch.” Carbohydrate Polymers 78 (3): 422–31. https://doi.org/10.1016/j.carbpol.2009.04.034
Prachayawarakorn, Jutarat, and Wanida Pomdage. 2014. “Effect of Carrageenan on Properties of Biodegradable Thermoplastic Cassava Starch/Low-Density Polyethylene Composites Reinforced by Cotton Fibers.” Materials & Design 61 (September): 264–69. https://doi.org/10.1016/j.matdes.2014.04.051
De, Eliangela, M Teixeira, Antônio A S Curvelo, Ana C Corrêa, José M Marconcini, Gregory M Glenn, and Luiz H C Mattoso. 2011. “Properties of Thermoplastic Starch from Cassava Bagasse and Cassava Starch and Their Blends with Poly (Lactic Acid).” Industrial Crops and Products 37: 61–68. https://doi.org/10.1016/j.indcrop.2011.11.036
Ibrahim, Hamdy, Mahmoud Farag, Hassan Megahed, and Sherif Mehanny. 2014. “Characteristics of Starch-Based Biodegradable Composites Reinforced with Date Palm and Flax Fibers.” Carbohydrate Polymers 101: 11–19. https://doi.org/10.1016/j.carbpol.2013.08.051
Jumaidin, Ridhwan, Salit M. Sapuan, Mohammad Jawaid, Mohamad R. Ishak, and Japar Sahari. 2017a. “Effect of Seaweed on Mechanical, Thermal, and Biodegradation Properties of Thermoplastic Sugar Palm Starch/Agar Composites.” International Journal of Biological Macromolecules 99: 265–73. https://doi.org/10.1016/j.ijbiomac.2017.02.092
Guo, Bin, Li Jian Wang, Peng Yin, Ben Gang Li, and Pan Xin Li. 2017. “Ultra-High Molecular Weight Polyethylene Fiber-Reinforced Thermoplastic Corn Starch Composite.” Journal of Thermoplastic Composite Materials 30 (4): 564–77. https://doi.org/10.1177/0892705715604682
Martins, Andréa Bercini, and Ruth Marlene Campomanes Santana. 2016. “Effect of Carboxylic Acids as Compatibilizer Agent on Mechanical Properties of Thermoplastic Starch and Polypropylene Blends.” Carbohydrate Polymers 135: 79–85. https://doi.org/10.1016/j.carbpol.2015.08.074
Sahari, Japar, Mohd Sapuan Salit, Edi Syam Zainudin, and Mohd Abdul Maleque. 2014. “Degradation Characteristics of SPF/SPS Biocomposites Fabrication of SPF/SPS Biocomposites.” Fibres and Textiles in Eastern Europe 22 (5107): 96–98.
Sahari, J., S. M. Sapuan, E. S. Zainudin, and M. a. Maleque. 2013. “Mechanical and Thermal Properties of Environmentally Friendly Composites Derived from Sugar Palm Tree.” Materials and Design 49: 285–89. https://doi.org/10.1016/j.matdes.2013.01.048
Lomelí-Ramírez, María Guadalupe, Satyanarayana G. Kestur, Ricardo Manríquez-González, Setsuo Iwakiri, Graciela Bolzon De Muniz, and Thais Sydenstricker Flores-Sahagun. 2014. “Bio-Composites of Cassava Starch-Green Coconut Fiber: Part II - Structure and Properties.” Carbohydrate Polymers 102 (1): 576–83. https://doi.org/10.1016/j.carbpol.2013.11.020