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Estimation particle composition such as particle shape, size, and concentration are 
crucial prior to the fabrication process of magnetorheological elastomer (MRE) to avoid 
process repetition due to inaccurate formulation. Currently, most of MRE prediction 
model were purposely used to predict the rheological properties such as shear stress 
and dynamic modulus, known as forward model. Nonetheless, very few studies have 
been reported to be capable able of predicting particle composition particularly in MR 
materials, which known as inverse model. Therefore, this paper proposed a carbonyl iron 
particle (CIP) concentration based MRE prediction model using neural network 
algorithm. Neural network-based machine learning model is more approachable 
compared to conventional mathematical modelling approach due to easily identify 
trends and pattern while handling multi-variety data. Various optimization algorithms 
have been employed such as Adam, RMSprop, SGD, AdaGrad, and Nadam throughout 
the modelling process. As the results, given shear strain amplitude, magnetic flux 
density, storage modulus, and loss factor as model input, SGD gave the maximum 
prediction accuracy with 0.95 and 3.038 MPa of R2 and RMSE, respectively. Hence, this 
model can be the basis to the MRE material and devices development particularly as the 
tool to reduce costing and time consuming.   
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1. Introduction 
 

Magnetorheological elastomer (MRE) is a smart material that response to external magnetic 
fields, allowing it to alter the rheological behaviour such as dynamic viscoelastic properties, stiffness, 
and damping [1,2]. It is made up two primaries: a matrix based medium and magnetic particles. 
Various studies have been conducted to improve the MRE properties performance such as 
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introduced additives [3], improved particle alignment in the presence of a magnetic field [4,5], and 
the production of varied particle compositions [6,7].  

Studies of magnetic particle composition has focused on particle shape such as spherical and 
plate-like [8], particle size [9], and also particle concentration [10]. Different particle concentration 
yield to wide range of results, especially in MR effects, which widely known as changes in the property 
with the presence of magnetic field intensity [11]. Wu et al., [10] in their studied introduced five 
different mass concentration of carbonyl iron particle (CIP) which were 20%, 30%, 40%, 50%, and 
60%. It was reported that the MR effect increased as the ratio increased, except on 50% due to 
suddenly decreased where the debate on that topic was not further addressed.  

Meanwhile, study from Yunus and co-authors [7] found that increasing of CIP concentration from 
10 to 70 wt% would increase the magnetic forces since the distance between CIPs became shorter 
due to agglomeration. In addition, shear storage modulus was reported slightly increase from 10 to 
30 wt% but remarkable increase from 50 to 70 wt%. Moreover, Johari and collaged [12] reported that 
the initial storage modulus increased as increased the CIP concentration from 50 to 80 wt% due to 
addition of particle in the MRE component but decreased the linear viscoelastic region limit indicates 
brittle behaviour and less elasticity.  

Hence, it should be emphasized that the selection of particle concentrations is crucial in order to 
fulfil the necessary attributes, weather for material properties study or for device application. 
Nonetheless, fabrication procedure is considered to be time consuming and costly due to repeating 
process required to gain a consistent outcome [13,14]. Hence, modelling and simulation model is 
needed to accurately anticipate particle composition under certain conditions. Prediction model for 
estimating viscoelastic properties (forward model) such as stress relaxation and creep behaviour [15] 
or particle composition such as particle concentration and size [16] (inverse model) involved with 
mathematical derivation-based model [17,18] and also machine learning based model [19-21]. 

Even so, machine learning model is preferable due to easily identify trends and patterns, required 
no human intervention, and handling multi-variety data [22-24]. Several studies on material science 
research have been conducted in order to anticipate fabrication process related parameter such as 
particle size of polymeric nanoparticles [25] and nanoparticle size of arbitrary methacrylates [26]. 
Latest, a prediction on particle size, particle concentration and milling time of MR fluid have been 
done with more than 80% accuracy.  

All of this research used the neural network approach, which is well renowned for its ability to 
deal with nonlinear behaviour and complex input-output relationship. Meanwhile, optimization 
algorithm in neural network is critical in determining model performances. Common optimizers such 
as Adam [27,28] and RMSprop [29,30] can be found specifically in the prediction of viscoelastic 
material properties. However, because model performance is strongly dependent on data set, there 
are no optimizers that explicitly offer for material property or fabrication process parameter 
prediction. 

Therefore, this work aims to design the ANN model for predicting CIP concentration based MRE 
with specified input shear strain amplitude, magnetic flux density, dynamic storage modulus, and 
loss factor and CIP concentration in weight percentage as model output. In this study, the effect of 
various optimization technique consists of Adam, RMSprop, SGD, AdaDelta, AdaGrad, Nadam, and 
AdaMax will be thoroughly investigated as it may affect the modelling performance. This work 
includes a proposed modelling approach based on ANN method, the MRE material fabrication 
process and data collecting, the result and discussion and lastly, the conclusion.  
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2. Artificial Neural Network Model 
 
In this work, back-propagation artificial neural network algorithm (BP-ANN) is used to predict the 

CIP concentration based on selected input data. In general, BP-ANN algorithm is a supervised learning 
where it will bring forward the information from input neuron and at the last layer, the error between 
targeted value and estimation value will be measured. The error will be backpropagated to improve 
the performance by updating the weight and bias until the error is acceptable. There are many 
trainings algorithm used in BP-ANN to update weight and bias as the optimizer. In Keras library, 
various optimizer can be found such as Adam, RMSprop, SGD, AdaDelta, AdaGrad, AdaMax, and 
Nadam. Further explanation on each Keras optimizer can be found as follow. 
 
2.1 Optimization Techniques 

 
i. Adaptive Moment Estimation (Adam) 

Adam is the combination of RMSprop and momentum optimizer to provide an 
optimization algorithm that can handle sparse gradients on noisy problems. The update 
operation considers only smooth version of the gradient and include bias correction 
mechanism [31].  

 
ii. Root Mean Square Propagation (RMSprop) 

RMSprop changes the AdaGrad optimizer on how the gradient is accumulated. Instead of 
taking the cumulative sum of squared gradients, the gradients are accumulated into an 
exponentially weighted average [31]. Furthermore, RMSprop choose different learning 
rate for each parameter. 

 
iii. Stochastic Gradient Descent (SGD) 

SGD is considered as a good learning algorithm for large training data set to train the 
neural network where the new updated parameter involved with a single or a few 
parameters such as learning rate to reduce variance and lead to stable convergence [32]. 

 
iv. Adaptive Gradient (AdaGrad) 

AdaGrad adapt all model parameters by scaling them inversely proportional to the square 
root of the sum of all the historical squared values of gradient [32]. In addition, a high 
gradient for the parameters will have a reduced learning rate and parameters with small 
gradient will have increase in learning rate [31]. On the other way, AdaGrad ignored the 
need to manually tune the learning rate [33]. 

 
v. Adaptive Learning Rate (AdaDelta) 

AdaDelta is an extension of AdaGrad presenting the modification on learning rate decay 
by introducing some fixed window and tracks only available gradients within the window, 
instead of accumulating the gradients [31,33]. 

 
vi. Adaptive Movement Estimation Maximum (AdaMax) 

AdaMax is an extension to the Adam optimization algorithm. Broadly, it is extension to 
the gradient descent optimization algorithm that generalizes the approach to the infinite 
norm (maximum) and may results in a more effective optimization on some problems.  
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vii. Nesterov-acceleration Adaptive Moment Estimation (Nadam) 
Nadam is one of the extensions of Adam optimizer which modified with Nesterov’s 
accelerated gradient (NAG) [33] which one of the improved types of momentum 
optimization algorithm. Nadam uses decaying step size and first moment 
hyperparameters that can improve performance. 

 
2.2 Neural Network Hyperparameter Setting 

 
Neural network hyperparameter can be tuned which lead to the changes of model parameter 

such as weight and bias. Thus, the selection of model hyperparameter is very crucial to get higher 
prediction model accuracy. After considering the model performances and effect on training time, 
related tuning hyperparameter is chosen as mentioned in Table 1.  
 

Table 1 
The neural network model hyperparameters 
Network parameter Setting value 

Epoch 100 
Batch size 1 
Kernel Weight Initializer Xavier Uniform 
Hidden nodes number 12 
Activation function Tangent Hyperbolic 
Learning rate 0.001 

 
There are several inputs have been chosen to predict the CIP concentration which is dynamic 

storage modulus ( 𝐺′), loss factor (tan 𝛿), shear strain amplitude (𝛾), and magnetic flux densities (𝐵). 
Meanwhile, CIP concentration (𝑊𝑝) as output model. The inputs model is normalized before being 

used to train so that the model may easily read the data. Hence, the neural network model 
architecture consists of input and output can be illustrated in Figure 1 showing the connection of the 
neuron between input layer, hidden layer, and output layer. In this work, Keras library was used as a 
Python interface to build the neural network model.  
 

 
Fig. 1. The neural network model architecture 
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3. Material Fabrication and Data Set 
3.1 MRE Fabrication Process 

 
MRE fabrication process start by providing the raw material which are room temperature 

vulcanization silicon rubber (RTV-SR) as matrix and CIP as magnetic particle. MRE is fabricated on 
isotropic condition in which the particle embedded in the matrix is distribute homogenously. The 
RTV-SR and CIP were measured using a weighing balance before vigorously stirring with a mixer for 
about 10 minutes. The compound was cured for about 2 hours in a mould with a diameter of 40 cm 
and 1 mm thickness at room temperature without the presence of a magnetic field. The sample 
fabrication process involved five different CIP concentration which are 30, 40, 50, 60, and 70 wt.%. 
The samples were undergoing dynamic testing which is shear strain amplitude sweep testing using 
rotational MCR 302 rheometer from Anton Paar. During the testing, the frequency is kept constant 
on 1 Hz with temperature 28℃. Meanwhile, the magnetic field strength is varied by changing the 
magnetic flux densities which is 0 mT, 180 mT, 360 mT, 580 mT, 701 mT, and 850 mT.   

  
3.2 Data Set and Performance Index 

 
After completing the dynamic testing on all MRE samples, the data were collected and filtered 

before it can be used for modelling process. There were 900 × 4 of raw data set gained from the 
dynamic testing. From this total data set, the division for training and testing data set was done prior 
to the modelling process which done by randomly distributed. Table 2 present the respective input 
and output along with minimum and maximum range values.  

 
Table 2 
Respective data for modelling purpose 
 Output Input 

CIP concentration Shear strain Magnetic flux density Storage modulus Loss factor 

Range Min Max Min Max Min Max Min Max Min Max 

Value 30wt.% 70wt.% 0.0009% 25% 0mT 0.89479mT 0.0626MPa 0.538MPa 0.055 1.546 

 
There were four performances index used in this work to analyse the prediction model results 

which is coefficient of determination (𝑅2), mean absolute error (𝑀𝐴𝐸), mean square error (𝑀𝑆𝐸), 
and root mean square error (𝑅𝑀𝑆𝐸). The 𝑅2 present the correlation between prediction output and 
targeted value where the results towards 1 showing higher correlation while results towards zero 
showing low correlation. Furthermore, MAE, MSE, and RMSE present the measured error.  The 
calculated index can be found as follow. 

 

𝑅2 =  1 −
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − �̅�𝑜𝑢𝑡𝑝𝑢𝑡)2𝑛
𝑖=1

     (1) 

  

𝑀𝐴𝐸 =  
∑ |𝑦𝑖 − �̂�𝑖|

𝑛
𝑖=1

𝑛
     (2) 

  

𝑀𝑆𝐸 =  
∑ (𝑦𝑖 − �̂�𝑖)𝑛

𝑖=1

𝑛
     (3) 

  

𝑅𝑀𝑆𝐸 =  √
∑ (𝑦𝑖−�̂�𝑖)2𝑛

𝑖=1

𝑛
            (4)    
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Based on Eq. (1), Eq. (2), Eq. (3) and Eq. (4), variable 𝑛, 𝑦, �̂� refer to number of observations in 
datasets, targeted output, and predicted output, respectively. Meanwhile, in Eq. (1), �̅�𝑜𝑢𝑡𝑝𝑢𝑡 refer to 

mean value of targeted output.  
 

4. Results and Discussion 
4.1 Effect of Various Optimizers on Performances Index 

 
The model performances on training and testing data set at seven optimization algorithms have 

been observed and analyzed though four performances index which is 𝑅2, 𝑀𝐴𝐸, 𝑀𝑆𝐸, and 𝑅𝑀𝑆𝐸 
where the results are tabulated in Table 3 and Table 4 for training and testing data set, respectively.  

 
Table 3 
Training data performance on various optimizer 
Optimizer Adam RMSprop AdaDelta AdaMax Nadam SGD AdaGrad 

𝑅2 0.928 0.897 -5734 0.808 0.927 0.952 -6504 
𝑀𝐴𝐸 2.315 2.694 48.62 4.339 2.346 1.682 44.30 
𝑀𝑆𝐸 13.28 18.01 2566 30.73 13.75 9.229 2156 
𝑅𝑀𝑆𝐸 3.645 4.244 50.65 5.543 3.708 3.038 46.43 

 
Table 4 
Testing data performance on various optimizer 
Optimizer Adam RMSprop AdaDelta AdaMax Nadam SGD AdaGrad 

𝑅2 0.919 0.919 -4525 0.763 0.914 0.937 -8330 
𝑀𝐴𝐸 2.492 2.370 47.24 4.440 2.644 2.182 42.92 
𝑀𝑆𝐸 13.23 12.47 2411 28.73 14.43 11.51 2014 
𝑅𝑀𝑆𝐸 3.637 3.532 49.10 5.360 3.799 3.393 44.88 

 
Among all applied optimization algorithms, AdaDelta and AdaGrad optimizer produced lowest 

correlation accuracy with larger error on both training and testing data set showing that these two 
optimizers were not very suitable for particle concentrations estimation. Furthermore, AdaMax 
optimizer reached about 80% correlation accuracy on training set but lower than RMSprop especially 
on testing data set. Besides, it can be noticed that training accuracy exhibited by RMSprop optimizer 
is lower than testing accuracy. This might be due to data split on training and testing data set was 
not distributed well where data in testing set is less variance or less noise from training data set and 
thus, lead to the higher accuracy on testing set than training set.   

A model will have good data splitting when having higher training accuracy and slightly lower on 
testing accuracy showing that data split was done evenly. Meanwhile, a model that have very higher 
training accuracy but very lower testing accuracy facing overfitting phenomenon where the model is 
not generalized well. Thus, data split should do properly to avoid biasness of data that might affect 
the performance of a model. On the other hand, Adam and Nadam optimizers produced similar 
model accuracy where Adam has slightly small error compared to Nadam optimizer on both training 
and testing data set. Meanwhile, SGD optimizer exhibits convincing model accuracy by having higher 
correlation and smallest error. SGD optimizer also showing smaller MAE, MSE, and RMSE value at 
testing data set showing the best optimizer among other optimization algorithms. Next, the 
comparison between targeted CIP concentrations and predicted CIP concentration is provided in 
graphical evaluation.  
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4.2 Carbonyl Iron Particle Concentration Prediction Performances 
 
The comparison between targeted and predicted CIP concentrations have been done on three 

best optimization algorithms which is Adam, Nadam, and SGD to show each performance at given 
response such as magnetic field and storage modulus.  

Based on Figure 2-4, it can observe that three optimizers simulation results may followed the 
targeted CIP concentrations. Nevertheless, all optimizers produced less prediction accuracy at 180 
mT particularly on predicting 50 wt.% where Nadam optimizer exhibits about 6.12 wt.% error 
followed by Adam and SGD with 5.07 wt.% and 3.23 wt.% error, respectively. In addition, low 
prediction of CIP concentrations also occurred at 40 wt.% which happened at all magnetic flux 
densities. Hence, this showed that interpolation estimation particularly at 40 and 50 wt.% have 
slightly low performances compared to 30, 60, and 70 wt.%. However, the range of the error is 
acceptable especially from SGD optimizer that made SGD optimizer become the best optimization 
algorithm in predicting MRE CIP concentrations.  
 

 

 

 
Fig. 2.  Adam Optimizer  Fig. 3. SGD Optimizer 

   

 
Fig. 4. Nadam Optimizer 

 
5. Conclusions  

 
As the conclusion, a neural network-based machine learning approach was used to construct a 

prediction model to forecast the CIP concentration of MRE. Seven models were developed based on 
different optimization algorithms which is Adam, RMSprop, SGD, AdaDelta, AdaGrad, Nadam, and 
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AdaMax. As the results, three optimizers showed favourable prediction performances which are 
Nadam, Adam, and SGD. It is truth that adaptive optimizers (Adam and Nadam) are faster in reaching 
the minimum cost function and compared to SGD during the training process. However, SGD is more 
generalized compared to adaptive optimizers. This is due to adaptive optimizers often converge to 
the sharp minima while SGD prefer to find flat minima or asymmetry valleys. In other words, adaptive 
optimizers have chances to stuck at local minima while SGD could better escape from sharp minima 
and converge to flatter minima which might be the best minima of the function. This can be proved 
from the performance index where SGD produced smallest RMSE, MSE, MAE and larger R2 value to 
show that it is the best optimizers for CIP concentration estimation. Also, comparison between actual 
concentration and predicted concentration showing that SGD followed well the pattern on all 
concentrations. Thus, model with SGD optimizer can be the basis platform for MRE material and 
devices development. Furthermore, this work also can be a basis framework for MRE model 
development for predicting fabrication or manufacturing process related parameters such as particle 
sized and additives content in order to reduce costs and time consumption.  
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