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Activated carbon, recognized for its high porosity and adsorption capabilities, finds 
widespread applications in water purification, air filtration, and energy storage. This 
study investigated the synthesis of activated carbon from giant sour tamarind fruit 
shell, an agricultural waste by-product, employing a two-step chemical activation 
process with potassium hydroxide (KOH) at varying activation temperatures (600, 700, 

and 800 °C). The BET surface area, pore volume, adsorption average pore diameter, 
pore size distribution, and adsorption isotherm were examined to characterize the 
properties of the giant sour tamarind fruit shell activated carbon. Results indicate that 

the activated carbon obtained at 800 °C exhibited the highest BET surface area (572.61 
m²/g) and total pore volume (0.2563 cm³/g), coupled with the smallest adsorption 

average pore diameter (1.79 nm). The adsorption isotherm displayed characteristics 
of Types I/IV, suggesting a micro-mesoporous carbon structure. 
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1. Introduction 
 

Activated carbon is a carbonaceous material with high porosity that has been processed to 
increase surface area and adsorption capacity [1-3]. With a large surface area and pore structure, 
activated carbon may adsorb a wide range of substances, including organic compounds, pollutants, 
and contaminants [4,5]. Activated carbon is commonly used in various applications, including water 

and air purification, industrial processes, medical treatments, energy storage devices, and even 
everyday products like face masks [6-9]. 

Principally, activated carbon can be produced by a two-step process known as carbonization and 

activation [10]. Carbonization or pyrolysis is the thermal degradation of carbonaceous material in an 
inert atmosphere or a vacuum to increase the content of the element carbon and remove volatile 

impurities [11,12]. The activation step can be activated by physical activation, chemical activation, or 
a combination of both activations. In the case of physical activation, the carbon materials are heated 
at the same or higher temperature of the carbonization process in an oxidizing gas such as steam or 
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carbon dioxide [13]. However, this method has a long activation time, and the obtained activated 
carbon possesses low adsorption capacity [14]. In chemical activation processes, the precursor is 
treated with a chemical agent such as potassium hydroxide (KOH), phosphoric acid (H3PO4), zinc 
chloride (ZnCl2), potassium carbonate (K2CO3), or sodium hydroxide (NaOH) at a temperatures range 
of 400-800 °C [15]. The two-step process has the advantage of providing a higher surface area and 
porosity, the first carbonization stage provides an initial porosity that is further improved with the 
activation process [16]. Among the chemical agents, potassium hydroxide (KOH) is commonly used 
as an activator to produce activated carbon due to its effective reaction with the carbonaceous 
material [17] and is considered environmentally friendly compared to certain other chemical 
activating agents [18,19]. The activating agent has been used on a variety of precursors, such as 
rubberwood [20], bamboo [21], coconut shell [22], palm kernel shell [23], rice straw [24], corn cob 
[25], and spent coffee grounds [26]. 

In recent years, agricultural waste has been widely used as raw materials for activated carbon 
production, aiming to mitigate waste generation, promote sustainable practices, and develop cost-
effective adsorbents. Tamarind (Tamarindus indica L.) is an evergreen tree that belongs to the family 

of Leguminosae, grown in tropical regions and subtropical regions. The various components of the 
tree are used in a wide range of industries, including food, pharmaceuticals, textiles, cosmetics, and 

environmental science [27]. In Thailand, there are two main types of tamarind (sour tamarind and 
sweet tamarind) [28]. Giant sour tamarind fruit, a specific variety of tamarind that has been 
developed for larger fruit size and pronounced sour taste, has gained significant attention from Thai 
farmers. As a result, agricultural residues, derived from giant sour tamarind fruit shells, are abundant. 
However, the studies on the characteristics and products derived from giant sour tamarind fruit are 
still limited. Previous studies have reported that the general tamarind fruit shell has the potential to 
be used as a raw material for effective activated carbon that is used for adsorption in wastewater 
treatment and energy storage applications [29-32]. 

In this present study, the giant sour tamarind fruit shell was used as a new material to synthesize 
cost-effectiveness activated carbon by chemical activation with potassium hydroxide (KOH) at 
activation temperatures of 600, 700, and 800°C. The BET surface area, pore volume,  adsorption 
average pore diameter, pore size distribution, and adsorption isotherm of activated carbon were 
investigated. 
 
2. Methodology  

2.1 Materials and Chemicals 
 

The raw giant sour tamarind fruit shells were acquired as a precursor from a farmer  in Dan Sai, 
Loei, Thailand. The raw giant sour tamarind fruits were boiled in water before removing the shell 

from the raw pulp by using a knife. Potassium hydroxide pellets (KOH) and hydrochloric acid (37%, 
HCl) used in this study were from KemAus and Qrec (AR grade). 
 
2.2 Synthesis of Activated Carbon 
 

The activated carbon was synthesized by a two-step process as shown in Figure 1. The first step 
is the carbonization process. The giant sour tamarind fruit shell was crushed to a particle size of 0.5-
2 mm after it was cleaned and dried in an oven at 110 °C for 24 hours to eliminate impurities and 
moisture content. A dried precursor was placed in a 4-inch diameter tube furnace to produce char 
and heated up to 400 °C at a heating rate of 6 °C/min under a nitrogen gas flow of 500 mL/min for 1 
hour. The second step is the chemical activation process, the derived giant sour tamarind fruit shell 
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char (TSC) was cooled down to room temperature and activated by using potassium hydroxide (KOH) 
in the impregnation ratio (w/w) of 1:3 (TSC: KOH). The 50 g of a giant sour tamarind fruit shell char 
(TSC) was mixed with 150 g of KOH in 300 mL of DI water by using a magnetic stirrer for 24 hours. 
Afterward, the impregnated sample was activated at the activation temperatures of 600, 700, and 
800 °C at a heating rate of 6 °C/min under a nitrogen gas flow of 500 mL/min for 1 hour. Materials 
obtained after activation at 600, 700, and 800°C are named as K6-TSAC, K7-TSAC, and K8-TSAC, 
respectively. After activation, the derived activated carbon samples were cooled down to room 
temperature and soaked with 0.1M HCl for 2 hours and then washed with DI water until the pH 
reached neutral. Finally, the giant sour tamarind fruit shell activated carbon (TSAC) was dried in an 
oven at 110 °C for 24 hours then collected into a sample bag and stored in the dry cabinet for further 
analysis. 
 

 
Fig. 1. The schematic of the synthesis of activated carbon 

 
2.3 Characterization of Activated Carbon 

 
The 4-digit analytical balance was used to weigh all the products in the preparation process. BET 

surface area, pore volume, adsorption average pore diameter, pore size distribution, and adsorption -
desorption isotherm were determined by using static volumetric N2 gas adsorption method with 

surface area and porosity analyzer (BET), ASAP2060, Micromeritics, USA from Office of Scientific 

Instrument and Testing, Prince of Songkla University, Thailand. 
    

3. Results  
3.1 The Yield of Activated Carbon 

 
The yield of activated carbon was calculated by using Eq. (1), which involved the weight of the 

final activated carbon product and the weight of the raw materials on a dry basis. The yields of 
activated carbon from giant sour tamarind fruit shell are in a range of 23.01-28.31% as shown in 

Figure 2, the lowest yield was 23.01%, which was activated at the activation temperature of 800 °C. 
In contrast, the activated carbon with an activation temperature of 600 °C has the highest yield of 

28.31%. Based on the result, it seems that when the activation temperature is increased, a greater 
quantity of small molecules is released [33]. 

 

𝑌𝑖𝑒𝑙𝑑 (%) =  
𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓  𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑 𝑐𝑎𝑟𝑏𝑜𝑛

𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓  𝑟𝑎𝑤 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙
 ×  100%        (1) 
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Fig. 2. The yield of activated carbon from giant sour tamarind fruit shell 

 
3.2 Textural Characteristics 
 

The textural properties of activated carbon derived from the giant sour tamarind fruit shell (TSAC) 
were assessed using the Brunauer, Emmett, and Teller (BET) method, which measures the quantity 
of physically adsorbed N2 gas. The determination of total pore volume was based on the adsorbed 
amount, providing an indication of the overall porous spaces within the activated carbon, irrespective 
of pore width. Table 1 summarizes the textural characteristics of activated carbons derived from the 
giant sour tamarind fruit shell (TSAC) at different activation temperatures. BET surface areas of K6-
TSAC, K7-TSAC, and K8-TSAC are 4.43, 375.27, and 572.61 m2/g, respectively. Furthermore, the total 
pore volumes of K6-TSAC, K7-TSAC, and K8-TSAC are 0. 0085, 0. 1597, and 0. 2563 cm³/g, respectively. 
Among the samples, activated carbon produced at 800 °C exhibited the highest BET surface area and 
total pore volume, which included a micropore volume of 0.0967cm³/g, constituting 37.71% of the 

total pore volume. Both BET surface area and total pore volume increased with the elevation of the 
activation temperature. Adsorption average pore diameters of K6-TSAC, K7-TSAC, and K8-TSAC are 
7.71, 1.79, and 1.79 nm, respectively. 

 
Table 1 
Textural characteristics of activated carbon 
Sample T (°C) SBET (m²/g) a VT (cm³/g) b Vmic (cm³/g) c Dp (nm) d 

K6-TSAC 600 4.43 0.0085 - 7.71 

K7-TSAC 700 357.27 0.1597 0.0443 1.79 

K8-TSAC 800 572.61 0.2563 0.0967 1.79 
a BET surface area 
b Total pore volume 
c Micropore volume 
d Adsorption average pore diameter 

 
3.3 Pore Size Distribution 

 
Figure 3 depicts the pore size distributions of activated carbon within a range of 0-10 nm, 

indicating two pore size regions: micropores (pore width: <2 nm) and mesopores (pore width: 2-50 
nm). The pore size distribution of K7-TSAC and K8-TSAC show similar results as shown in Figure 3(b) 
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and Figure 3(c). Zero pore volume is observed with pore widths smaller than 1.0901 nm for K7-TSAC 
and 1.795 nm for K8-TSAC. Both graphs have the same noticeable peak of pore volume at 1.2688 nm, 
indicating the presence of a significant number of micropores. Figure 3(a), K6-TSAC exhibits zero pore 
volume for pore widths smaller than 1 nm and displays a peak of pore volume at 1.0901 nm. However, 
this peak remains significantly lower compared to that of K7-TSAC and K8-TSAC. Additionally, there 
is a notable increase in pore volume for widths above 7.3986 nm, attributed to the mesoporous 
structure, corresponding to the adsorption average pore diameter in Table 1. 

 

  
(a)                                                                                                       (b) 

 
(c) 

Fig. 3. Pore size distribution of (a) K6-TSAC, (b) K7-TSAC, and (c) K8-TSAC 

 
3.4 Adsorption Isotherm 
 

The adsorption-desorption isotherms conducted with N2 at 77 K on activated carbon at different 
activation temperatures are illustrated in Figure 4. According to The International Union of Pure and 
Applied Chemistry (IUPAC) isotherms classification, the isotherm curves of K7-TSAC and K8-TSAC 
exhibit similar shapes and might classified as a combination of Types I and IV isotherms [34,35]. The 
adsorption branch displays characteristics akin to a Type I isotherm, with a sharp uptake at low p/p°, 
indicating the filling of micropores. The appearance of a hysteresis loop within the medium range, 
above p/p° of 0.4, categorizes it as an H4-type according to IUPAC, commonly observed in micro-
mesoporous carbons. Additionally, a slightly limitless increase is observed at p/p° near 1, confirming 

the presence of mesopores. However, the isotherm curves of K6-TSAC might classified as Type II 
isotherms, associated with the physisorption of most gases on nonporous or microporous 

adsorbents. 
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Fig. 4. Adsorption-desorption isotherm of activated carbons 

 
4. Conclusions 

 

In this study, activated carbon was synthesized from the giant sour tamarind fruit shell by chemical 
activation with KOH at various activation temperatures. The activated carbon obtained at 800 °C 

exhibited the highest BET surface area, total pore volume, and micropore volume of 572.61 m²/g, 
0.2563 cm³/g, and 0.0967 cm³/g, respectively. These values showed a significant increase with the 

rise in activation temperature and tended to further increase at temperatures over 800 °C.  The 
adsorption average pore diameter, pore size distribution, and adsorption isotherm collectively 

indicate that the activated carbon obtained at 600 °C tends to exhibit a nonporous or mesoporous 
structure, while the activated carbons obtained at higher temperatures display a micro-mesoporous 

structure. The well-developed porous activated carbon derived from giant sour tamarind fruit shell 
is capable of being potentially used as an adsorbent in various applications. 
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