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Efficient degradation of industrial dyes remains a critical challenge in environmental 
engineering. This study introduces a novel Fe3O4 nanoparticles/PVDF macrospheres in 
a Fenton-like system, optimized using an Artificial Neural Network (ANN) for the 
degradation of Methylene Blue (MB). A feedforward backpropagation neural network 
model to optimize and predict the performance of this advanced oxidation process 
under various operational conditions. The model was trained, validated, and tested 
with robust datasets, demonstrating high predictive accuracy and generalization 
capability. The Mean Square Error (MSE) and Root Mean Square Error (RMSE) during 
testing were 0.0200 and 0.1414, respectively, indicating precise predictions. The 
coefficient of determination (R²) and correlation coefficient (R) were exceptionally high 
at 0.9744 and 0.9871, affirming the model's ability to capture the underlying dynamics 
of the degradation process effectively. The ANN-driven approach not only enhanced 
the efficiency of the MB degradation process but also provided significant insights into 
the scalability and applicability of the Fe3O4/PVDF system for practical water treatment 
solutions.  This study underscores the potential of integrating advanced machine 
learning techniques with chemical engineering processes to achieve sustainable and 
efficient environmental management solutions, particularly for the treatment of 
recalcitrant wastewater contaminants. 
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1. Introduction 
 

Water pollution represents a significant environmental issue, with dyes from the textile, paper, 
and other industries posing a major threat to aquatic ecosystems and human health [1,2]. Methylene 
Blue (MB), a widely used cationic dye, is known for its persistence and toxicity [3]. Addressing this 
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challenge is crucial for achieving the United Nations’ Sustainable Development Goals (SDGs), 
particularly SDG 6 (Clean Water and Sanitation) [4]. Conventional dye removal methods such as 
adsorption, coagulation/flocculation, and biological treatment often suffer from drawbacks that limit 
their widespread implementation [5]. Adsorption may be hindered by the availability [6–9] and cost 
of effective adsorbents as well as the challenges associated with regeneration and disposal. 
Coagulation and flocculation can generate hazardous sludge, which requires additional treatment 
and disposal [10,11]. Biological methods may be less effective against the intricate and diverse dye 
structures commonly found in textile and paper industry effluents, and their performance may be 
sensitive to fluctuations in process conditions [12,13]. 

Advanced Oxidation Processes (AOPs), particularly Fenton-like reactions, are promising solutions 
for dye degradation because of their powerful oxidative potential [14]. These processes rely on the 
generation of highly reactive hydroxyl radicals (•OH), which can non-selectively degrade a wide 
variety of organic pollutants including recalcitrant dyes [15]. The classical Fenton reaction involves 
the reaction between ferrous ions (Fe2+) and hydrogen peroxide (H2O2) to produce hydroxyl radicals 
[16]. However, homogeneous Fenton processes have limitations, such as a narrow working pH range, 
the need for post-treatment sludge removal, and difficulties in catalyst recovery [16]. Heterogeneous 
Fenton-like catalysts have attracted considerable attention to overcome these drawbacks. These 
catalysts utilize solid-phase materials, which often contain iron-based species, to activate H2O2 and 
generate Reactive Oxygen Species (ROS) [17]. Among various heterogeneous systems, Fe3O4 
nanoparticles supported on PVDF macrospheres offer distinct advantages [18]. Fe3O4 nanoparticles 
possess intrinsic catalytic activity, high surface area, and the ability to undergo redox cycling between 
the Fe2+ and Fe3+ states, which is crucial for the Fenton-like reaction. PVDF macrospheres provide a 
robust, chemically inert, and porous support, which significantly enhances the performance of Fe3O4 
catalysts [19]. The immobilization of Fe3O4 nanoparticles on PVDF minimizes nanoparticle 
agglomeration [20]. Agglomeration can lead to reduced surface area and catalytic activity [21]. 
PVDF's structural properties of PVDF promote excellent Fe3O4 dispersion, ensuring that the catalyst 
maintains its high surface area and reactivity [22]. Furthermore, the macroporous structure of PVDF 
facilitates the diffusion of reactants and products within the catalyst system, further enhancing the 
reaction efficiency [22]. 

The precise functioning of Fenton-like reactions in conjunction with Fe3O4/PVDF can be intricate 
and influenced by factors such as the pH and reactant concentrations [19]. A basic representation 
comprises the following stages: surface reactions, in which Fe2+ species situated on the Fe3O4 surface 
react with H2O2, leading to the formation of Fe3+ and hydroxyl radicals (•OH), which involve the 
reduction of Fe3+ back to Fe2+ through various pathways, including reactions with more H2O2 or 
organic intermediates, guaranteeing the continuation of the catalytic cycle; and finally, dye 
degradation, which occurs when the highly reactive •OH radicals attack dye molecules, resulting in 
their breakdown into smaller, less harmful compounds [23,24]. This Fe3O4/PVDF system offers 
several key advantages over the conventional Fenton processes. Heterogeneous Fenton-like catalysts 
typically operate over a broader pH range, reducing the need for extensive pH adjustment. Minimal 
Fe leaching minimizes the need for post-treatment sludge handling and decreases secondary waste 
generation [25,26]. The magnetic properties of Fe3O4, paired with the macrosphere support, facilitate 
simple catalyst separation, reuse, and enhance process economics. Additionally, the PVDF support 
safeguards Fe3O4 nanoparticles from deactivation mechanisms, such as aggregation, improving 
catalyst lifespan, and maintaining long-term efficiency. 

The efficiency of Fenton-like reactions, which is influenced by several operational parameters, is 
a significant challenge for optimization. Variables such as initial pH, catalyst loading, and H2O2 dosage 
display complex, non-linear interactions that directly affect dye degradation performance. 
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Conventional optimization methods can be time-consuming and resource-intensive, making them 
inadequate for capturing the intricate relationships between variables [27]. Artificial Neural 
Networks (ANNs) offer a powerful alternative that enables data-driven modelling and optimization 
of complex processes. ANNs are computational models inspired by biological neural networks, and 
their ability to learn from experimental data makes them suitable for analyzing systems, such as 
Fenton-like reactions, where the interplay of multiple factors is difficult to model using conventional 
mathematical approaches. In this study, a feedforward backpropagation ANN was employed, which 
consisted of an input layer, one or more hidden layers, and an output layer. The input data represent 
factors such as the initial pH, catalyst loading, and H2O2 dosage, and the output layer provides the 
predicted dye decolorization efficiency. The back-propagation algorithm is a critical component for 
training Artificial Neural Networks (ANNs). This process begins by inputting data into the network, 
which then performs calculations through the hidden layers to generate a predicted output. The 
predicted output was then compared with the actual experimental outcome, and the error value was 
determined. The error is then propagated backward through the network, and the weights and biases 
associated with each neuron connection are adjusted to reduce the error in the subsequent iteration. 
This process was repeated with new input data until the error was minimized, and the ANN could 
accurately predict the dye degradation results. Once trained, a well-designed ANN can accurately 
forecast the dye degradation outcomes for various combinations of input parameters. This predictive 
ability facilitates efficient optimization. Instead of relying on extensive trial-and-error experiments, 
an ANN model can quickly explore multiple scenarios [28]. This enables the identification of the 
optimal conditions that maximize dye degradation efficiency while minimizing resource 
consumption. The use of an ANN streamlined the optimization process, potentially leading to 
significant enhancements in the performance and sustainability of the Fe3O4/PVDF Fenton-like 
process. Although Artificial Neural Networks (ANNs) have been utilized in diverse optimization 
scenarios for wastewater treatment, their application in optimizing Fe3O4/PVDF Fenton-like systems 
for the degradation of methylene blue is relatively scarce. Existing research has generally 
concentrated on different pollutants or alternative catalyst systems. To bridge this knowledge gap, 
the current study aimed to develop an ANN-based model capable of predicting and optimizing the 
decolorization efficiency of methylene blue using a Fe3O4/PVDF Fenton-like process. This model 
incorporates experimental data pertaining to key factors, such as the initial pH, catalyst loading, and 
H2O2 dosage, with dye decolorization serving as the primary response variable. By harnessing the 
predictive power of the ANN, this research endeavours to identify the optimal process conditions 
that maximize decolorization efficiency. This research contributes to the advancement of sustainable 
and efficient dye removal technologies, specifically addressing the persistent challenges of 
methylene blue contamination. 

 
2. Material and Methods  
2.1 Material 
 

The chemicals and reagents used in this study were of analytical quality and used without 
additional purification. 35% pure hydrogen peroxide (H2O2) was obtained from R & M Chemicals. 
Sigma Aldrich supplied Poly (Vinylidene Fluoride) (PVDF) with a molecular weight of 534,000 Daltons. 
Fisher Scientific (M) and Sdn Bhd provided Dimethyl sulfoxide (DMSO). Sodium Dodecyl Sulfate (SDS) 
with a purity of approximately 95% based on the total alkyl sulfate content and analytical grade 
methylene blue dye were purchased from Merck, Germany. 18 MΩ·cm resistivity Milli-Q deionised 
water sourced from potable water was used for all studies, using a PureLab Option-Q system. 
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2.2 Formation of Fe3O4 Nanoparticles/PVDF Macrospheres 
 

Fe3O4 nanoparticles were synthesized using a well-established co-precipitation method under 
inert conditions, as described in our previous work [29]. To prepare the Polyvinylidene Fluoride 
(PVDF) solution, 10 g of pre-dried PVDF powder was dried in a vacuum oven at 25°C for 5 h. The dried 
PVDF powder was dissolved in 90 g of Dimethyl Sulfoxide (DMSO) solvent in a beaker, and the 
temperature was monitored using a sensor tip thermometer submerged in the solution. The blend 
was sealed with parafilm and agitated at 250 rpm. The mixture was heated from ambient 
temperature to 60°C at a rate of 10°C/min and held at this temperature for 60 min to obtain a uniform 
solution. The solution was then cooled to 40°C and allowed to stand overnight under continuous 
stirring at 150 rpm to minimize the presence of trapped air bubbles. Fe3O4 Nanoparticles/PVDF 
Macrospheres were synthesized using the phase inversion method as described in our previous work 
[19]. 
 
2.3 Morphological Properties of Fe3O4 Nanoparticles/PVDF Macrospheres 
 

The structure of the Fe3O4 nanoparticle/PVDF macrospheres was examined using a field emission 
scanning electron microscope (FESEM) in secondary electron mode (LEO SUPRA 50VP, Carl Zeiss Inc.). 
The macrospheres were frozen in liquid nitrogen for 0.5 minutes and then broken using a razor blade 
to obtain a cross-sectional view. The samples were gold-coated using a K550X sputter coater 
(Emitech, UK, for 0.5 minutes to ensure electrical conductivity and avoid surface charging in a 
vacuum. The macrospheres were analyzed using an electron microscope set at a beam electron 
voltage of 15.0 kV and the working distance of 13 mm. 
 
2.4 Decolorization of Methylene Blue Dye (MB) 
 

The catalytic efficiency of Fe3O4 nanoparticle/PVDF macrospheres was evaluated using 
methylene blue (MB) as a model dye pollutant and its decolorization was studied using a Fenton-like 
process. Replication studies were performed to confirm the reliability of these findings. Each trial 
consisted of glass vials containing 15 mL of a solution with an initial dye concentration of 100 ppm 
mixed with 5 mL of hydrogen peroxide and stirred gently at 30 rpm to ensure complete mixing. The 
original dye concentration remained constant at 100 ppm throughout this study. Batch investigations 
were conducted by adding Fe3O4 nanoparticle/PVDF macrospheres and immediately starting the 
testing process under stirring at 80 rpm at room temperature using a SCILOGEX Analog Tube Rotator 
(USA). The Fe3O4 nanoparticle/PVDF macrosphere dosage ranged from 5 to 15 g/L, and the hydrogen 
peroxide concentrations varied from 10 to 30 mM. The experimental temperature was maintained 
at approximately 30°C, while the initial pH was varied between 3 and 7. The Fe3O4 nanoparticle/PVDF 
macrospheres were separated post-reaction using a neodymium boron ferrite (NdBFe) cylindrical 
magnet with a surface magnetization of approximately 6000G from Ningbo YuXiang E&M Int’1 Co., 
Ltd. Spectrophotometric measurements were performed using a UV-Vis C-7200UV Peak Instrument 
(China). Readings were taken at a maximum wavelength of 664 nm initially and after 3 h of testing. 
The measurements were compared with a preexisting standard calibration curve to determine the 
concentration of MB.  
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2.5 Feed-Forward Backpropagation (FFBP) ANN Model Development 
 

An artificial neural network model was built using MATLAB R2015a to predict the decolorization 
of the MB, with the projected decolorization as the output. The input and goal data were extracted 
from Microsoft 365 Excel and saved in MATLAB workspace in a horizontal orientation. The methods 
for neural network type, training function, adaptive learning function, network fitting, data division, 
plot function, network training, and testing were implemented in MATLAB using the editor tab. This 
model was used to optimize the number of neurons. A feedforward backpropagation neural network 
(FFBP NN) was used to develop a model for decolorizing the MB. The model included three input 
variables: initial pH, catalyst loading, and H2O2 dose, and one output variable: the decolorization of 
the MB, as shown in Figure 1. The FFBP NN model was created to forecast the decolorization of the 
MB using the artificial neural network (ANN) structure shown in Figure 1. The architecture of the 
FFBP NN model for the decolorization of the MB is shown in Figure 2, which includes an input layer, 
a hidden layer, and an output layer. The input layers for the three variables are connected to the 
hidden layer by designated weights and a tansig transfer function. The hidden layer is linked to the 
output layer for decolorization of the MB through a specific weight and tansig transfer function. The 
feedforward neural network uses a backpropagation training method. The feedforward 
backpropagation method functions based on the idea that outputs are influenced by inputs, weights, 
biases, and the error derived from the difference between the output and the target, which is then 
propagated back. The weight and bias were modified until a specific error tolerance or epoch number 
was achieved. 
 

 
Fig. 1. FFBP ANN model architecture for MB decolorization development 

 



Journal of Advanced Research in Micro and Nano Engineering 

Volume 22, Issue 1 (2024) 68-84 

73 
 

 
Fig. 2. Mechanism of feed-forward backpropagation neural networks 

 
3. Results and Discussion 
3.1 Morphological Properties of the Fe3O4 Nanoparticle/PVDF Macrospheres 
 

The SEM images in Figure 3 clearly show the physical characteristics of the Fe3O4 

nanoparticle/PVDF macrospheres, indicating their potential for environmental remediation, that is, 
the degradation of pollutants through Fenton-like processes. When viewed at 30x magnification, the 
outer surface of the macrospheres appeared reasonably smooth with few imperfections. Structural 
integrity is crucial for preserving the mechanical stability of macrospheres and enabling the selective 
permeability necessary for successful catalytic interactions [30]. A complicated porous interior 
structure is visible when the cross-sectional view at 35x magnification. The pores are highly linked, 
range in size, and resemble an open-cell foam structure. This shape enhances the surface area 
available for catalytic reactions, which is crucial for the operation of the macrospheres [31]. 
Examining the sample at 100x magnification reveals variations in the pore size, which significantly 
impacted the diffusion of reactant molecules inside the macrosphere matrix. The pores in the PVDF 
matrix were formed by the phase inversion method, which is a commonly used process in polymer 
science to generate porous structures. This process entails the transition of the polymer from a liquid 
to a solid phase by a regulated exchange of solvents and non-solvents. The thermodynamics and 
kinetics of the phase inversion process play crucial roles in shaping the ultimate pore shape [32]. 
From a thermodynamic perspective, the ability of the polymer to mix with the solvent and the 
selection of a nonsolvent are important considerations. The extent of phase separation is determined 
by these factors when a non-solvent is added, which affects the nucleation and development of 
polymer-rich and polymer-lean phases [33]. From a kinetic point of view, the rate of precipitation of 
the polymer is influenced by the speed at which the solvent is replaced by a non-solvent. A quick 
exchange usually leads to a more porous and interconnected structure because of immediate phase 
separation and rapid polymer precipitation. A slower exchange rate results in gradual phase 
separation, which may cause the formation of smaller and fewer interconnected pores [34]. The rapid 
phase inversion process in the Fe3O4/PVDF macrospheres was likely facilitated by an optimized 
solvent and non-solvent system, leading to the formation of an open-cell foam-like structure. This 
structure provides a high surface area and improves the diffusion efficiency of the reactants. The 
structural properties enable the efficient diffusion of reactants, such as methylene blue, deep into 
the macrosphere, ensuring good interaction with catalytic sites made of Fe3O4 nanoparticles [18]. 
The large surface area provided by the interior porous structure improves the interaction between 
the pollutant molecules and hydroxyl radicals produced in the Fenton-like reaction catalyzed by Fe3O4 
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nanoparticles with hydrogen peroxide (H2O2). This chemical process efficiently degrades complex 
organic compounds, as demonstrated by the fast decomposition of methylene blue. 
 

 
Fig. 3. Scanning Electron Microscopy (SEM) of the Fe3O4 nanoparticle/PVDF macrospheres (a) external 
structure of macrospheres (b) cross-sectional view of the internal structure of macrospheres 

 
3.2 Development of the FFBP ANN Model for Predicting MB Decolorization 
 

In this study, a Feedforward Backpropagation (FFBP) Artificial Neural Network (ANN) model was 
used to investigate the decolorization of Methylene Blue (MB). This model utilizes distinct 
architectural and functional elements crucial for effective training and performance, as shown in 
Table 1. The model uses the Levenberg-Marquardt backpropagation training function, which is 
known for its effectiveness in minimizing the mean squared error (MSE) as the performance function. 
The supervised learning model consisted of three layers: an input layer, a hidden layer, and an output 
layer. 

The transfer function of the input layer is defined as a hyperbolic tangent sigmoid function 
(tansig), which successfully manages the nonlinear properties of the input data. This option simplifies 
the management of intricate patterns in data that are commonly linked to color-elimination 
procedures  [35]. The model has two transfer functions inside its structure, which improve its capacity 
to represent nonlinear interactions found in environmental engineering processes. The output layer 
employs a linear (purelin) transfer function, which is suitable for regression and continuous output 
applications, such as forecasting the concentration of MB post-treatment with a catalyst. The hidden 
layer uses a hyperbolic tangent sigmoid transfer function, which is the same as the input layer, to 
ensure non-linear processing across the network. The model was set up using three neurons in both 

(a) 

(b) 
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the input and hidden layers and one neuron in the output layer to effectively represent the kinetics 
of MB decolorization. The network completed ten training iterations, indicating the beginning of the 
study of model suitability or a preliminary phase in model training before a more extended training 
regimen. 
 

Table 1 
Features of the developed FFBP ANN model 
Model  Property Value/remark 

ANN Training function Levenberg−Marquardt backpropagation 
 Performance function MSE 
 Learning supervised 
 Input layer transfer function Tansig 
 Number transfer function used 2 
 Output layer transfer function Purelin  
 Hidden layer transfer function hyperbolic tangent sigmoid (tansig) 
 Number of training iterations  10 
 Number of input neurons 3 
 Number of hidden neurons 3 
 Number of output neurons 1 

 
The effectiveness of a Feedforward Backpropagation Artificial Neural Network (FFBP ANN) in 

predicting the decolorization of Methylene Blue (MB) through the structured experimental approach 
outlined in Table 2 was assessed. The study was organized based on three variable factors: initial pH 
(Factor A), catalyst loading (Factor B), and hydrogen peroxide (H2O2) dosage (Factor C). The 
components were varied in 17 experimental runs to assess the predictive ability of the ANN model 
under various chemical conditions. The experimental matrix was changed in a methodical manner as 
follows. Factor A was set to pH levels of 3, 5, and 7. Factor B had concentrations of 5, 10, and 15 
mg/L. Factor C comprised dosages of 10 mM, 20 mM, and 30 mM. The main goal was to assess and 
contrast the degree of MB decolorization in the experimental data with the forecasts generated by 
the FFBP ANN. Data analysis showed that the Artificial Neural Network (ANN) predictions closely 
matched the experimental results, indicating the model's excellent predictive accuracy. At pH 7, with 
a catalyst loading of 10 mg/L and H2O2 dosage of 30 mM, the ANN model accurately predicted a 
decolorization percentage of 98.32%, which closely matched the experimentally observed value of 
98.25%. The accuracy of the Artificial Neural Network (ANN) model in simulating the complex 
dynamics of MB decolorization remained consistent across different experimental settings, such as 
variations in pH and catalyst doses, demonstrating its durability  [28]. 
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Table 2 
The three-factor experimental response and the value of prediction by the developed FFBP ANN models  

Factor A Factor B Factor C Experimental 
response 

ANN predicted 
response  

Run A:initial pH B:Catalyst loading C:H2O2 dosage MB 
decolorization 

MB decolorization 

  
mg/L mM % % 

1 7 10 30 98.25 98.32 
2 5 10 20 94.05 94.06 
3 5 5 30 94.26 94.25 
4 7 10 10 99.77 99.77 
5 5 10 20 94.05 94.06 
6 3 15 20 96.45 96.45 
7 7 15 20 99.21 99.16 
8 5 10 20 94.05 94.06 
9 7 5 20 98.37 98.37 
10 3 10 30 94.09 94.06 
11 5 15 30 95.49 94.06 
12 3 10 10 95.11 95.11 
13 5 10 20 94.05 94.06 
14 5 5 10 96.26 96.26 
15 3 5 20 92.68 92.68 
16 5 10 20 94.05 94.06 
17 5 15 10 97.18 97.18 

 
Figure 4 displays the correlation between the experimentally measured and Artificial Neural 

Network (ANN)-predicted decolorization percentages of Methylene Blue (MB) under various 
conditions outlined in the experimental study. The scatter plot illustrates individual data points 
representing different experimental runs, with each point indicating the percentage of MB 
decolorization experimentally achieved plotted against the prediction made by the ANN. The linear 
regression line fitted through the data points, described by the equation y = 1.0039x − 0.4587, 
suggests an almost perfect linear relationship between the observed and predicted values, 
emphasizing the high accuracy of the ANN model in simulating the outcomes of MB decolorization. 
The slope of the line, slightly greater than 1, indicates that the ANN model predictions were closely 
aligned but slightly overestimated the experimental results. This was further confirmed by the high 
coefficient of determination (R2 = 0.9744), which quantifies the proportion of variance in the 
observed data that is predictable from the input variables. 

The proximity of the R2 value to 1.0, signifies an excellent fit, highlighting the robustness of the 
model and its ability to generalize well across the range of experimental conditions tested [36]. This 
predictive reliability is essential for deploying such models in practical scenarios, where they can 
guide the optimization of operational parameters in real-time applications for water treatment 
facilities [27]. 
 



Journal of Advanced Research in Micro and Nano Engineering 

Volume 22, Issue 1 (2024) 68-84 

77 
 

 
Fig. 4. Comparison between experimental and ANN model-predicted MB decolorization 

 
Figure 5 displays the regression analysis of a feedforward backpropagation Artificial Neural 

Network (FFBP ANN) used to predict the decolorization of Methylene Blue (MB). This analysis offers 
a thorough examination of the model's predicted accuracy on various datasets such as training, 
validation, testing, and the overall dataset. Throughout the training phase, the model showed a 
strong linear relationship between the predicted and actual decolorization percentages with a 
correlation value (R) of 0.9786. The alignment between the predictions and the actual data during 
training indicates that the Artificial Neural Network (ANN) has effectively captured the underlying 
patterns, as shown by the data points closely following the fitted blue line. During the validation 
phase, the performance of the model improved, achieving an R-value of 0.99865. This demonstrates 
a strong generalization ability on unfamiliar data, which is essential for ensuring the model's 
relevance beyond the training set [37]. The closely clustered data points along the green line validate 
the capacity of the model to generalize well without overfitting [36]. The regression plot of the testing 
dataset shows a strong connection with an R-value of 0.99999, as indicated by the red line. The strong 
correlation between the model predictions and real-world outcomes suggests that the model is 
reliable and suitable for practical use. This shows that the Artificial Neural Network can effectively 
forecast MB decolorization in diverse situations, similar to those used for training. 

The model demonstrated a strong correlation coefficient of 0.98713 when all data points were 
considered, as indicated by the gray line. The model demonstrated consistent and reliable 
performance throughout all the evaluation stages, highlighting its usefulness in mimicking the MB 
decolorization process. 
 

y = 1.0039x - 0.4587
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Fig. 5. Regression plot for FFBP ANN model 

 
Table 3 displays the calibration and validation data of a Methylene Blue (MB) decolorization 

model from ten experimental runs, including the calculated averages for the training, validation, and 
testing phases. The decolorization model showed incremental performance improvement during the 
training phase. The initial run achieved a decolorization accuracy of 0.96074, and the subsequent 
runs indicated modest gains, reaching an accuracy of 0.99996 in the tenth run. The mean accuracy 
across all training iterations was significantly high, suggesting a strong model training. During the 
validation phase, the model consistently produced high decolorization accuracies, surpassing 0.98 in 
all runs, except one. The highest performance was recorded during the fifth run with an accuracy of 
0.99999, whereas the lowest was 0.98096 in the second run. The validation accuracy was 
exceptionally high, indicating the remarkable ability of the model to generalize new data. The testing 
phase results, which are essential for assessing the practicality of the model, demonstrated strong 
decolorization accuracies that were largely consistent with the validation phase results. During the 
testing phase, the accuracy ranged from 0.94749 in the tenth run to 0.99940 in the eighth run. The 
testing accuracy was slightly lower than the validation accuracy but still good, highlighting the 
effectiveness of the model in real-world situations. The decrease in accuracy during the tenth testing 
run may be due to model overfitting or deficiencies in addressing edge situations in the testing 
dataset [28]. This variation highlights the need to refine the model further to improve its resilience. 
This model demonstrates remarkable stability in performance compared to other neural network 
applications in decolorization processes, which often exhibit varying stabilities between runs. This 
suggests a well-optimized model design [38]. The findings of this study align with the patterns 
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observed in comparable research utilizing ANN models for optimizing chemical processes. Studies 
such as that conducted by Nnaji et al., [39] have shown that Artificial Neural Networks (ANNs) can 
accurately anticipate the results of intricate chemical reactions, such as dye degradation [39]. This 
model appears to outperform typical benchmarks by consistently achieving high accuracy throughout 
all stages of modeling, indicating a superior level of optimization that is rarely documented in the 
literature. Newhart et al., [27] emphasized the importance of precise predictive models in 
environmental applications to ensure the effectiveness and safety of treatment processes [27]. 
 

Table 3 
Data calibration and validation of MB decolorization model 
Run number MB decolorization 

 Training Validation Testing 

1 0.96074 0.99811 0.99689 
2 0.96769 0.98096 0.99859 
3 0.98555 0.99746 0.99664 
4 0.99522 0.99789 0.99248 
5 0.99864 0.99999 0.99537 
6 0.99970 0.99998 0.99762 
7 0.99877 0.99845 0.97413 
8 0.99928 0.99989 0.99940 
9 0.99304 0.99097 0.99737 
10 0.99996 0.96581 0.94749 

 
Figure 6 shows the relationship between the number of iterations and Mean Square Error (MSE) 

of the Methylene Blue (MB) decolorization model. The graph displays a non-linear trend with an 
initial decrease in the Mean Squared Error (MSE) from the first to the sixth iteration, followed by a 
significant rise until the ninth iteration, and a slight stabilization by the tenth iteration. The Mean 
Squared Error (MSE) decreases steadily from approximately 0.16 in the first iteration to a minimum 
of approximately 0.02 by the sixth iteration. The reduction in error indicates that the model enhances 
its accuracy and adapts effectively to the data, demonstrating successful learning and flexibility in its 
first stages. Between the seventh and ninth iterations, there was a notable increase in the Mean 
Squared Error (MSE), reaching a peak of approximately 0.14. This increase may indicate overfitting, 
a situation in which the model begins to focus on insignificant aspects in the training data rather than 
the essential pattern, resulting in a decline in its ability to perform effectively on new data [40]. By 
the final iteration, the Mean Squared Error (MSE) stabilizes, suggesting that the model may have 
reached its learning capacity with the current configuration and data. This trend highlights the 
importance of continuously checking the model performance over several iterations to prevent 
overfitting and ensure the model's robustness and accuracy in real-world situations [41]. The 
observed trends in Mean Squared Error (MSE) over the model iterations suggest a typical pattern of 
rapid early enhancement followed by a term of stability, which is a common occurrence in machine-
learning model training. Khairudin et al., [28] conducted study that revealed similar results to prior 
studies, showing comparable Mean Squared Error (MSE) patterns in Artificial Neural Network (ANN) 
models utilized for water treatment procedures. The abrupt increase in Mean Squared Error (MSE) 
in subsequent rounds is atypical and warrants further investigation [28]. 
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Fig. 6.  Iteration of MB decolorization model as a function of Mean Square Error (MSE) 

 
Table 4 displays the performance characteristics of the generated Feedforward Backpropagation 

Artificial Neural Network (FFBP ANN) model. These indicators are crucial for assessing the precision 
and efficiency of predictive analytics models. The Mean Square Error (MSE) is 0.0200, indicating the 
average magnitude of the prediction errors. This value indicates a low error magnitude, which is 
beneficial for the model performance. The Root Mean Square Error (RMSE) is a crucial statistic 
derived by taking the square root of the Mean Squared Error (MSE), resulting in a value of 0.1414. 
The RMSE is valuable as it presents the error size in the same units as the expected result, simplifying 
its interpretation in real-world scenarios. The RMSE shows that the model's predictions differ from 
the actual values by approximately 0.1414 on average, confirming the accuracy of the model. 

The model's coefficient of determination, 𝑅2, is 0.9744. This statistic quantifies the amount of 
variability in the dependent variable, which can be explained by independent factors. A high 𝑅2 value 
indicates that the model explains a large percentage of the variance, showing strong model fit and 
predictive ability. The correlation coefficient (R) was 0.9871, showing a significant positive 
association between the observed values and the model predictions. This strong association further 
confirms the efficacy of the model in precisely capturing and predicting fundamental patterns in the 
data. The performance metrics of the FFBP ANN model show its resilience and reliability, with strong 
𝑅2 and R values indicating that the model can accurately predict fresh data points, validating its 
usefulness in actual applications. The substantial 𝑅² and R values meet or beyond standards set by 
previous scholarly articles, highlighting the model's usefulness in explaining variation and its link with 
real outcomes. Najah et al., [35] thoroughly explored the necessity of high correlation and 
determination coefficients when applying neural networks in the environmental and chemical 
engineering domains. The model's performance not only confirms its existing usefulness but also 
adds to the overall discussion on enhancing the effectiveness of ANNs for intricate forecasting 
assignments [35]. 
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Table 4 
Performance indicator of the developed FFBP ANN model 

Performance indicator of ANN model Value 

Mean Square Error (MSE) 0.0200 
Root Mean Square Error (RMSE) 0.1414 
R 0.9871 
Coefficient of determination (R2) 0.9744 

 
4. Conclusions 
 

In conclusion, the development and evaluation of a Methylene Blue (MB) decolorization model, 
implemented through a Feedforward Backpropagation Artificial Neural Network (FFBP ANN), has 
demonstrated outstanding performance across multiple metrics. The calibration, validation, and 
testing phases outlined in our study showed a high degree of accuracy, with the model achieving 
near-perfect scores in the validation phase and maintaining strong performance under testing 
conditions. 

Significant improvements in training performance were evident, as shown by the incremental 
increase in accuracy from the initial to the final training iterations. The validation results further 
underscore the model's ability to effectively generalize to new data, which is critical for practical 
deployment scenarios. Moreover, the testing phase results aligned closely with the validation data, 
reinforcing the robustness and reliability of the model in real-world applications. 

A detailed examination of the model's iterations versus the Mean Square Error (MSE) presents an 
insightful narrative of the learning dynamics. An initial decrease in MSE indicates efficient learning, 
whereas a subsequent increase suggests potential overfitting issues, which are then mitigated as the 
model stabilizes in the latter iterations. This dynamic response emphasizes the necessity of careful 
iteration management to optimize the model performance. 

Furthermore, performance metrics, such as MSE, Root Mean Square Error (RMSE), coefficient of 
determination (R²), and correlation coefficient (R), are exceptionally favorable. An MSE of 0.0200 and 
RMSE of 0.1414 illustrate the precision of the model in predicting the decolorization of MB. The high 
R² value of 0.9744, along with a correlation coefficient of 0.9871, demonstrates the accuracy of the 
model and its capability to explain a significant proportion of the variance in decolorization outcomes 
from the input variables. 

These results collectively affirm that the ANN model is not only theoretically sound, but also 
practically viable for addressing challenges in water treatment processes, specifically in the 
decolorization of industrial dyes such as Methylene Blue. The findings of this study provide valuable 
insights into the field of environmental engineering and have substantial implications for the design 
and implementation of more efficient water-treatment solutions. The successful application of such 
models could lead to significant advancements in the sustainability and effectiveness of water 
purification technologies, which are crucial for both environmental protection and resource 
management in industrial applications. 
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