Study the Effect of Baffle Spacing on Heat Transfer and Pressure Drop in Shell and Tube Heat Exchanger

Authors

  • Hossin Omar Department of Mechanical Engineering, University of Benghazi, Libya
  • Suliman Alfarawi Department of Mechanical Engineering, University of Benghazi, Libya
  • Azeldin El-sawi Department of Mechanical Engineering, University of Benghazi, Libya
  • Hassan Alobeidy Department of Mechanical Engineering, University of Benghazi, Libya

Keywords:

[STHE] Shell and Tube Heat Exchangers, [CFD] Computational Fluid Dynamic, [LMTD] Log Mean Temperature Differenc, [FEM] Finite Element Method using [3D] Three Dimensional, [STHXsPT] Shell-and-Tube Heat Exchangers with Plain Tube bundle, [STHXsFT] Shell-and-Tube Heat Exchangers with annular-Finned Tube bundle

Abstract

This work aims to develop and test a MATLAB computer   program to design shell and tube heat exchanger [STHE] utilizing Bell (Delaware) model, which  is  an accurate  method  for calculating   shell  side  head transfer  coefficient and its pressure drop . Bell method is based on correction factors, which were obtained experimentally.  The MATLAP code was utilized to conduct an intensive parametric study in shell and tube heat exchangers including the effect of different parameters on shell side convective heat transfer coefficient and on shell side pressure drop.  It was found that increasing of the tube thickness results in an increase in heat exchanger length. The effect of baffle spacing on shell side heat transfer coefficient and the corresponding pressure drop for different tube array layouts and for different shell and tubes specifications such as shell inside diameter, tube outside diameter, tube pitch, number of tubes, and number of tube passes. It was found that increasing of baffle spacing results in a decrease in shell side convective heat transfer coefficient. and it results in a decrease in the  shell side pressure drop. However, in case of in-line square tube array, the convective heat transfer has higher values in the entire range of baffle spacing, which is favorable since it lowering the heat exchanger surface area and the corresponding heat exchanger length. While the pressure drop has higher values in case of in-line square tube arrays in whole range of baffle spacing which is not favorable.

Downloads

Published

2021-10-16

How to Cite

Omar, H., Suliman Alfarawi, Azeldin El-sawi, & Hassan Alobeidy. (2021). Study the Effect of Baffle Spacing on Heat Transfer and Pressure Drop in Shell and Tube Heat Exchanger. Journal of Advanced Research in Numerical Heat Transfer, 6(1), 22–30. Retrieved from https://www.akademiabaru.com/submit/index.php/arnht/article/view/4262

Issue

Section

Articles