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The use of refrigerated containers continues to increase rapidly in line with global 
trade, this kind of container is commonly used to deliver perishable cargo from 
producers to consumers over great distances, even between continents. To avoid 
perishable goods from damages, the temperature inside refrigerated containers was 
controlled and maintained to keep the cooling performance. The purpose of this study 
is to investigate the effect of variation inlet velocity on the cooling speed inside a 
refrigerated container. This study was conducted through a computational fluid 
dynamic simulation validated with experimental results. The simulation was carried 
out on the variations of inlet velocity based on low-speed fan mode at 4 m/s equal to 
32 circulations/hour, and high-speed fan mode at 10 m/s equal to 80 circulations/hour. 
The results of the simulation show that the greater the inlet fan speed, the faster the 
cooling speed. The finding of this study is the cooling speed time of high cube 
refrigerated container with the low-speed fan is 28 minutes and the high-speed fan is 
40 minutes. 
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1. Introductions 
 

The growth of refrigerated shipping containers continues to increase along with the development 
of the global shipping containers market. Refrigerated containers are expected to be the fastest-
growing segment in the category of product form during the period 2017-2025, the optimistic 
forecast increased by 10.2 percent [1]. Refrigerated containers are widely used for shipping 
perishable cargoes from producers to consumers over long distances [2]. It is important to control 
temperature, airflow, and humidity to maximize the operation of refrigerated containers [3]. Many 
factors affect the performance of refrigerated container operation, namely controlling 
environmental conditions, structuring cargo pallet, and thermal insulation of containers [4-6], it also 
depends on temperature fluctuations and product respiration rates as well as airflow circulation [7]. 
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Several studies to improve the performance of refrigerated containers and related to their energy 
consumption have been carried out. In terms of increasing the efficiency of refrigeration systems, 
researchers have conducted many experiments in the use of natural coolant [8] and nano refrigerant 
[9]. Research on controlling environmental conditions has also been carried out by several 
researchers, one of the experiments using a roof-shade that effectively reduces heat penetration 
from the environment [10], in addition to the effects of stack containers also showed an influence on 
the energy consumption of refrigerated containers [11]. From the improvement of the thermal 
insulation of containers, some researchers trying to use phase change material [12], the results were 
quite good in maintaining the cooling load in the cargo [13], besides the influence of direct sunlight 
also caused heat penetration to thermal insulation [14]. 

Some researchers performed the simulation of the refrigerated container related to the heat 
transfer and fluid flow [15]. The application of computational fluid dynamics (CFD) simulation to 
study operational and design parameters in cold storage technology has become popular in recent 
decades [16]. The development of CFD research on cold storage starts with broader research in the 
field of HVAC (heating, ventilation, and air conditioning) [17] in buildings and the environment to 
observe cooling performance and thermal comfort [18], one of which begins in the analysis of air 
distribution in small offices [19]. Several studies about the energy saving of the refrigerated container 
have been done by considering the effect of the angle [20] and environmental condition [21], the 
results showed good results compared to the experiment. Related to the temperature distribution, 
the effects of the cooling characteristics have been investigated, the results show that the inlet fan 
speed has caused different cooling distribution and related to the cargo arrangement [22]. The 
airflow circulation generally depends on the setting of the fan evaporator, typically there are two 
settings used i.e. low-speed fan and high-speed fan [23].  

The knowledge of cooling speed related to the fan setting in practical operation will provide good 
practice for operators to improve cargo cooling distribution. From most of the existing literature 
studies, research on cargo cooling systems is mostly done on energy consumption and refrigeration 
performance, not many studies have been done in the practical uses such as the effect of fan setting 
on the cooling speed of cargo. The purpose of this study is to investigate the effect of variation inlet 
velocity on the cooling speed inside a refrigerated container. This study was conducted through a 
computational fluid dynamic simulation validated with experimental results. The contribution of this 
study is the cooling speed inside the refrigerated container with the various settings of inlet velocity. 

 
2. Methodology  
2.1 Simulation Model of Refrigerated Container 
 

In global container shipping, there are two types and sizes of refrigerated containers, namely 
porthole refrigerated containers and integral refrigerated containers of 20ft and 40ft respectively. 
The majority of container types used today are integral refrigerated containers. In this study, we carry 
out a three-dimensional simulation to analyze the temperature distribution inside high-cube 
refrigerated containers. The simulation model of the refrigerated container was used 40ft high-cube 
refrigerated container with considering the insulation walls and evaporator inlet also cargo outlet. 
The sectional view and the main dimension of 40ft high-cube refrigerated containers are shown in 
Figure 1. 
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Fig. 1. Geometry of high cube refrigerated container 

 
The simulation model is based on the solution of partial differential equations that govern the 

flow of fluid flow fields based on the mass and momentum conservation as well as energy equations 
as shown in Eq. (1), Eq. (2) and Eq. (3), respectively. 
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Where V is velocity vector (m/s),   is the density of air (kg/m3), P is pressure (N/m2), µ is 
coefficient of viscosity (N.s/m2), t is time function (s) and fB is the buoyant force. In this study, the k-
ω shear stress transport turbulence model is used because it has been shown to perform better than 
other turbulence models, based on the results of the review and current latest developments, this 
model has established a rough boundary treatment method that requires the same grid resolution 
as smooth boundary treatment methods, but the impact of grid resolution on the computed velocity 
is high [24,25]. The density of air is assumed to be constant at the cooling air temperature of -0.5 ˚C. 
Details of the parameter setting of simulation models are shown in Table 1. 
 
2.2 Boundary Condition and Parameter Setting 
 

The basic assumption of the simulation model starting from cold air enters the cargo room 
through evaporator inlet with certain speed variation, cold air is circulated into the refrigerated 
container cargo room, then circulated air exits through an outlet located on the ceiling. The inlet 
speed variation has been determined as is a low-speed to high-speed fan i.e. 4 m/s, 6 m/s, 8 m/s, and 
10 m/s. In practical operation, the low-speed fan setting is 32 circulation/hour, and the high-speed 
fan setting 80 circulation/hour [26]. As a boundary condition, this model uses the no-slip condition 
for viscous fluid assuming that at solid limits, the fluid will have zero velocity relative to the boundary. 
The physical properties of the air are assumed to be constant and the outlet airflow velocity does not 
differ across the width of the outlet unit. The total number of mesh generation is 783395 elements. 
The boundary condition and mesh generation of the simulation model are shown in Figure 2.  
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Fig. 2. (a) Boundary condition of simulation mode; (b) Structured mesh generation 

 
Table 1 
Parameter setting of simulation models 

Simulation Parameter  Setting Condition 

The geometry of the simulation 
model 

Length 11.58 m 
Width   2.27 m 
Height 2.54 m 

Timestep Transient 
Turbulence model k-ω 
Number of mesh 783395 elements 
Inlet area 0.145 m2 
Inlet temperature -0.5 ˚C 
Inlet velocity 4 m/s  

6 m/s 
8 m/s 
10 m/s  

 
3. Results and Discussion 
3.1 Validation of Simulation Model 
 

In this study, the results of the CFD simulation were validated with experimental data that had 
been done previously both for stack container and single containers with an empty load condition 
[11,14,27]. The experiment used the same type of container, namely a 40ft high-cube refrigerated 
container. The condition when the experiment was set without any charge, then the cooling system 
was turned on and empty from the start of use at ambient temperature until the desired temperature 
was 0 ̊C, so that the experiment represented a cooling speed. The validation of the CFD simulation 
results with experimental data is shown in Figure 3. The validation was carried out at a fan speed of 
4 m/s, from the comparison results obtained a good trend line between simulation and experiment, 
the smallest deviation is ± 0.2 ̊C, while the largest deviation is ± 1.4 C̊. From the results of simulations 
and experiments, it can be seen that to get the desired temperature of 0 C̊ it takes about 40 minutes 
from the start of use with a fan speed of 4 m/s. The temperature distribution at 15 minutes is shown 
in Figure 4. From this distribution, it can be seen that the bottom part of the floor where parallel to 
the inlet gets a better cool air blast effect than the top side. The evaporator inlet, which is 0  ̊C cold 
air, is at the bottom on the left side, the inlet area is very limited, which is 0.145 m2. This makes the 
cold air jet fairly well parallel to the bottom of the container compartment. At a distance of about 9 
meters from the inlet, the cold air jet is not too strong, so the temperature at the end of the container 
close to the door (right side) tends to be higher than that of the evaporator. This needs to be of 
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particular concern in arranging cargo in the container room so that cold air can be spread throughout 
the room. This is interesting when it is related to the cooling load of the cargo contents to be 
transported so that the temperature distribution can be uniform throughout the room. 

 

 
Fig. 3. Validation of temperature result between experiment and 
simulation with inlet velocity 4 m/s 

 

 
Fig. 4. Temperature distribution with inlet velocity 4 m/s after 15 minutes 

 
3.2 Variation of Inlet Velocity 
 

The effect of variations in inlet velocity on cooling speed is shown in Figure 5. The variations in 
inlet speed used are 4 m/s, 6 m/s, 8 m/s, and 10 m/s. From the variation in inlet speed, it is clear that 
an increase in inlet speed will accelerate the cooling time. To get the desired temperature of 0 ̊C with 
low-speed to high-high speed fans, namely 40 minutes, 36 minutes, 32 minutes, and 28 minutes, 
respectively. From these results, it is found the cooling speed time on the low-speed fan is 4 m/s is 
28 minutes and high-speed fan 10 m/s is 40 minutes, which the difference is up to 12 minutes. This 
cooling speed is important when the operator wants to set the temperature level of the load to be 
carried. This is interesting to study in further research if the container is given a cooling load. 

 
 

-5

0

5

10

15

20

0 5 10 15 20 25 30 35 40

Te
m

p
e

ra
tu

re
 (

˚C
)

Time (Minute)V =  4 m/s

Exp CFD



CFD Letters 

Volume 12, Issue 12 (2020) 55-62 

60 
 

 
Fig. 5. Effect of variation inlet velocity to the cooling speed 

 
4. Conclusions 
 

A study of the effect of variation inlet velocity to the cooling speed inside high-cube refrigerated 
containers has been performed using CFD simulations and validated using experimental data. Four 
variations of inlet velocity have been investigated i.e. 4 m/s, 6 m/s, 8 m/s, and 10 m/s. The variation 
is based on low-speed fan mode at 4 m/s equal to 32 circulations/hour, and high-speed fan mode at 
10 m/s equal to 80 circulations/hour. The simulation result of cooling speed inside the refrigerated 
container has good agreement with the previous experimental data. The interesting finding of this 
study is the cooling speed time on the low-speed fan (4 m/s) is 28 minutes and the high-speed fan 
(10 m/s) is 40 minutes, which the difference is up to 12 minutes. This time can be used as a 
benchmark for an operator to adjust the cooling speed of the cargo loaded in the refrigerated 
container.  
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