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The nonlinear stability analysis of a ferrofluid layer system is formulated 
mathematically. This system considered the upper and lower free isothermal boundary 
with the system heated from below. A mathematical formulation is produced to study 
the behaviour of the chaotic convection in a ferrofluid layer system using Galerkin 
truncated expansion. The Boussinesq approximation is opted with the existence of 
internal heating and the magnetic number. It is found that the transition to chaos in 
this present study is identical to the Lorenz attractor and thus validate the method and 
analysis of this study. The impact of elevating the internal heat generation is found to 
hasten the instability of the system and as for the magnetic number, at M1 = 2.5 the 
homoclinic bifurcation occurs and thus accelerates the convection process. 
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1. Introduction 
 

The chaotic study has a vital role in both laboratory and nature. It gains much attention from the 
researcher because of the potential application in an engineering field. This topic started to evolve 
after the work of Lorenz [1], who discussed the Rayleigh-Benard model in the process of 
understanding the weather.  

Much work of the chaotic convection in a different type of fluid was carried out before with 
various additional effects. Vincent and Yuen [2] studied high-Prandtl numbers in chaotic convection. 
Aside from this, Kiran et al., [3] examined the impact of through flow in chaotic convection. Gupta et 
al., [4] had studied the chaotic convection in the existence of a rotating effect. In the literature, there 
are a few examples of chaos in double-diffusive convection, such as by Abu-Zaid and Ahmadi [5] in 
the presence of noise and Narayana et al., [6], who studied the external magnetic field in a 
viscoelastic fluid. Chaotic convection of a porous medium model in viscoelastic fluid had been carried 
out by Sheu et al., [7]. Besides that, Abu-Ramadan et al., [8] used a four-dimension nonlinear system 
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to examine the chaotic convection in a viscoelastic fluid. Other than that, Bhadauria and Kiran [9] 
examined binary viscoelastic fluid in g-Jitter.  

Walden et al., [10] had done a chaotic convection study in a binary fluid layer system in the 
presence of traveling waves. In contrast, Deane [11] had done the studied in the thermosolutal 
convection. Chaotic convection in a porous medium had been reviewed by Sheu [12] by using the 
autonomous system. The learned of chaotic in a porous medium with an additional effect of the 
magnetic field had been presented by Idris and Hashim [13]. Roslan et al., [14] added the effect of 
feedback control in a porous medium in the study of chaotic convection. Apart from that, Zhao et al., 
[15] discussed the impact of gravity modulation in chaotic convection of a porous medium while 
Bhadauria and Kiran [16] added temperature modulation in the system. Bhadauria and Singh [17] 
examined the model of an anisotropic porous medium in the presence of through flow effect and g-
jitter in chaotic convection. Chaotic convection in an electroconductive fluid in the existence of 
rotating effect had been demonstrated by Kopp et al., [18]. Recently, the impact of rotation and 
gravity modulation in chaotic convection had been examined by Kiran [19]. Chaotic convection in a 
ferrofluid layer system had been discussed by Laroze et al., [20], just to present a few examples. 

The studied of ferrofluid convection with various effect had been discussed by Senin et al., [21] 
with additional effect of gravitational field in an anisotropic porous medium. The internal heating 
effect is a well-known effect that had been discussed in a different kind of convection. This effect is 
usually studied in Rayleigh-Benard or Marangoni-Benard convection. Recently, Mokhtar and Hamid 
[22] studied the Marangoni convection with internal heating effect and deformable surface. 
Furthermore, Marangoni convection in the presence of internal heating in a ferrofluid layer system 
had been done by Nanjundappa et al., [23]. Chaotic convection in the existence of internal heating 
had been discussed by Jawdat and Hashim [24] in the porous medium. Bhadauria [25] also examined 
chaotic convection with internal heating in a viscoelastic system's porous medium. Another studied 
of chaotic convection with internal heating effect had been discussed by Kiran [26] with a vibrational 
effect in a porous medium. 

The present work aims to study the route to the chaos of a ferrofluid layer system in internal 
heating. In order to control heat transfer, it is vital to understand the effect of internal heating on 
chaotic convection as it plays a significant role in the use of ferrofluid technology. This motivated us 
to mathematically contribute by creating a mathematical model which can boost the impact of 
internal heating in chaotic convection of a ferrofluid layer system. We presume that the system is 
heated from below and the upper-lower boundary is known to be a free isothermal boundary. 
Galerkin truncated expansion was used to deduce a three-dimensional system to be represented as 
a Lorenz like model. Detailed analysis of the effect of magnetic number and internal heating on the 
system has been studied in detail 
 
2. Methodology  
2.1 Problem Formulation 
 

We considered a Boussinesq ferrofluid, which fills a horizontal layer of thickness, d with an 
imposed spatially magnetic field, 𝐻0 in a vertical direction, as in Figure 1. The upper and lower 

boundaries are maintained at a constant temperature where 0( 0)T z T T   and 0( ) .T z d T   

By referring to Laroze et al., [20], the dimensionless equations can be written as 
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Fig. 1. The physical configuration of the ferrofluid layer system 
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nondimensional basic temperature field. Laroze et al., [20] stated that the suitable value for 𝑃𝑟 is 
10 − 103 with 𝑀1 from 10−4 till 102, and 𝑀3 is only a weak function of the magnetic field. 

The derivation of the partial differential equation started by applying the curl operator on Eq. (2) 
to eliminate the pressure. For simplification, the stream function is introduced to limit the study in 

two-dimensional flow. The stream functions defined by u
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 and J stands for the Jacobian. The boundary condition considered in the 

study are 
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In order to solve the nonlinear partial differential Eqs. (5)-(7), the stream function, temperature 

and magnetic potential are represent in the following form (Laroze et al., [20]) 
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   Substituting Eqs. (9)-(11) into Eqs. (5)-(7), then multiplying the equations by the 

orthogonal function and integrating them in space over the wavelength convection 
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a set of the ordinary differential equation for the time evolution of the amplitudes as follows  
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 (Finlayson [27]). It is convenient to 

introduce new notation and to rescale the amplitude as follows  
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Substitute Eq. (15) into Eqs. (12)-(14) and simplified, thus yields 
 

13'( ) Pr ( ) Pr ( ) ( ) ( ),X X Y Q Y Z                             (16) 

 

'( ) ( ) ( ) ( ) ( ),
2

y

F
Y R X X Z Y                            (17) 

 
'( ) ( ) ( ) ( ),Z X Y Z                            (18) 

 

where 13
13

Pr
,

y

M
Q

R
  ,

Ns q

q


 
  and 

24
.

Ns

q





  Eqs. (16)-(18) are equivalent to the Lorenz 

equation as stated in Lorenz [1] but with different coefficient and noted that when 𝑀1 or 𝑀3 
approaching zero, it will cause the 𝑄13 approaching zero as well. 
 
2.2 Stability Analysis 
 

The fixed points for the Eqs. (16)-(18) can be obtained by setting the derivative equal to zero, 
which are  
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There is one trivial solution that is origin in the phase space, that are  
 

1 1 1 0,X Y Z                          (22) 

 
which correspond to the motionless solution, and the other two fixed points are 
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The Jacobian matrix of the Eqs. (16)-(18) can be written as  
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The stability of the fixed points corresponds to the motionless solution  1 1 1 0X Y Z    is 

controlled by the zeros of the following characteristic polynomial equation for the eigenvalues, 𝜎 
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After solving Eq. (26), we will have 
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The first eigenvalue is always negative as     and the other two eigenvalues are always real. 

Eq. (28) is solved to obtain the critical value of 𝑅𝑦 as follows 
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At 𝑅𝑐𝑟, the motionless solution loses stability, and the convection solution takes over. The 

following equation controls the stability of fixed points  2,3 2,3 2,3, ,X Y Z  that is 
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The stability of the stationary solution depends on the 𝜎 in Eq. (30). In the case of (30), the 

eigenvalues are much more complicated; thus, the analytical prediction is not possible, as in Laroze 
et al., [20]. By referring to Lorenz [1], it is possible to obtain a critical equation if the eigenvalue is 
pure imaginary. Idris and Hashim [13] said that when the complex eigenvalues cross the imaginary 
axis, and Hopf bifurcation occurs, the eigenvalue is purely imaginary. This reflects the fixed point 
convection loss of stability or the critically modified Rayleigh number, 𝑅𝑐2. The Hopf bifurcation point 
is obtained with the continuation package of MatLab, MatCont. Eq. (30) has three eigenvalues, where 
the first eigenvalue is always real and negative for any value of the parameters. Simultaneously, the 
other two are complex eigenvalues, where the real part is negative at slightly higher 𝑅𝑦. As in Figure 

2, these two roots are moving towards their origin and become equal at 𝑅𝑦 ≈ 1.066 for the case of 

𝑁𝑠 = 5,𝑀1 = 1, and 𝑀3 = 1.1. As we increase 𝑅𝑦 value, at Ry=17.315129 the imaginary and real 

part of the eigenvalue continue to increase and cross the imaginary axis, Hopf bifurcation occurs at 
that point and chaotic convection takes over. 
 

 
Fig. 2. The evolution of complex eigenvalue with the increasing of 𝑅𝑦 
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3. Results  
 

In the previous section, we already obtained the set of Lorenz like model as in Eqs. (16)-(18) with 
the effect of internal heating in a ferrofluid layer system. Eqs. (16)-(18) are solved using the MATLAB 
R2018B built-in ODE45 method. Laroze et al., [20] stated that the suitable value for 𝑃𝑟 is 10 − 103 
with 𝑀1 from 10−4 till 102, and 𝑀3 is only a weak function of the magnetic field. The value of 𝑁𝑠 is 
refered from the previous study of Nanjundappa et al., [23]. The values of 𝑃𝑟 and 𝑘 used in all 

computations are 10 and 
𝜋

√2
, respectively. All solutions are obtained using the same initial conditions, 

which were selected to be in the neighborhood of the positive convection fixed points. The initial 
conditions are 𝑋 = 𝑌 = 𝑍 = 0.9 with the time domain (𝜏) is taken from 0 to 210, and the step size 
Δ𝜏 = 0.001. This section demonstrated the effect of internal heating and the magnetic number of 
the ferrofluid layer system in the projection of the trajectories onto the dimensional plane.  

Table 1 presents the modified Rayleigh number, 𝑅𝑦, where the eigenvalue crosses the imaginary 

axis, and the convection fixed point loses its stability. The values of a magnetic number, 𝑀1, are varied 
with constant values of 𝑁𝑠 = 5 and 𝑀3 = 1.1. As shown clearly in Table 1, an increase of 𝑀1 
decreased the value of the modified Rayleigh number and made the system become unstable. The 
decline of Ry values is also reported by Nanjundappa et al., [28]. They stated that the increment of 
𝑀1 leads to an increase in the destabilized magnetic force that can cause the system's destabilization. 
 

Table 1 
Value of magnetic number and 
modified Rayleigh number when 
Hopf bifurcation occurs 

𝑀1 𝑅y 

1 17.315128 
2 14.856765 
3 13.526235 
4 12.694626 
5 12.126367 
6 11.713749 

 
Figure 3 shows the projection of the solution data point on the increasing Rayleigh number 

0.780 < 𝑅𝑦 < 18 on the 𝑌 − 𝑋 plane with the value of 𝑀1 = 1,𝑁𝑠 = 5,𝑀3 = 1.1. For a Rayleigh 

number slightly above the loss of stability of the motionless solution, which 𝑅𝑐𝑟 = 0.78004 in Figure 
3(a), the trajectory moves to the steady-state convection points on a straight line. At 𝑅𝑦 = 4.743, 

the trajectories approach the fixed point on a spiral as shown in Figure 3(b). Figure 3(c) shows the 
homoclinic bifurcation pattern by increasing the value of the modified Rayleigh number. By referring 
to Bhadauria [25], he stated that this bifurcation is known as global bifurcation, and the pattern could 
not be traced through a local stability analysis. By increasing the value of Rayleigh number, 𝑅𝑦 =

17.3151 (as obtained in Table 1), the flow becomes complete chaos, as shown in Figure 3(d). The 
transition to chaos in this present study is similar to the Lorenz attractor, as in Lorenz [1].  
 



CFD Letters 

Volume 12, Issue 10 (2020) 62-74 

70 
 

 
 

(a) (b) 

 
 

(c) (d) 

Fig. 3. The evolution of time in the state space for the various value of modified Rayleigh number 
in terms of 𝑅𝑦 

  
The impact of internal heating on the onset of chaotic convection in the ferrofluid layer system 

can be seen in Figure 4. 𝑁𝑠 values are varied while the other parameters are kept constant at 𝑅𝑦 =

6, 𝑀1 = 1, and 𝑀3 = 1.1. Figure 4(a) shows that the trajectory moves towards the steady-state 
convection on a straight line for the value of internal heating recorded at 𝑁𝑠 = 3.1. By increasing the 
effect of internal heating, the phase spiral trajectory exhibit at the value of 𝑁𝑠 = 4.5, as presented 
in Figure 4(b). For 𝑁𝑠 = 5.708, the homoclinic pattern of flow is seen to be appeared in Figure 4(c). 
In the case of strong internal heating 𝑁𝑠 = 5.9698, the convection becomes complete chaos, and 
the fixed point lose their stability as presented in Figure 4(d) at the value of 𝑅𝑦 = 6. This figure shows 

that the increase of 𝑁𝑠 will enhance the chaos of the ferrofluid layer system. This scenario happened 
because of the increment of energy supply towards the system that disturbs and caused the 
destabilization of the convection (Khalid et al., [29]). 
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(a) (b) 

 

 

(c) (d) 

Fig. 4. The evolution of trajectories in the state space for the different values of 𝑁𝑠 

 
Figure 5 demonstrates the effect of the magnetic number, 𝑀1, on the chaotic convection in the 

existence of internal heating. For the lower value of the magnetic number, 𝑀1 = 1, the trajectories 
move in the spiral phase approaching the steady-state for 𝑅𝑦=11. From Figure 5(b), the homoclinic 

bifurcation occurs for the 𝑀1 = 2.5. Further increase of the magnetic value, 𝑀1, caused the transition 
to chaos as presented in Figure 5(c) at a value of 𝑀1 = 8.7656. As stated earlier, the increase of 𝑀1 
will reduce the value of 𝑅y and making the ferrofluid layer system unstable. 
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(c) 

Fig. 5. The evolution of trajectories in the state space for the different values of 𝑀1 

 
4. Conclusions 
 

In this paper, the chaotic convection in a ferrofluid layer system in the existence of internal 
heating is analyzed. The partial differential equation is deduced by using the Fourier series to obtain 
the Lorenz like model. Without the presence of magnetic, the classical Lorenz model is recovered. 
The effect of internal heating and magnetic number are investigated on dynamic convection. An 
increment of magnetic number and internal heating are found to enhance the chaotic convection, 
thus destabilizing the ferrofluid layer system. Whereas, the non-linearity of fluid magnetization does 
not affect the convection of the ferrofluid system. 
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