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Mathematical model of Jeffrey fluid describes the property of viscoelastic that clarifies 
the two components of relaxation and retardation times. Nevertheless, the poor 
thermal performance of Jeffrey fluid has been a key issue facing the public. This issue 
can be accomplished by the use of nanofluid that has superior thermal performance 
than the conventional fluids. A better cooling rate in industry is in fact not appropriate 
to attain by the thermal conductivity of the conventional fluids. On that account, the 
present study aims to delve into the impact of viscous dissipation and suspended 
nanoparticles on mixed convection flow of Jeffrey fluid from a horizontal circular 
cylinder. A concise enlightenment on the separation of boundary layer flow is included 
and discussed starting from the lower stagnation point flow up to the separation point 
only. The non-dimensional and non-similarity transformation variables are 
implemented to transform the dimensional nonlinear partial differential equations 
(PDEs) into two nonlinear PDEs, and then tackled numerically through the Keller-box 
method. Representation of tabular and graphical results are executed for velocity and 
temperature profiles as well as the reduced skin friction coefficient, Nusselt number 
and Sherwood number to investigate the physical insight of emerging parameters. It 
was found that the incremented ratio of relaxation to retardation, Deborah number 

and Eckert number have delayed the boundary layer separation up to 120 .   
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1. Introduction 
 

The concept of nanofluids refers to an innovative idea of engineered heat transfer fluids by 
dispersing the nanometer-sized particles in the conventional fluids [1]. These particles, which are 
called as nanoparticles, are usually being composed of oxides 2 3 2 2(Al O , CuO, TiO , SiO ),  metals 
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(Al, Cu),  nitrides (AlN, SiN),   carbides (SiC),  or non-metals (graphite and carbon nanotubes) with 

diameter between 1 and 100 nm. Some examples of conventional fluids are organic liquids such as 
tri-ethylene-glycols, ethylene and refrigerants, water, polymeric solution, bio-fluids, oil and 
lubricants, and other liquids. To accomplish the industrial cooling rate requirement, the conventional 
fluids are found to have limited heat transfer competency attributing to their low thermal 
conductivity compared to metals. In that capacity, the thermal conductivity of conventional fluids 
can be conceivably enhanced by suspending it with nanoparticles; nonetheless, subjected to the 
particles’ shape, size, conductivity, amount of dispersed particles and the conventional fluid itself [2]. 
A number of works concerning the heat transfer in nanofluids may be found in publication by Zokri 
et al., [3], Mohamed et al., [4], Zulkifli et al., [5], Azam et al., [6], and Waini et al., [7].  

Recent studies have shown that the non-linear rheological fluids had made sizeable progression. 
This improvement can be tracked down through the complex nature of fluids used in various 
industrial applications, that a single constitutive equation is inadequate to describe such fluids. 
Differing to Newtonian fluid, the relationship between the stress and strain rate of non-Newtonian 
fluids is non-linear because of the dependency of fluid viscosity on time or deformation. The complex 
nature of fluids has stimulated the development of many non-Newtonian fluid models that can be 
mathematically recognized by its constitutive equations. Such constitutive equations are more 
complicated than the Navier-Stokes equations as each of the established models is fundamentally 
characterized by dissimilar characteristics. Most frequent highlighted non-Newtonian models in the 
literature comprehend the micropolar fluid model [8], viscoelastic fluid model [9], Jeffrey fluid model 
[10-12], Casson fluid model [13, 14], Williamson fluid model [15] and second grade fluid model [16]. 
Amongst all, Jeffrey fluid model has been ascertained as quite successful due to its distinct ability in 
explaining the dual viscoelastic properties of relaxation and retardation times, which is very much 
relevant with the polymer industries [17]. The important features of this fluid model include high 
shear viscosity, shear thinning and yield stress. At very high wall shear stress, this model degenerates 
to the Newtonian fluids provided that the wall shear stress is much greater than the yield stress. 

Free convection flow of an incompressible fluid from a horizontal circular cylinder implicates an 
imperative problem in many industrial applications, for example in handling hot wire and steam pipe. 
Merkin [18] attempted the initial investigation on free convection boundary layer flow from a 
horizontal circular cylinder in a viscous fluid. He presented a complete solution of this problem from 
the lower stagnation point up to the upper stagnation point of circular cylinder using the Blasius and 
Gortler series expansion methods coupled with an integral method and finite difference scheme. 
Soon after, he extended the study on a horizontal cylinder of elliptic cross section when the major 
axis is horizontal and vertical [19]. Both the constant wall temperature and constant heat flux are 
incorporated. The free convection problem about a heated horizontal cylinder in a porous medium 
was addressed by Ingham and Pop [20], while Merkin and Pop [21] utilized a similar method as 
Merkin [18] to investigate the constant heat flux condition. Following the works of Merkin [18] and 
Merkin and Pop [21], the non-Newtonian micropolar fluid was included and thoroughly investigated 
by Nazar et al., [22] under the constant wall temperature. 

Ever since, countless investigations have been conducted from a horizontal circular cylinder in 
both Newtonian and non-Newtonian fluid. This takes in the published study by Molla et al., [23] who 
utilized the free convection flow of a viscous fluid past an isothermal horizontal circular cylinder. They 
supposed that the fluid viscosity is proportional to an inverse linear function of the temperature. 
They applied the Keller-box method to solve the transformed boundary layer equations starting from 
the lower stagnation point of the cylinder and then proceeded round the cylinder up to the rear 
stagnation point. In the subsequent year, Molla et al., [24] continued the investigation by 
incorporating the internal heat generation effect. The transformed equations were solved 
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numerically using two methods, namely the Keller box method and series solution technique. Again, 
they observed that the boundary layer proceeds round the cylinder until the upper stagnation point 
without separating. The surface condition of Newtonian heating was studied by Salleh and Nazar [25] 
on free convection boundary layer flow in a viscous fluid. Here, the surface heat transfer is assumed 
to be proportional to the local surface temperature. They concluded that for increasing Prandtl 
number values, the velocity and temperature profiles were both reduced at the lower stagnation 
region. The combined effects of MHD, joule heating and heat generation were then presented by 
Azim and Chowdhury [26] on free convection flow of a viscous fluid with convective boundary 
conditions. With the help of Keller-box method, they noted that the skin friction along the surface of 
the cylinder decreases with increasing magnetic parameter and conjugate conduction parameter. 
Prasad et al., [27] explored the flow of Jeffrey fluid past a horizontal circular cylinder with 
suction/injection effect. The numerical computation conducted by the Keller-box method has shown 
that the Deborah number has a reducing impact on the velocity and Nusselt number, but rising 
impact on the temperature and skin friction coefficient. Later, Makanda et al., [28] deliberated the 
radiation effect on MHD free convection flow from a cylinder with partial slip in a non-Darcy porous 
medium of a Casson fluid. The cylinder surface was heated under constant surface temperature, and 
the partial slip factor was imposed on the surface for both velocity and temperature. The resulting 
system of equations was solved using the bi-variate quasilinearization method. Mohamed et al., [29] 
solved the model of nanofluid due to a horizontal circular cylinder with viscous dissipation effect 
using the Keller-box method. Authors disclosed that the increase of Brownian motion parameter, 
thermophoresis parameter, Lewis number and Eckert number has increased the skin friction 
coefficient and Sherwood number, while the Nusselt number decreases. Rao et al., [30] also applied 
the Keller-box method to scrutinize the flow of Williamson fluid with Newtonian heating. They 
reported that the boundary layer separation for skin friction coefficient ( 1.5)x   is larger than the 

Nusselt number ( 1.2).x   The convectively heated cylinder in MHD Tangent Hyperbolic Fluid was 

addressed by Gaffar et al., [31]. It was identified that, for all investigated parameters, the boundary 
layer flow does not experience singularity. Very recently, the flow of Jeffrey nanofluid at lower 
stagnation point from a horizontal circular cylinder is addressed by Zokri et al., [32] under the 
influences of suction/injection, mixed convection and convective boundary conditions.  

All of the above cited works were restricted to diverse non-Newtonian fluids flow with two of 
them concentrated on the Jeffrey fluid. However, none of them was identified to deliberate on free 
convection flow of Jeffrey nanofluid. Motivated by the published works of Mohamed [29] and Dalir 
[33], the current investigation aims to solve the free convection flow of Jeffrey nanofluid past a 
horizontal circular cylinder with viscous dissipation effect.  
 
2. Mathematical Formulation 

 
According to Hayat and Ali [34] and Qasim [35], the constitutive equation for the model of Jeffrey 

fluid is 
 

1,    = .
1

p
t






   
       

   

1
1 1

R
τ I S S R V R  

 
where ,  , ,  pτ I S  and   are the Cauchy stress tensor, identity tensor, extra stress tensor, pressure 

and dynamic viscosity. Furthermore, the material parameters of the Jeffrey fluid are symbolized as 
  and 1  while ( ) ( )   

1
R V V  is the Rivlin-Ericksen tensor. This model is developed with the 



CFD Letters 

Volume 12, Issue 11 (2020) 1-13 

4 
 

purpose of extending the Maxwell model. The retardation time parameter which appears in Maxwell 
model is specifically corrected with the time derivative of the strain rate, for which it can measure 
the required time for the material to react to the deformation.  

A steady, two-dimensional and laminar flow of the Jeffrey nanofluid model with uniform ambient 
temperature T

 and concentration C
 is investigated due to a horizontal circular cylinder. The 

cylinder is heated at the same constant temperature 
wT  and concentration ,wC  as exhibited in the 

flow diagram of Figure 1.  
 

 

Fig. 1. Schematic diagram of free convection flow in Jeffrey fluid passing over a horizontal  
circular cylinder 

 
The respective x   and y   coordinates are implicated throughout the surface of the cylinder 

from the lowest point, 0x   and vertical to it, with a  and g  being the radius of the circular cylinder 

and gravitational acceleration, respectively. The amalgamated influences of the viscous dissipation 
and mixed convection are also scrutinized. The law of conservation (after applying the boundary layer 
approximations) is proposed as the following: 

 

0,
u v
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In the above equations, the ratio of heat capacity of the nanoparticle to the fluid and the velocity 

outside the boundary layer are denoted as ( ) ( )p fc c    and  ( ) sin ,eu x U x a  respectively, 

whereas the velocity components along the x   and y   coordinates are symbolized as u  and ,v  

respectively. Besides, the respective ratio of relaxation to retardation times, relaxation time, thermal 
expansion, concentration expansion, thermal diffusivity, kinematic viscosity, fluid density, local 
concentration, specific heat capacity at a constant pressure, local temperature, Brownian diffusion 
coefficient and thermophoretic diffusion coefficient are indicated as 

1,  ,  ,  ,  ,  ,  ,  ,T C C        

,  ,  p BC T D  and .TD  Eqs. (1) to (4) are subjected to the following boundary conditions 

 

( ,0) 0,  ( ,0) 0,  ( ,0) ,  ( ,0)  at  0

( , ) 0,  ( , ) 0,  ( , ) ,  ( , )  as  

w wu x v x T x T C x C y

u x v x T x T C x C y 

    

        
       (5) 

 

The above mathematical model can be furthered non-dimensionlized using the subsequent variables  
 

1/4 1/2 1/4,  ,  ,  ,  ( ) ,  ( )x x x

w w

T T C Cx y a a
x y Gr u Gr u v Gr v

a a T T C C
   

 

   

 

 
     

      
(6) 

 
Using Eq. (6), Eqs. (1) to (5) yield 
 

0
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In consequence of the above equations, we let 

2Pr,  ,  ,  ,  ,  Re,  ,  ,  xEc Gr N Nb Le   and Nt  be 

the Prandtl number, Deborah number, Eckert number, mixed convection parameter, Grashof 
number, Reynolds number, concentration buoyancy parameter, Brownian motion parameter, Lewis 
number and thermophoresis diffusion parameter, which can be expressed as below: 
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Next, we look for these variables to solve Eqs. (7) to (11): ( , ),  ( , )xf x y x y     and 

( , ),x y   in which the stream function,   is represented by u y    and .v x    Now, 

the satisfaction of Eq. (7) is automatically achieved and the resulting PDEs together with the related 
boundary conditions are 
 

     
2 2 ( )2
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Note that primes infer the differentiation with respect to the variable .y  Also, we found that Eqs. 

(12) to (15) can be reduced to the mixed convection Newtonian fluid as reported by Mohamed et al., 
[36], provided the absence of the Jeffrey fluid 

2( 0)    and nanofluid ( 0)Nt Nb Le N     

parameters. At the vicinity of the lower stagnation point ( 0),x   the preceding equations (Eqs. (12) 

to (15)) give rise to the succeeding ordinary differential equations: 
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The non-appearance of parameter Ec  in Eq. (17) clearly signifies that the profiles of velocity, 
temperature and concentration are no longer being influenced by Ec  at the stagnation point of the 
cylinder. Further, the local Nusselt and Sherwood numbers are exemplified as follows 
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The reduced Nusselt and Sherwood numbers are now given by 
 

1/4 1/4( ,0),  ( ,0)
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fr x x x
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

   


 and 1/4 ( ,0)x xSh Gr x                    (21) 

 
3. Results and Discussion 

 
The non-linear PDEs (Eqs. (12) to (14)) with the respective boundary conditions (Eq. (15)) are 

treated through the Keller-box method. The numerical solutions start at the lower stagnation point, 
0x    with initial profiles being given by Eqs. (16) to (18) accompanied by boundary conditions (19) 

and then preceded round the circular cylinder up to the separation point 120 .x    The step size of 

0.01x y     and the boundary layer thickness, 4y   to 6 are implemented to obtain the 

numerical results. The results of this study are comprehensively explored and discussed for diverse 

values of dimensionless governing equations 
2,     and ,Ec  as illustrated in Figures 1 to 9.  

In order to authenticate the engaged numerical method, the comparative benchmark of the 
1/4

fr xC Gr  and 1/4

x xNu Gr   values against position of x  are presented through Tables 1 and 2. The 

limiting results of the current study are matched with the tabulated values of Merkin [18], Nazar [22], 
Molla [24], Azim and Chowdhury [26] and Mohamed [29], who applied the Keller-box method in 
solving the free convection flow of viscous, micropolar and nanofluid. A proper match among the 
comparative values of both tables has manifestly validated the present results. Furthermore, it can 

be concluded from the comparative values that the 1/4

fr xC Gr  rises to a maximum value before 

declining to a finite value, while the 1/4

x xNu Gr   decelerates with increasing position of .x  

The graph for velocity ( ),f y  temperature ( )y  and concentration ( )y  profiles are portrayed 

in Figures 2 to 4 for different values of   and 
2.  Initially, a rise in   is noticed to boost the velocity 

profile; however, the velocity profile starts to deteriorate as the momentum boundary layer thickness 
increases. Physically,   is dependent on the retardation time. An increase in   signifies weaker 
retardation time while a decrease in   indicates stronger retardation time. Such change in 
retardation time leads to the increment and decrement in the momentum boundary layer thickness. 

Instead, a reversal graph trend is observed for increasing 
2  values. It is perceived that 

2  displays 

a trivial effect at the cylinder surface, but the effect comes to be highly substantial as the thickness 
of boundary layer increases up to the freestream. Moreover, with increasing value of ,  the decrease 

in temperature profile is found to be slightly significant than the decrease in concentration profile. 
This outcome goes in the same way as for rising 

2  values, where a slight significant increase in 

temperature rather than the concentration profile is spotted. These profiles also decline continuously 
towards the freestream following the escalation of the boundary layer thickness. The incremented 
temperature and concentration profiles can be directly related with the behaviour of Deborah 
number which liable to the changes in retardation time. An increase in retardation time increases the 

2 ,  which eventually reduces the resistance of fluid motion within the boundary layer. This has 

subsequently resulted in high impact of fluid motion, which does not only thicken the momentum 
boundary layer, but also the thermal and concentration boundary layers. 

Salient features of skin friction coefficient 1/4 ,fr xC Gr  Nusselt number 1/4

x xNu Gr   and Sherwood 

number 1/4

x xSh Gr   are portrayed in Figures 5 to 10 for various values of 2,     and .Ec  These figures 

have demonstrated that the boundary layer separation had occurred at 120 ,x    regardless of the 
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varied parameter values. Figures 5 to 7 demonstrate that the 1/4

fr xC Gr  is a lessening function of   

and a rising function of 
2 ,  while both the 1/4

x xNu Gr   and 1/4

x xSh Gr   perform reversely. It is observed 

that the heat and nanoparticle concentration transfer rates reduce sequentially as the tangential 
coordinate value, x  increases. Figures 8 to 10 exhibit that, Ec  enunciates a rising impact over the 

1/4

fr xC Gr  and the 1/4 ,x xSh Gr   but a lessening impact over the 1/4.x xNu Gr   Here, the reversal behaviour 

of heat transfer transpires as the 1/4

x xNu Gr   values become negative by virtue of escalating Ec  from 

0 to 2. Such behaviour transpires as a result of dissipative heat effect, thus can be explained as a 

reversal of the heat flow. One would also expect that the 1/4

x xNu Gr   always gives positive value when 

0Ec   and tends to result in negative value when 0.Ec   Besides, the impact of Ec  for each profile 
is not plotted here because the graph generates a unique solution. Mathematically, this can also be 
connected with discontinuation of Ec  in the energy equation (Eq. (17)), which subsequently leads to 

a unique solution of 1/4 ,fr xC Gr  1/4

x xNu Gr   and 1/4

x xSh Gr   at 0 .x    
 

Table 1 

Comparative values of 1/4

fr xC Gr  for different values of x  when 0,   2 0 
 

(very small), 

0N Ec Nb Nt Le      and Pr 1   
1/4

fr xC Gr  

x  Merkin [18] Nazar [22] Molla [24]  Azim and 
Chowdhury [26] 

Mohamed [29] Present 

0  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

6  0.4151 0.4148 0.4145 0.4139 0.4121 0.4120 

3  0.7558 0.7542 0.7539 0.7528 0.7538 0.7507 

2  0.9579 0.9545 0.9541 0.9526 0.9563 0.9554 

2 3  0.9756 0.9698 0.9696 0.9678 0.9743 0.9728 

5 6  0.7822 0.7740 0.7739 0.7718 0.7813 0.7761 

  0.3391 0.3265 0.3264 0.3239 0.3371 0.3302 

 
Table 2 

Comparative values of 1/4

x xNu Gr  for different values of x  when 0,   2 0 
 
(very small), 

0N Ec Nb Nt Le      and Pr 1  
1/4

x xNu Gr   

x  Merkin [18] Nazar [22] Molla [24] Azim and 
Chowdhury [26] 

Mohamed [29] Present 

0  0.4214 0.4214 0.4214 0.4216 0.4214 0.4214 

6  0.4161 0.4161 0.4161 0.4163 0.4163 0.4162 

3  0.4007 0.4005 0.4005 0.4006 0.4008 0.4009 

2  0.3745 0.3741 0.3740 0.3742 0.3744 0.3743 

2 3  0.3364 0.3355 0.3355 0.3356 0.3364 0.3363 

5 6  0.2825 0.2811 0.2812 0.2811 0.2824 0.2814 

  0.1945 0.1916 0.1917 0.1912 0.1939 0.1932 
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Fig. 2. Variation of ( )f y  for several values of   

and 2  when 0.1,  10N Nb Nt Ec Le      

and Pr 7  

 Fig. 3. Variation of ( )y  for several values of   

and 2  when 0.1,  10N Nb Nt Ec Le      

and Pr 7  
 

 

 

 

Fig. 4. Variation of ( )y  for several values of   

and 2  when 0.1,  10N Nb Nt Ec Le      

and Pr 7  

 Fig. 5. Variation of 1/4

fr xC Gr  for several values of 

  and 2  when 0.1,  10N Nb Nt Ec Le      

and Pr 7  
 

 

 

 

Fig. 6. Variation of 1/4

x xNu Gr   for several values of 

  and 2  when 0.1,  10N Nb Nt Ec Le      

and Pr 7  

 Fig. 7. Variation of 1/4

x xSh Gr   for several values of 

  and 2  when 0.1,  10N Nb Nt Ec Le      

and Pr 7  
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Fig. 8. Variation of 1/4

fr xC Gr  for several values of 

Ec  when 2 0.5,    0.1,   10N Nb Nt Le     

and Pr 7  

 Fig. 9. Variation of 1/4

x xNu Gr  for several values of 

Ec  when 2 0.5,    0.1,   10N Nb Nt Le     

and Pr 7  

 

 

Fig. 10. Variation of 1/4

x xSh Gr  for several values of 

Ec  when 2 0.5,    0.1,N Nb Nt    10Le   

and Pr 7  
 

4. Conclusions 
 

The free convection boundary layer flow problem of Jeffrey nanofluid on a horizontal circular 
cylinder with viscous dissipation effect was deliberated. The effects of Jeffrey fluid parameter and 
viscous dissipation on the velocity, temperature and concentration profiles as well as the reduced 
skin friction coefficient, Nusselt number and Sherwood number have been discussed and explained. 
On the whole, the concise outcome of this investigation is provided as follows: 

 
I. The similar distribution shows the opposite behaviour for both Jeffrey fluid parameters. 

II. An increase in Ec  shows no effects on the velocity, temperature and concentration profiles 
at the lower stagnation point. Augmenting Ec  has enlarged the skin friction coefficient and 
Sherwood number, but reduced the Nusselt number. 

III. The increase of 2,     and Ec  has delayed the boundary layer separation up to 120 .x    
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