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In this paper, the homotopy analysis method (HAM) and Runge-Kutta-Fehlberg fourth-
fifth order method (RKF45M) are applied to investigate the 2D Sakiadis flow of non-
Newtonian Casson fluid with convective boundary conditions based on the 
Buongiorno's mathematical model. The governing boundary layer equations of 
continuity, momentum, thermal energy and nanoparticle concentration are derived 
and converted to the dimensionless form via the similarity variables. The present 
solutions agree entirely with those available results in the literatures. A parametric 
study is also performed to illustrate the effects of pertinent parameters on the fluid 
flow. It is shown that the skin friction coefficient for a non-Newtonian fluid is found to 
be higher than that of the Newtonian one. Furthermore, the thermal boundary layer 
thickness is greatly affected by the resistive Lorentz force and viscous dissipation. 
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 Introduction 

 
In fluid mechanics the Sakiadis problem [1,2] which can be considered as a variant of the well-

known Blasius equation [3], is concerned with the boundary layer flow in a quiescent fluid. The most 
important aspect of this problem is to provide the fluid motion by a moving flat plate. In recent years, 
there has been an increase in the number of research studies dealt with this problem. In this regard, 
Sulochana et al., [4] analyzed the magnetohydrodynamic (MHD) axisymmetric Sakiadis flow of Cu-
H2O and Al50Cu50-H2O nanofluids past a thin horizontal needle considering the Joule heating. They 
developed those reported by Soid et al., [5] and showed that accounting for the effect of Lorentz 
force increases the thermal boundary layer thickness. They also found that the relative velocity of 
Al50Cu50-H2O nanofluid is greater in the vicinity of the wall, compared to the Cu-H2O nanofluid. Cortell 
Bataller [6] investigated the effects of convective heat transfer with thermal radiation on the Blasius 
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and Sakiadis flow numerically through the Runge-Kutta fourth-order method (RK4M). They found 
that the Sakiadis flow yields a thicker thermal boundary layer than the Blasius flow at low Prandtl 
numbers. They also reported the significant effect of thermal diffusion on the wall temperature. 
Finally, they concluded that their findings are in agreement with those of Aziz [7]. Hayat et al., [8] 
performed heat transfer analysis in the Blasius and Sakiadis flow of an Eyring-Powell fluid with the 
constant heat flux and convective boundary conditions, and found that the thermal boundary layer 
thickness decreases with an increase in the Prandtl number. They also illustrated importance of the 
external convection resistance inside the surface. Bachok et al., [9] optimized the Blasius and Sakiadis 
flow of Cu-H2O, Al2O3-H2O and TiO2-H2O nanofluids presented by Ahmad et al., [10] and showed that 
Cu-H2O and TiO2-H2O nanofluids take the lowest and highest heat transfer rates, respectively. They 
also emphasized that in case of zero heat flux, their findings are fully consistent with those of Ishak 
et al., [11]. Pantokratoras [12] studied the Blasius and Sakiadis flow of a Carreau fluid numerically 
through the finite difference method (FDM). He showed that the momentum boundary layer 
thickness decreases with an increase in the Deborah number. He also investigated effects of the 
Deborah number on the shear-thinning and Shear-thickening fluids (see Ref. [13]) for both the Blasius 
and Sakiadis flow cases. Hayat et al., [14] analyzed the combined effects of convective heat transfer 
and viscous dissipation on the Blasius and Sakiadis flow of an upper-converted Maxwell (UCM) fluid 
using the HAM, and indicated that the heat transfer rates decreases with an increase in the Eckert 
number. They also found that the thermal boundary layer thickness is significantly affected by the 
Biot number. With mathematical precision, Girgin [15] employed the generalized iterative differential 
quadrature method (GIDQM) to investigate the effects of variable fluid properties on the Blasius and 
Sakiadis flow, and showed that his findings are consistent with those provided by Arikoglu and Ozkol 
[16] and Andersson and Aarseth [17]. Xu and Guo [18] developed a fixed point iterative method 
(FPIM) for solving the Blasius and Sakiadis flow in terms of a series of linear differential equations. 
Fazio [19] proved that the iterative transformation method (ITM) is applicable to the Sakiadis flow. 
He also emphasized that the skin friction coefficient in this case is 1.34 times greater than that of the 
Blasius flow (see Ref. [20]). It should be emphasized here that more details can be found in Refs. [21-
30]. 

Motivated by the aforementioned research studies, this paper provides analytical and numerical 
solutions for dealing with the heat and mass transfer analysis in the Sakiadis flow of Casson fluid with 
convective boundary conditions. The Buongiorno's mathematical model [31] related to the Brownian 
motion and thermophoresis effects has also been utilized to simulate slip mechanisms in the 
nanoparticles. The organization of this paper is as follows. 

Section 2 provides a very detailed description of the governing equations and its non-
dimensionalization. Section 3 states the analytical and numerical solution methods. The results and 
discussion are reported in section 4. The concluding remarks are summarized in section 5. 
 

 Governing Equations 
 

The non-Newtonian fluids are categorized into three main types: Time-independent, time-
dependent and viscoelastic fluids [32, 33]. In the case of time-dependent fluids, the viscosity is not 
dependent on the duration of shearing [34]. In this section, one may define the time-independent 
Casson fluid [35] which has the following constitutive equation 
 

𝜇�̇� = {
(1 − √

�̅�0

|�̅�|
)
2

𝜏̅, |𝜏̅| > 𝜏̅0,

0, |𝜏̅| ≤ 𝜏̅0,

         (1) 
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where 𝜇 is the plastic dynamic viscosity, �̇� is the rate of shear strain, 𝜏̅0 is the yield stress, 𝜏̅ is the 
Cauchy stress tensor and |𝜏̅| is the magnitude of 𝜏̅. From Eq. 1, it is apparent that the viscosity 
decreases with an increase in the rate of shear strain. Moreover, if the yield stress is equal to zero, 
the Casson fluid reduces to the Newtonian type [34]. 

For a 2D flow in the Cartesian coordinate system, the velocity, temperature and nanoparticle 
concentration fields are stated as 
 
𝐕 = [𝑢(𝑥, 𝑦), 𝑣(𝑥, 𝑦)], 𝐓 = 𝑇(𝑥, 𝑦), 𝐂 = 𝐶(𝑥, 𝑦),        (2) 
 
where 𝑢 and 𝑣 are the velocity components along the 𝑥- and 𝑦-axes, respectively, 𝑇 is the 
temperature and 𝐶 is the nanoparticle concentration. 

Using the above-mentioned assumptions, the governing boundary layer equations of continuity, 
momentum, thermal energy and nanoparticle concentration can be written as follows 

 

{
 
 
 

 
 
 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0,

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝜐 (1 +

1

𝜆
)
𝜕2𝑢

𝜕𝑦2
−

𝜎𝐵0
2

𝜌𝑓
𝑢 sin2𝜓 ,

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼

𝜕2𝑇

𝜕𝑦2
+

𝜐

𝑐𝑝
(1 +

1

𝜆
) (

𝜕𝑢

𝜕𝑦
)
2

+ 𝜁 [𝐷B
𝜕𝐶

𝜕𝑦

𝜕𝑇

𝜕𝑦
+

𝐷T

𝑇∞
(
𝜕𝑇

𝜕𝑦
)
2
] −

1

𝜌𝑓𝑐𝑝

𝜕𝑞𝑟

𝜕𝑦
,

𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
= 𝐷B

𝜕2𝐶

𝜕𝑦2
+

𝐷T

𝑇∞

𝜕2𝑇

𝜕𝑦2
,

    (3) 

 
along with the following boundary conditions 
 

{
at 𝑦 = 0: 𝑢 = 𝑈𝑤 , 𝑣 = 0, 𝑇 = 𝑇𝑤, 𝐶 = 𝐶𝑤 ,
as 𝑦 → ∞: 𝑢 → 0, 𝑇 → 𝑇∞, 𝐶 → 𝐶∞,

         (4) 

 
where 𝜐 is the kinematic viscosity, 𝜆 is the Casson fluid parameter, 𝜎 is the electrical conductivity, 𝐵0 
is the magnetic field strength, 𝜌𝑓 is the fluid density, 𝜓 is the inclination angle of the magnetic field, 

𝛼 is the thermal diffusivity, 𝑐𝑝 is the specific heat of the fluid at constant pressure, 𝜁 =
(𝜌𝑐)𝑝

(𝜌𝑐)𝑓
 is the 

ratio of nanoparticle heat capacity to the base fluid heat capacity, 𝐷B is the Brownian diffusion 
coefficient, 𝐷T is the thermophoresis diffusion coefficient, 𝑇∞ is the ambient temperature, 𝑞𝑟 is the 
radiation heat flux, 𝑈𝑤 is the constant velocity of the moving flat plate, 𝑇𝑤 is the wall temperature, 
𝐶𝑤 is the nanoparticle concentration around the wall and 𝐶∞ is the ambient nanoparticle 
concentration. 

According to the Rosseland approximation [36] the radiation heat flux involved in Eq. 3 may be 
expressed in the following form 
 

𝑞𝑟 = −
4𝜎𝑆𝐵

3𝛽𝑅

𝜕𝑇4

𝜕𝑦
,            (5) 

 
where 𝜎𝑆𝐵 and 𝛽𝑅 are the Stefan-Boltzmann constant and Rosseland mean absorption coefficient, 
respectively. 

It is to be noted that the fluid-phase temperature difference within the flow is almost negligible 
and hence 𝑇4 can be expanded into a Taylor series with respect to 𝑇∞ as  𝑇4 ≅ 4𝑇𝑇∞

3 − 3𝑇∞
4 . Then, 

the radiation heat flux results in 𝑞𝑟 = −
16𝑇∞

3 𝜎𝑆𝐵

3𝛽𝑅

𝜕𝑇

𝜕𝑦
. 
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To convert above equations to the dimensionless form, the following variables can be expressed 
 

𝜓 = √𝑈𝑤𝑣𝑥𝑓(𝜂), 𝜂 = 𝑦√
𝑈𝑤

𝑣𝑥
, 𝜃(𝜂) =

𝑇−𝑇∞

𝑇𝑤−𝑇∞
, 𝜙(𝜂) =

𝐶−𝐶∞

𝐶𝑤−𝐶∞
,      (6) 

 

where 𝜓 is the stream function which is governed by 𝑢 =
𝜕𝜓

𝜕𝑦
 and 𝑣 = −

𝜕𝜓

𝜕𝑥
, 𝑓 is the similarity 

function, 𝜂 is the similarity parameter, 𝜃 is the dimensionless temperature and 𝜙 is the dimensionless 
nanoparticle concentration. 
 

Substituting Eq. 6 into Eq. 3 and Eq. 4 gives 
 

{
 
 

 
 (1 +

1

𝜆
)
𝜕3𝑓

𝜕𝜂3
+ 𝑓

𝜕2𝑓

𝜕𝜂2
−
𝜕𝑓

𝜕𝜂
(
𝜕𝑓

𝜕𝜂
+ Ha2 sin2𝜓) = 0,

1

Pr

𝜕2𝜃

𝜕𝜂2
+
1

2
𝑓
𝜕𝜃

𝜕𝜂
+ Nb

𝜕𝜙

𝜕𝜂

𝜕𝜃

𝜕𝜂
+ Nt (

𝜕𝜃

𝜕𝜂
)
2

+
1

2
Nr𝑓

𝜕𝜃

𝜕𝜂
+ Ec (1 +

1

𝜆
) (

𝜕2𝑓

𝜕𝜂2
)
2

= 0,

𝜕2𝜙

𝜕𝜂2
+
1

2
Le𝑓

𝜕𝜙

𝜕𝜂
+

Nt

Nb

𝜕2𝜃

𝜕𝜂2
= 0,

    (7) 

 
and, 
 

{
at 𝜂 = 0: 𝑓 = 0,

𝜕𝑓

𝜕𝜂
= 1, 𝜃 = 1,𝜙 = 1,

as 𝜂 → ∞: 
𝜕𝑓

𝜕𝜂
→ 0, 𝜃 → 0, 𝜙 → 0,

         (8) 

 

where Ha2 =
𝜎𝐵0

2

𝜌𝑈𝑤
 is the square of the Hartmann number, Pr =

𝜐

𝛼
 is the Prandtl number, Nb =

𝜁𝐷B

𝜐
(𝐶𝑤 − 𝐶∞) is the Brownian motion parameter, Nt =

𝜁𝐷T

𝜐𝑇∞
(𝑇𝑤 − 𝑇∞) is the thermophoresis 

parameter, Nr =
𝑘𝛽𝑅

4𝜎𝑆𝐵𝑇∞
3  is the radiation parameter, Ec =

𝑈𝑤
2

𝑐𝑝(𝑇𝑤−𝑇∞)
 is the Eckert number and Le =

𝛼

𝐷B
 

is the Lewis number. 
 

The skin friction coefficient, local Nusselt number and local Sherwood number are defined as 
 

C𝑓 = 2
𝜏𝑤

𝜌𝑈𝑤
2 , Nu𝑥 =

𝑥𝑞𝑤

𝑘(𝑇𝑤−𝑇∞)
, Sh𝑥 =

𝑥𝑞𝑚

𝐷B(𝐶𝑤−𝐶∞)
,        (9) 

 
where, 
 

𝜏𝑤 = 𝜇 (1 +
1

𝜆
) (

𝜕𝑢

𝜕𝑦
)
𝑦=0

, 𝑞𝑤 = −𝑘 (
𝜕𝑇

𝜕𝑦
)
𝑦=0

, 𝑞𝑚 = −𝐷B (
𝜕𝐶

𝜕𝑦
)
𝑦=0

.                  (10) 

  
Substituting Eq. 6 and Eq. 10 into Eq. 9 gives 
  

C𝑓Re𝑥

1

2 = (1 +
1

𝜆
) (

𝜕2𝑓

𝜕𝜂2
)
𝜂=0

, Nu𝑥Re𝑥
−
1

2 = −(
𝜕𝜃

𝜕𝜂
)
𝜂=0

, Sh𝑥Re𝑥
−
1

2 = −(
𝜕𝜙

𝜕𝜂
)
𝜂=0

,                (11) 

 

where Re𝑥 =
𝑥𝑈𝑤

𝜐
 is the local Reynolds number based on the wall velocity. 
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The following section contains the analytical and numerical solutions for Eq. 7 and Eq. 8 that may 
be amenable to the nonlinear boundary value problems. 
 

 Solution method 
3.1 HAM 
 
Let us choose the appropriate initial guesses as follows 
 
𝑓0(𝜂) = 1 − exp(−𝜂), 𝜃0(𝜂) = exp(−𝜂), 𝜙0(𝜂) = exp(−𝜂).                  (12) 
 
The auxiliary linear operators can be expressed as 
 

L𝑓 ≡
𝜕3𝑓

𝜕𝜂3
−
𝜕𝑓

𝜕𝜂
, L𝜃 ≡

𝜕2𝜃

𝜕𝜂2
− 𝜃, L𝜙 ≡

𝜕2𝜙

𝜕𝜂2
− 𝜙,                    (13) 

 
which have the following properties 
 

{

L𝑓[𝑐1 + 𝑐2exp(𝜂) + 𝑐3exp(−𝜂)] = 0,

L𝜃[𝑐4exp(𝜂) + 𝑐5exp(−𝜂)] = 0,

L𝜙[𝑐6exp(𝜂) + 𝑐7exp(−𝜂)] = 0,

                     (14) 

 
where 𝑐1, 𝑐2, … , 𝑐7 are the arbitrary constants. The zeroth-order problems correspond to Eq. 7 and 
Eq. 8 are constructed in the following forms 
 

{

(1 − 𝑝)L𝑓[𝑓(𝜂, 𝑝) − 𝑓0(𝜂)] = 𝑝ℎ𝑓N𝑓[𝑓(𝜂, 𝑝)],

(1 − 𝑝)L𝜃[𝜃(𝜂, 𝑝) − 𝜃0(𝜂)] = 𝑝ℎ𝜃N𝜃[𝑓(𝜂, 𝑝), 𝜃(𝜂, 𝑝), �̂�(𝜂, 𝑝)],

(1 − 𝑝)L𝜙[�̂�(𝜂, 𝑝) − 𝜙0(𝜂)] = 𝑝ℎ𝜙N𝜙[𝑓(𝜂, 𝑝), 𝜃(𝜂, 𝑝), �̂�(𝜂, 𝑝)],

                 (15) 

 
and, 
 

{
at 𝜂 = 0: 𝑓(𝜂, 𝑝) = 0,

𝜕�̂�(𝜂,𝑝)

𝜕𝜂
= 1, 𝜃(𝜂, 𝑝) = 1, �̂�(𝜂, 𝑝) = 1,

as 𝜂 → ∞: 
𝜕�̂�(𝜂,𝑝)

𝜕𝜂
→ 0, 𝜃(𝜂, 𝑝) → 0, �̂�(𝜂, 𝑝) → 0,

                  (16) 

 
where 0 ≤ 𝑝 ≤ 1 is an embedding parameter, ℎ𝑓, ℎ𝜃 and ℎ𝜙 are the non-zero auxiliary parameters, 

and N𝑓, N𝜃 and N𝜙 are the nonlinear operators which can be defined as follows 

 

{
 
 
 

 
 
 N𝑓[𝑓(𝜂, 𝑝)] = (1 +

1

𝜆
)
𝜕3�̂�

𝜕𝜂3
+ 𝑓

𝜕2�̂�

𝜕𝜂2
−
𝜕�̂�

𝜕𝜂
(
𝜕�̂�

𝜕𝜂
+ Ha2 sin2𝜓) ,

N𝜃[𝑓(𝜂, 𝑝), 𝜃(𝜂, 𝑝), �̂�(𝜂, 𝑝)] =
1

Pr

𝜕2�̂�

𝜕𝜂2
+
1

2
𝑓
𝜕�̂�

𝜕𝜂
+ Nb

𝜕�̂�

𝜕𝜂

𝜕�̂�

𝜕𝜂
+ Nt (

𝜕�̂�

𝜕𝜂
)
2

 +
1

2
Nr𝑓

𝜕�̂�

𝜕𝜂
+ Ec (1 +

1

𝜆
) (

𝜕2�̂�

𝜕𝜂2
)
2

,

N𝜙[𝑓(𝜂, 𝑝), 𝜃(𝜂, 𝑝), �̂�(𝜂, 𝑝)] =
𝜕2�̂�

𝜕𝜂2
+
1

2
Le𝑓

𝜕�̂�

𝜕𝜂
+

Nt

Nb

𝜕2�̂�

𝜕𝜂2
.

                 (17) 

 
When 𝑝 = 0, Eq. 5 converts to 
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L𝑓[𝑓(𝜂, 0) − 𝑓0(𝜂)] = 0, L𝜃[𝜃(𝜂, 0) − 𝜃0(𝜂)] = 0, L𝜙[�̂�(𝜂, 0) − 𝜙0(𝜂)] = 0,                (18) 

 
and when 𝑝 = 1, Eq. 5 converts to 
 

{

N𝑓[𝑓(𝜂, 1)] = 0,

N𝜃[𝑓(𝜂, 1), 𝜃(𝜂, 1), �̂�(𝜂, 1)] = 0,

N𝜙[𝑓(𝜂, 1), 𝜃(𝜂, 1), �̂�(𝜂, 1)] = 0.

                      (19) 

 

expanding 𝑓(𝜂, 𝑝), 𝜃(𝜂, 𝑝) and �̂�(𝜂, 𝑝) into the Taylor series with respect to 𝑝 gives 
 

{

𝑓(𝜂, 𝑝) = 𝑓0(𝑝) + ∑ 𝑓𝑚(𝜂)𝑝
𝑚∞

𝑚=1 ,

𝜃(𝜂, 𝑝) = 𝜃0(𝑝) + ∑ 𝜃𝑚(𝜂)𝑝
𝑚∞

𝑚=1 ,

�̂�(𝜂, 𝑝) = 𝜙0(𝑝) + ∑ 𝜙𝑚(𝜂)𝑝
𝑚∞

𝑚=1 ,

                     (20) 

 
where, 
 

{
 
 

 
 𝑓𝑚(𝜂) = (

1

𝑚!

𝜕𝑚�̂�(𝜂,𝑝)

𝜕𝑝𝑚
)
𝑝=0

,

𝜃𝑚(𝜂) = (
1

𝑚!

𝜕𝑚�̂�(𝜂,𝑝)

𝜕𝑝𝑚
)
𝑝=0

,

𝜙𝑚(𝜂) = (
1

𝑚!

𝜕𝑚�̂�(𝜂,𝑝)

𝜕𝑝𝑚
)
𝑝=0

.

                      (21) 

 
If the initial guesses, auxiliary linear operators and auxiliary parameters are properly chosen, Eq. 20 
converges at 𝑝 = 1 as follows 
 

{

𝑓(𝜂) = ∑ 𝑓𝑚(𝜂)
∞
𝑚=0 ,

𝜃(𝜂) = ∑ 𝜃𝑚(𝜂)
∞
𝑚=0 ,

𝜙(𝜂) = ∑ 𝜙𝑚(𝜂)
∞
𝑚=0 .

                       (22) 

 
Differentiating Eq. 15 𝑚 times with respect to 𝑝, setting 𝑝 = 0 and dividing them by 𝑚! gives the 
following 𝑚th-order problems 
 

{

L𝑓[𝑓𝑚(𝜂) − χ𝑚𝑓𝑚−1(𝜂)] = ℎ𝑓R𝑚
𝑓 (𝜂),

L𝜃[𝜃𝑚(𝜂) − χ𝑚𝜃𝑚−1(𝜂)] = ℎ𝜃R𝑚
𝜃 (𝜂),

L𝜙[𝜙𝑚(𝜂) − χ𝑚𝜙𝑚−1(𝜂)] = ℎ𝜙R𝑚
𝜙 (𝜂),

                     (23) 

 
and, 
 

{
at 𝜂 = 0: 𝑓(𝜂) = 0,

𝜕𝑓(𝜂)

𝜕𝜂
= 0, 𝜃(𝜂) = 0, 𝜙(𝜂) = 0,

as 𝜂 → ∞: 
𝜕𝑓(𝜂)

𝜕𝜂
→ 0, 𝜃(𝜂) → 0, 𝜙(𝜂) → 0,

                   (24) 

 

where χ𝑚 and R𝑚
𝑓 , R𝑚

𝜃  and R𝑚
𝜙

 can be written as 
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χ𝑚 = {
0,𝑚 ≤ 1,
1,𝑚 > 1,

                        (25) 

 

{
 
 
 
 

 
 
 
 R𝑚

𝑓 (𝜂) = (1 +
1

𝜆
)
𝜕3𝑓𝑚−1

𝜕𝜂3
+ ∑ 𝑓𝑛

𝜕2𝑓𝑚−𝑛−1

𝜕𝜂2
𝑚−1
𝑛=0 − ∑

𝜕𝑓𝑛

𝜕𝜂

𝜕𝑓𝑚−𝑛−1

𝜕𝜂
𝑚−1
𝑛=0

 −Ha2 sin2𝜓
𝜕𝑓𝑚−1

𝜕𝜂
,

R𝑚
𝜃 (𝜂) =

1

Pr

𝜕2𝜃𝑚−1

𝜕𝜂2
+
1

2
∑ 𝑓𝑛

𝜕𝜃𝑚−𝑛−1

𝜕𝜂
𝑚−1
𝑛=0 + Nb∑

𝜕𝜙𝑛

𝜕𝜂

𝜕𝜃𝑚−𝑛−1

𝜕𝜂
𝑚−1
𝑛=0

 +Nt∑
𝜕𝜃𝑛

𝜕𝜂

𝜕𝜃𝑚−𝑛−1

𝜕𝜂
𝑚−1
𝑛=0 +

1

2
Nr∑ 𝑓𝑛

𝜕𝜃𝑚−𝑛−1

𝜕𝜂
𝑚−1
𝑛=0 + Ec (1 +

1

𝜆
)∑

𝜕2𝑓𝑛

𝜕𝜂2
𝜕2𝑓𝑚−𝑛−1

𝜕𝜂2
𝑚−1
𝑛=0 ,

R𝑚
𝜙 (𝜂) =

𝜕2𝜙𝑚−1

𝜕𝜂2
+
1

2
Le∑ 𝑓𝑛

𝜕𝜙𝑚−𝑛−1

𝜕𝜂
𝑚−1
𝑛=0 +

Nt

Nb

𝜕2𝜃𝑚−1

𝜕𝜂2
.

               (26) 

 
It is to be noted that Eq. 23-26 can be easily solved using the symbolic MATLAB software for 𝑚 ≥

1. The general solution for Eq. 23 in terms of particular solutions i.e., 𝑓𝑚
⋆(𝜂), 𝜃𝑚

⋆ (𝜂) and 𝜙𝑚
⋆ (𝜂) are 

given in the following forms 
 

{

𝑓𝑚(𝜂) = 𝑓𝑚
⋆(𝜂) + 𝑐1 + 𝑐2exp(𝜂) + 𝑐3exp(−𝜂),

𝜃𝑚(𝜂) = 𝜃𝑚
⋆ (𝜂) + 𝑐4exp(𝜂) + 𝑐5exp(−𝜂),

𝜙𝑚(𝜂) = 𝜙𝑚
⋆ (𝜂) + 𝑐6exp(𝜂) + 𝑐7exp(−𝜂),

                    (27) 

 
where, 
 

𝑐2 = 𝑐4 = 𝑐6 = 0, 𝑐3 =
𝜕𝑓𝑚

⋆ (0)

𝜕𝜂
, 𝑐1 = −𝑐3 − 𝑓𝑚

⋆(0), 𝑐5 = −𝜃𝑚
⋆ (0), 𝑐7 = −𝜙𝑚

⋆ (0).                (28) 

 
As stated by Liao [37-40], convergence of the HAM-series solutions largely depends on the values 

of auxiliary parameters. Hence, the optimal values of ℎ𝑓, ℎ𝜃 and ℎ𝜙 can be found by minimizing the 

square residual errors as follows [40] 
 

{
 
 

 
 ϵ𝑓

𝑚(ℎ𝑓) =
1

𝑞+1
∑ [N𝑓(∑ 𝑓(𝜂)𝑚

𝑗=0 )
𝜂=𝑖𝛿𝜂

]
2
𝑑𝜂𝑞

𝑖=0 ,

ϵ𝜃
𝑚(ℎ𝜃) =

1

𝑞+1
∑ [N𝜃(∑ 𝑓(𝜂)𝑚

𝑗=0 , ∑ 𝜃(𝜂)𝑚
𝑗=0 , ∑ 𝜙(𝜂)𝑚

𝑗=0 )
𝜂=𝑖𝛿𝜂

]
2

𝑑𝜂𝑞
𝑖=0 ,

ϵ𝜙
𝑚(ℎ𝜙) =

1

𝑞+1
∑ [N𝜙(∑ 𝑓(𝜂)𝑚

𝑗=0 , ∑ 𝜃(𝜂)𝑚
𝑗=0 , ∑ 𝜙(𝜂)𝑚

𝑗=0 )
𝜂=𝑖𝛿𝜂

]
2

𝑑𝜂𝑞
𝑖=0 ,

                 (29) 

 
and, 
 

ℎ𝑓 ∶  lim
𝑚→∞

ϵ𝑓
𝑚(ℎ𝑓) = 0, ℎ𝜃 ∶  lim

𝑚→∞
ϵ𝜃
𝑚(ℎ𝜃) = 0, ℎ𝜙 ∶  lim

𝑚→∞
ϵ𝜙
𝑚(ℎ𝜙) = 0,                 (30) 

 
where 𝑞 = 20 and 𝛿𝜂 = 0.5. In this regard, Table 1 tabulates the optimal values of auxiliary 
parameters and corresponding square residual errors for different orders of approximation in terms 
of 𝜆 = 0.4, Ha = 1, 𝜓 = 45°, Pr = 1, Nb = Nt = 0.5, Nr = 0.3, Ec = 0.2 and Le = 1. From this table, 
it can be seen that ℎ𝑓 = -0.7083, ℎ𝜃 = -0.8958 and ℎ𝜙 = -0.6736 will hereafter be employed within 

the text. 
To summarize, the HAM algorithm can be provided as follows 

 



CFD Letters 

Volume 11, Issue 1 (2019) 40-54 

47 
 

a) Set 𝑚 = 1. 

b) Substitute Eq. 12 into Eq. 26 and obtain R1
𝑓(𝜂), R1

𝜃(𝜂) and R1
𝜙(𝜂). 

c) Substitute R1
𝑓(𝜂), R1

𝜃(𝜂) and R1
𝜙(𝜂) into Eq. 23. 

d) Compute 𝑐1, 𝑐2, … , 𝑐7 for 𝑚 ≥ 1 and obtain 𝑓1(𝜂), 𝜃1(𝜂) and 𝜙1(𝜂). 

e) Substitute 𝑓1(𝜂), 𝜃1(𝜂) and 𝜙1(𝜂) into Eq. 26 and obtain R2
𝑓(𝜂), R2

𝜃(𝜂) and R2
𝜙(𝜂). 

f) Repeat steps 2-4 𝑚 times. 
g) Obtain 𝑓𝑀(𝜂), 𝜃𝑀(𝜂) and 𝜙𝑀(𝜂) where 𝑀 is the number of iterations. 
h) Check for convergence of the computations. 

 
Table 1 
Selection of auxiliary parameters 

𝑚 ℎ𝑓 ϵ𝑓
𝑚 ℎ𝜃 ϵ𝜃

𝑚 ℎ𝜙 ϵ𝜙
𝑚 

2 -0.6402 3.48×10-5 -0.8214 7.29×10-6 -0.5552 5.33×10-5  

5 -0.6746 7.16×10-6 -0.8690 8.10×10-7 -0.6140 1.60×10-5  

10 -0.6940 2.96×10-7 -0.8841 1.90×10-7 -0.6470 8.09×10-6  

15 -0.7016 8.18×10-8 -0.8907 4.98×10-8 -0.6615 1.15×10-6  

20 -0.7083 4.53×10-9 -0.8958 5.91×10-9 -0.6736 8.54×10-7  

 
3.2 RKF45M 

 
The generated RKF45M algorithm in MAPLE 13 worksheet together with the shooting technique, 

as it is illustrated in Figure 1, converts Eq. 7 to a set of initial value problems with the convergence 

criterion 10-6, step size ∆𝜂 = 0.01 and upper bound of the integral 𝜂∞ = 10. For more details on the 
RKF45M, see Refs. [7,41]. 

 

 
Fig. 1. Generated RKF45M algorithm in MAPLE 13 worksheet together with the shooting technique 
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 Results and Discussion 
 

In this section, the obtained results from evaluating the flow of Casson fluid above a moving flat 
plate with viscous dissipation, magnetic force, radiation effects and convective boundary conditions 
is reported based on the Buongiorno's mathematical model. In order to ensure the accuracy and 
effectiveness of the present analytical and numerical solutions, the obtained results are compared 
with those available findings in the literatures in subsection 1. Then, further details about this paper 
are available in subsection 2. 

 
4.1 Comparison and Validation 
 

Example 1. This example aims to provide a comparison between the present solutions and those 

reported in Refs. [42,43] to determine the values of (
𝜕2𝑓

𝜕𝜂2
)
𝜂=0

 in terms of 𝜆. Haldar et al., [42], suggest 

flow of the Casson fluid past a power-law stretching surface is investigated numerically using the 
RK4M together with the Newton's technique while Bhattacharyya et al., [43] suggests a closed-form 
solution for the flow of Casson fluid past a porous shrinking / stretching surface. It is to be mentioned 
here that the other pertinent parameters dealt with this paper are set to zero i.e., Ha = 𝜓 = Pr =

Nb = Nt = Nr = Ec = Le = 0. From Table 2, it is seen that the values of (
𝜕2𝑓

𝜕𝜂2
)
𝜂=0

 decrease with an 

increase in 𝜆 for all cases listed in this table. Moreover, since the maximum relative error between 
the HAM / RKF45M and those of Refs. [42,43] does not exceed 0.008% / 0.035% and 0.009% / 
0.037%, respectively, the validity of the present solutions is confirmed. 

Example 2. At this point, MHD three-dimensional flow of a fluid past a linearly stretching surface 
which is provided in Chamkha research [44], is compared with the present solutions to calculate the 

values of (
𝜕2𝑓

𝜕𝜂2
)
𝜂=0

 in terms of Ha. The pertinent parameters in this case are provided as follows, 𝜆 →

∞, Pr = 6.7 and 𝜓 = Nb = Nt = Nr = Ec = Le = 0. Furthermore, the obtained results correspond 

to this example are rounded up to five digits. As it is shown in Table 3, the values of (
𝜕2𝑓

𝜕𝜂2
)
𝜂=0

 decrease 

with an increase in Ha. The results of HAM / RKF45M and Chamkha [44] only suffer from a relative 
error of at most 0.031% / 0.033%. Hence, it can be emphasized that the present solutions are 
consistent with the findings of Chamkha [44]. However, there is a minor difference between these 
results which is largely due to the different solution methodologies. 

 
Table 2 

Values of (
𝜕2𝑓

𝜕𝜂2
)
𝜂=0

 compared with Refs. [42,43] for Ha = 𝜓 = Pr = Nb = Nt = Nr = Ec = Le = 0 

𝜆  Present solution-HAM Present solution-RKF45M  Ref. [42] Ref. [43] 

0.5  -0.577398 -0.577405  -0.577351 -0.577865 

1  -0.707186 -0.707194  -0.707107 -0.707243 

2  -0.816529 -0.816538  -0.816497 - 

5  -0.912963 -0.912970  -0.912871 -0.913120 

 
 
 
 
 



CFD Letters 

Volume 11, Issue 1 (2019) 40-54 

49 
 

Table 3 

Values of (
𝜕2𝑓

𝜕𝜂2
)
𝜂=0

 compared with Chamkha [44] for 𝜆 → ∞, Pr = 6.7 and 𝜓 = Nb = Nt = Nr = Ec = Le = 0 

Ha 0 1 2 3 4 

Present solution-HAM -1.00114 -1.41544 -2.23690 -3.16297 -5.09921 

Present solution-RKF45M -1.00116 -1.41546 -2.23690 -3.16297 -5.09921 

Ref. [44] -1.00180 -1.41602 -2.23731 -3.16351 -5.10068 

 
Example 3. This example illustrates a comparison between the present solutions and Abdul 

Hakeem et al.,[45] to determine the values of (
𝜕2𝑓

𝜕𝜂2
)
𝜂=0

 in terms of 𝜓 considering 𝜆 = 0.4, Ha = 1 

and Pr = Nb = Nt = Nr = Ec = Le = 0. In Ref. [45], the flow of Casson fluid with thermal radiation 
and velocity slip boundary conditions is investigated using the RK4M together with the shooting 

technique. Based on the results of Table 4, the values of (
𝜕2𝑓

𝜕𝜂2
)
𝜂=0

 decrease with an increase in 𝜓. 

The difference in these findings is due to a maximum relative error equals to 1.082% / 0.377% 
between the HAM / RKF45M and Abdul Hakem et al., [45] which can verify the present solutions. 

 
Table 4 

Values of (
𝜕2𝑓

𝜕𝜂2
)
𝜂=0

 compared with Abdul Hakeem et al., [45] for 𝜆 = 0.4, Ha = 1 and Pr = Nb = Nt = Nr =

Ec = Le = 0 

𝜓 0° 30° 45° 60° 

Present solution-HAM -1.0612 -1.1681 -1.2547 -1.3399 

Present solution-RKF45M -1.0747 -1.1712 -1.2604 -1.3442 

Ref. [45] -1.0797 -1.1763 -1.2644 -1.3482 

 

Example 4. The final stage is to compare the values of (
𝜕𝜃

𝜕𝜂
)
𝜂=0

 in terms of Pr obtained by the 

present solutions with those reported in Gorla and Sidawi [46]. The numerical procedure for solving 
two-point BVPs is utilized to investigate the effect of mass transfer rate on the vertical stretching 
surface.[46] The results of this example are provided with 𝜆 → ∞ and Ha = 𝜓 = Nb = Nt = Nr =

Ec = Le = 0. From Table 5, it is observed that the values of (
𝜕𝜃

𝜕𝜂
)
𝜂=0

 increases with a decrease in Pr. 

Above all, the relative error between the HAM / RKF45M and Gorla and Sidawi [46] does not exceed 
0.129% / 0.153%; accordingly, the present solutions are in agreement with Gorla and Sidawi [46]. 

 
Table 5 

Values of (
𝜕𝜃

𝜕𝜂
)
𝜂=0

 compared with Gorla and Sidawi [46] for 𝜆 → ∞ and Ha = 𝜓 = Nb = Nt = Nr = Ec =

Le = 0 

Pr  0.7 3 7 10 

Present solution-HAM -0.45416 -1.16608 -1.89578 -2.30312 

Present solution-RKF45M -0.45399 -1.16573 -1.89546 -2.30288 

Ref. [46] -0.45593 -1.16669 -1.89691 -2.30350 
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4.2 Further Details 
 
In this subsection, unless stated otherwise, the pertinent parameters are provided as follows, 

𝜆 = 0.4, Ha = 1, 𝜓 = 45°, Pr = 1, Nb = Nt = 0.5, Nr = 0.3, Ec = 0.2 and Le = 1. 
Figure 2 shows variation in the local Nusselt number with 𝜆 and Ha. The obtained results 

correspond to this figure demonstrate that the local Nusselt number decreases with an increase in 
𝜆. This is because, an increase in 𝜆 decreases the yield stress of the fluid that leads eventually to an 
increase in the plastic dynamic viscosity as well as its viscous forces on the flow. Indeed, one can 
imagine the flow of Casson fluid to act as a solid until a yield stress is exceeded [47]. Moreover, as it 
is seen from Figure 2, the local Nusselt number decreases with an increase in Ha by reason of a drag-
like force, namely Lorentz force. This force tends to resist flow of the fluid and consequently retards 
its motion. In addition, presence of the thermal radiation might well lead to a decrease in the local 
Nusselt number [45]. The point is, an increase in thermal radiation leads to generate the internal heat 
energy. 

As Figure 3 depicts, for thermophoresis parameter less than 0.3, the local Nusselt number 
increases with an increase in Pr. It is due to the fact that, the higher value of Pr has the convection 
coefficient larger than its conduction coefficient. Furthermore, one can observe that the thermal 
boundary layer thickens with an increase in Pr. For thermophoresis parameter equal to 0.3, there 
exists no considerable difference between these configurations, and the corresponding value of the 
local Nusselt number is approximately -0.681. It can be proved that the thermophoretic force plays 
an important role in the motion of nanoparticles from the hot flat plate to the quiescent fluid. 
However, for thermophoresis parameter more than 0.3, the local Nusselt number decreases with an 
increase in Pr. 
 

  
Fig. 2. HAM-series solution for the values of 

Nu𝑥Re𝑥
−
1

2-Ha curve in terms of 𝜆 

 

Fig. 3. HAM-series solution for the values of 

Nu𝑥Re𝑥
−
1

2-Nt curve in terms of Pr 

 
 

 
The effect of viscous dissipation parameter i.e., Eckert number on variation in the local Nusselt 

number is illustrated in Figure 4. From this figure, it is seen that the local Nusselt number decreases 
with an increase in Ec. This is because, an increase in Ec increases the thermal diffusion which is led 
to an increase in the thermal conductivity of the flow. Furthermore, accounting for Ec > 0 provides 
cooling of the flat plate [48,49] so that the generated thermal energy will be stored in the vicinity of 
the fluid. Hence, the thermal boundary layer thickens with an increase in dissipation. Figure 4 also 
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emphasizes that the local Nusselt number increases with an increase in Nr. This is because, an 
increase in Nr increases the Rosseland absorptivity parameter i.e., 𝛽𝑅 which is led to a decrease in 

divergence of the radiation heat flux i.e., 
𝜕𝑞𝑟

𝜕𝑦
. 

As Figure 5 depicts, the nanoparticle concentration boundary layer thickens with an increase in 
the mass diffusion. Since Le > 1 the heat diffuses through flat plate more rapidly than the 
nanoparticles [50]. However, in case of Le = 1 the heat and nanoparticles diffuse at the same rate. 
Figure 5 also emphasizes that the nanoparticle concentration boundary layer thickens with an 
increase in Nt which is due to the formation of a nanoparticle free layer in the vicinity of the flat 
plate. 
 

  
Fig. 4. HAM-series solution for the values of 

Nu𝑥Re𝑥
−
1

2-Nr curve in terms of Ec 

 

Fig. 5. HAM-series solution for the values of 

Sh𝑥Re𝑥
−
1

2-Nt curve in terms of Le 

 
Figure 6 shows that the local Sherwood number is a decreasing function of Nb. This is because, 

an increase in Nb results in an interaction between the fluid and nanoparticles that leads eventually 
to a decrease in the nanoparticle concentration boundary layer thickness. 

 

 
Fig. 6. HAM-series solution for the values of 

Sh𝑥Re𝑥
−
1

2-Nt curve in terms of Nb 
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 Concluding Remarks 
 

The objective of this paper was to introduce the analytical and numerical solutions i.e., HAM and 
RKF45M to study 2D Sakiadis flow of Casson fluid with cross diffusion, inclined magnetic force, viscous 
dissipation and thermal radiation. To this end, the set of governing partial differential equations were 
converted to the nonlinear ordinary differential equations based on Buongiorno's mathematical 
model. The present solutions were compared and validated by those available results in the 
literatures. The main results that can be inferred from this paper are reported as follows 

a) Accounting for the effect of Lorentz force leads to resist flow of the fluid. 
b) The internal heat energy is generated by an increase in the thermal radiation. Therefore, this 

increment leads to a decrease in the local Nusselt number. 
c) The effect of thermophoretic force on the local Nusselt number can be usually ignored for 

thermophoresis parameter equals to 0.3. 
d) The thermal boundary layer thickness increases with an increase in the dissipation due to the 

generation of thermal energy in the vicinity of the fluid. 
e) The local Sherwood number inversely depends on the mass diffusion. 
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