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In this paper, we analytically study about the boundary layer flow and heat transfer on 
non-Newtonian fluid which in particular is the viscoelastic fluid. The 
magnetohydrodynamic (MHD) slip Darcy flow of viscoelastic fluid over a stretching 
surface in a porous medium with the presence of thermal radiation and viscous 
dissipation is examined. The results for two viscoelastic fluids which is elastico-viscous 
fluid and second grade fluid are obtained and compared. The governing partial 
differential equations are reduced to non-linear ordinary differential equations with 
the aid of similarity transformation, which are then solved analytically by using exact 
analytical method. The effects of the physical parameters on the velocity and 
temperature fields are presented through graphs and are discussed. Skin friction and 
heat transfer coefficients are computed and analysed. 
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1. Introduction 
 

The study towards the flow on boundary layer of non-Newtonian fluids has been the subject of 
great interest to investigators and researchers. Viscoelastic fluid is a common form of non-Newtonian 
fluid, which this fluid having the characteristic that shows both viscous and elastic properties under 
some circumstances. This viscoelastic reaction and the fluid flow past a stretching sheet are so 
significant in some real life applications especially in the engineering field, for instance, in the paper 
production, extrusion of plastic sheets, glass blowing, and metal spinning [1].  

The flow of viscoelastic fluid past a stretching sheet has been studied by Rajagopal et al., [2]. 
Later, Andersson [3] has added the magnetic effects towards the flow of a viscoelastic fluid past a 
stretching sheet and he obtained the exact analytical solution of the governing non-linear boundary 
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layer equation. Consequently, Ariel [4] extended the problem by taking into account the flow with 
the existence of suction and found the exact solution. The investigation on the steady 
magnetohydrodynamic viscoelastic fluid flow over a semi-infinite, impermeable stretching sheet with 
the presence of thermal radiation and internal heat generation or absorption is investigated by Datti 
et al., [5].  Moreover, Liu [6] presented the exact analytical solutions for the flow and heat transfer 
of second grade fluid over a stretching sheet with the presence of magnetic and viscous dissipation. 
Khan and Sanjayanand [7] has examined the viscoelastic boundary layer flow and heat transfer over 
an exponential stretching sheet. Viscous dissipation has been considered in the heat transfer and the 
obtained exact solution which then being compared with the numerical solution.  

Later, Cortell [8] performed an analysis on the flow and heat transfer of viscoelastic fluid by 
considering the magnetic field parameter, viscous dissipation and suction parameters. Moreover, 
partial slip has been taken into account into the flow of viscoelastic fluid past a stretching sheet, 
where this analysis has been carried out by Ariel et al., [9]. Next, closed form of analytical solution 
has been obtained by Khan [10] on the heat transfer in a viscoelastic fluid flow over a stretching 
surface with the consideration of heat source, suction and radiation. Hayat et al., [11] then studied 
the magnetohydrodynamic flow of a second grade fluid with thermal radiation effect by the 
implementation of homotopy analysis method (HAM). Abel et al., [12] studied the heat transfer in 
viscoelastic fluid over a stretching sheet by considering the effects of viscous dissipation and non-
uniform heat source in both types of heating process.  

Further, Abel and Manesha [13] have added the thermal radiation parameter as the extension of 
the analysis. The analytic solution of magnetohydrodynamic flow and heat transfer over a stretching 
sheet for both second grade and Walters’ liquid B fluids has been solved analytically by Chen [14]. 
Turkyilmazoglu [15] studied the slip flow of viscoelastic fluid past a stretching surface in magnetic 
field and have found multiple analytical solutions. The analytical solution of magnetohydrodynamic 
viscoelastic fluid flow and heat transfer in a parallel plate channel with a stretching wall is obtained 
by employing homotopy analysis method [16]. Then, Turkyilmazoglu [17] has extended his work [15] 
by analyzing both types of viscoelastic fluids. Later,  Nayak et al., [18] have investigated the heat and 
mass transfer of the viscoelastic fluid bounded by a stretching sheet with consideration of various 
parameters and conditions. Furthermore, spectral homotopy analysis approach is being 
implemented by Fagbade et al., [19] in their investigation on natural convection flow of viscoelastic 
fluid with thermal and heat source or sink. Nadeem et al., [20] have considered Cattaneo Christov 
heat flux in the flow of viscoelastic fluid over a stretching surface with the presence of Newtonian 
heating and porosity parameter. Optimal homotopy analysis method has been used to solve the 
problem. Recently, the study about viscoelastic fluid is being investigated by Chen et al., [21], which 
they have developed a double Maxwell model to examine the flow of magnetohydrodynamic 
viscoelastic fluid over a stretching sheet by using infinite difference method. So, through the review 
on these literatures, we want to extend the studies of the viscoelastic fluid (non-Newtonian fluid) 
with the consideration of various parameters and conditions. In order to solve the problem, we have 
implemented the exact analytical method.  

From the literatures, the study about the effect of velocity slip parameter towards the boundary 
layer flow of viscoelastic fluid is rarely to be found. Several studies regarding the slip effects towards 
the other type of fluid also can be found recently as in some researches [22-24] to convince that the 
study towards the slip effects is significant. Thus, in this paper, we want to extend the previous study 
done by Nayak et al., [18] by adding new additional parameter to the model which is the velocity slip 
parameter. So, the major purpose of this investigation is to formulate a mathematical model for 
magnetohydrodynamic slip Darcy boundary layer flow of viscoelastic fluid past a linear stretching 
surface with the presence of thermal radiation and viscous dissipation in porous medium. The 



CFD Letters 

Volume 12, Issue 1 (2020) 1-12 

 

3 
 

analytical solutions for the velocity and the temperature distributions are obtained using the exact 
analytical method. The profiles are plotted and discussed for variations of pertinent parameters. The 
skin friction and heat transfer coefficients have been computed and analyzed through numerical 
data, and then being compared to other previous results to verify the calculation and the technique 
of the method that we used. 
 
2. Modeling 
 

We consider two-dimensional (2D) flow of viscoelastic fluid bounded by a linear stretching 
surface. The incompressible viscoelastic fluid saturates the porous space characterizing Darcy model. 
Here, x − axis is parallel to stretchable surface and we suppose 𝑢𝑤(𝑥)  =  𝑐𝑥 defines the stretching 
velocity along the x – direction. Meanwhile, y − axis is perpendicular to x – axis. An applied uniform 
magnetic field of strength 𝐵0 is encountered parallel to the y – axis. The flow geometry can be 
illustrated as shown in Figure 1. Thus, with all of these assumptions, the boundary layer equations 
governing the flow of viscoelastic fluid and heat transfer in the presence of magnetohydrodynamic, 
porous medium, velocity slip, viscous dissipation and thermal radiation can be written as Eqs. (1) to 
(3) which are the continuity equation, momentum equation, and energy equation, respectively. Also 
need to be mentioned that these equations are in the form of partial differential equations invariant 
in time. 
 

 
Fig. 1. Flow geometry 

 
𝑢𝑥 + 𝑣𝑦 = 0              (1) 

 

𝑢𝑢𝑥 + 𝑣𝑢𝑦 = 𝜈𝑢𝑦𝑦 +
𝑘0

𝜌
(𝑣𝑢𝑦𝑦𝑦 + 𝑢𝑢𝑥𝑦𝑦 + 𝑢𝑦𝑣𝑦𝑦 + 𝑢𝑥𝑢𝑦𝑦) −

𝜈

𝐾∗ 𝑢 −
𝜎𝐵0

2𝑢

𝜌
     (2) 

 

𝑢𝑇𝑥 + 𝑣𝑇𝑦 = 𝛼(𝑇𝑦𝑦) +
𝜇

𝜌𝐶𝑝
(𝑢𝑦)

2
+

𝑘0

𝜌𝐶𝑝
(𝑢𝑦(𝑢𝑢𝑥 + 𝑣𝑢𝑦)

𝑦
) −

1

𝜌𝐶𝑝
𝑞𝑟𝑦

+
𝜎𝐵0

2𝑢2

𝜌𝐶𝑝
     (3) 

 
subject to the associated boundary conditions: 
 

𝑢 = 𝑢𝑤(𝑥) = 𝑐𝑥 + 𝑙
𝜕𝑢

𝜕𝑦
, 𝑣 = 0, 𝑇 = 𝑇𝑤(𝑥) = 𝑇∞ + 𝐴 (

𝑥

𝑥𝐿
)

2

   𝑎𝑡 𝑦 = 0  

  

𝑢 → 0,
𝜕𝑢

𝜕𝑦
→ 0, 𝑇 → 𝑇∞, 𝑎𝑠 𝑦 → ∞            (4) 
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where 𝑢 and 𝑣 are the velocity components in x – and y – directions respectively, while 𝜈 =
𝜇

𝜌
 is the 

kinematic viscosity, where 𝜇 is the coefficient of fluid viscosity and 𝜌 is the fluid density. Then, 𝑘0 is 
the modulus of viscoelastic fluid, 𝜎 is for fluid electrical conductivity, 𝐾∗ for the permeability of 
porous media, 𝐵0 for uniform magnetic field, 𝑇 for temperature, 𝛼 stands for thermal diffusivity and 
𝐶𝑝 is the specific heat at constant pressure.  𝑇𝑤 and 𝑇∞ stands for constant surface temperature and 

ambient fluid temperature respectively, 𝑐 for positive stretching rate constant with 𝑇−1 as the 
dimension, A is a constant, 𝑙 is the slip parameter and 𝑥𝐿 is the characteristic length. Also, by applying 
Rosseland approximation for radiation we may expressed the radiative heat flux 𝑞𝑟  as follows [25]: 
 

𝑞𝑟 = −
4𝜎∗

3𝑘∗

𝜕𝑇4

𝜕𝑦
              (5) 

 
where 𝜎∗ and 𝑘∗ are the Stefan–Boltzman constant and the absorption coefficient, respectively. We 
assume that the temperature difference within the flow is such that the term 𝑇4, which can be 
expanded in a Taylor series about  𝑇∞ can be presented as a linear function of temperature as shown 
below 
 
𝑇4 ≅ 4𝑇∞

3 𝑇 − 3𝑇∞
4              (6) 

 
By using the approximation as above, we have 

 

𝑞𝑟 = −
16𝜎∗𝑇∞

3

3𝑘∗

𝜕𝑇

𝜕𝑦
             (7) 

 
By using the appropriate similarity transformation followed from the previous work by Nayak et 

al., [18]: 
 

𝑢 = 𝑐𝑥𝑓′(𝜂), 𝑣 = −(𝑐𝜈)
1

2𝑓(𝜂), 𝜂 = (
𝑐

𝜈
)

1

2
𝑦, 𝜃(𝜂) =

𝑇−𝑇∞

𝑇𝑤−𝑇∞
       (8) 

 
the continuity equation in Eq. (1) is proven and the momentum equation in Eq. (2) and energy in Eq. 
(3) are reduced into ordinary differential equations as below respectively 
 

𝑓′′′ + 𝑓𝑓′′ + 𝑘1
∗(2𝑓′𝑓′′′ − 𝑓′′2

− 𝑓𝑓𝑖𝑣) − 𝐾𝑓′ − 𝑓′2
− 𝑀𝑓′ = 0       (9) 

 

(1 +
4

3
𝑅𝑑) 𝜃′′ + 𝑃𝑟𝑓𝜃′ − 2𝑃𝑟𝑓′𝜃 + 𝑃𝑟𝐸𝑐 (𝑀𝑓′2

+ 𝑓′′2
+ 𝑘1

∗𝑓′′(𝑓′𝑓′′ − 𝑓𝑓′′′)) = 0              (10) 

 
subject to the following transformed boundary condition 
 
𝑓 = 0, 𝑓′ = 1 + 𝐿𝑓′′(0), 𝜃 = 1,  at     𝜂 = 0,  
       
𝑓′ → 0,   𝑓′′ → 0,    𝜃 → 0,    as     𝜂 → ∞                    (11) 
 
where 𝑓 and 𝜃 is the dimensionless stream function and temperature function respectively, and the 
prime denotes differentiation with respect to 𝜂. Here, 𝑘1

∗ is the viscoelastic parameter, 𝐾 for porosity 
parameter, 𝑀 for the magnetic parameter, 𝑅𝑑 for the thermal radiation parameter, Ec for Eckert 
number, Pr is for the Prandtl number and 𝐿  is the velocity slip parameter. Here 𝑘1

∗ < 0 represents 
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elastic-viscous fluid, 𝑘1
∗ > 0 is for second grade fluid and 𝑘1

∗ = 0 for Newtonian fluid. The definitions 
below will define the parameters specifically: 
 

𝑘1
∗ =

𝑘0𝑐

𝜇
, 𝐾 =

𝜈

𝑐𝐾∗ , 𝑀 =
𝜎𝐵0

2

𝜌𝑐
,  𝑅𝑑 =

4𝜎∗𝑇∞
3

𝑘∗ 𝑘
, Ec =

𝑐2𝑥𝐿
2

𝐴𝐶𝑝
, Pr =

𝜈

𝛼
, 𝐿 = 𝑙√

𝑐

𝜈
                (12) 

 
Following [18], the skin friction coefficient is  

 

𝑅𝑒𝑥

1

2𝐶𝑓 = −𝑓′′(0)                       (13) 

 
and the local Nusselt number is 
 

𝑅𝑒𝑥

1

2𝑁𝑢𝑥 = −𝜃′(0)                       (14) 
 
in which 𝑅𝑒𝑥 represents the local Reynolds number. 
 
3. Exact Analytical Method 
3.1 Velocity Field 
 

We can assume that Eq. (9) possesses a solution of exponential type [26] expressed as 
 

𝑓(𝜂) =
1

𝐶
(1 − 𝑒−𝑧𝜂)                       (15) 

 
where 𝐶 is the slip condition produces the relation,  
 
𝐶 = 𝑧(1 + 𝐿𝑧)                       (16) 
 

Consequently, by substituting Eq. (15) accordingly into Eq. (9), it gives another relation in the form 
of a cubic algebraic equation 
 
𝐿𝑧3  + (1 + 𝑘1

∗)𝑧2 −  (𝑀 +  𝐾)𝐿𝑧 − 𝑀 − 𝐾 − 1 = 0                  (17) 
 
Then, solving the above algebraic equation, we obtain the positive value of root 𝑧 which it contains 
all the involved parameters which need to be used in the profiles function. The velocity profile 𝑓′(𝜂) 
function is as shown below 
 

𝑓′(𝜂) =
1

1+𝐿𝑧
𝑒−𝑧𝜂                       (18) 

 
3.2 Temperature Field 
 

By referring to Ebaid et al., [27] and Ali et al., [28], the exact solution for temperature field can 
be obtained. We suppose the following transformation, where 𝑡 = 𝑒−𝑧𝜂. Consequently, to apply the 
transformation, the governing equation need to be expressed in terms of variable 𝑡, thus the 
following relations between the derivatives with respect to 𝜂 and the derivatives with respect to 𝑡 is 
introduced, where it can be obtained by using the chain rule formula, 
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𝑑

𝑑𝜂
𝜃 = −𝑧𝑡

𝑑

𝑑𝑡
𝜃,  

𝑑2

𝑑𝜂2 𝜃 = 𝑧2 [𝑡2 𝑑2

𝑑𝑡2 𝜃 + 𝑡
𝑑

𝑑𝑡
𝜃]                   (19) 

 
By applying the transformation to (10), we obtain 

 

𝑡𝜃′′(𝑡) + (𝑛 − 𝑚𝑡)𝜃′(𝑡) + 2𝑚 𝜃(𝑡) + 𝑃 Ec (
𝑧2𝑡

𝐶2 +
𝑘1

∗  𝑧3𝑡

𝐶3 +
𝑀𝑡

𝐶2) = 0                (20) 

 
with the following set of boundary conditions 
 
𝜃 (0) =  0, 𝜃 (1) = 1                      (21) 
 
Therefore, solving the ordinary differential equation in Eq. (20), we obtain the exact solution for 
temperature field 𝜃(𝜂), 
 

𝜃(𝜂) = −
1

2

(𝑚2(𝑒−𝑧𝜂)2−2𝑚 𝑒−𝑧𝜂(𝑛+1)+𝑛2+𝑛)Ec 𝑃(𝑘1
∗  𝑧3+𝐶 𝑧2+𝑀𝐶)

𝐶3𝑚2(𝑛+1)
+

1

2
(

ℎ𝑦𝑝𝑒𝑟𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐([−1−𝑛],[−𝑛+2],𝑚 𝑒−𝑧𝜂)

ℎ𝑦𝑝𝑒𝑟𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐([−1−𝑛],[−𝑛+2],𝑚)
) 

 

(
(𝑒−𝑧𝜂)−𝑛+1(Ec 𝑃 𝑘1

∗  𝑧3+Ec 𝑃 𝐶 𝑧2+Ec 𝑀 𝑃 𝐶+2𝐶3𝑛+2𝐶3)

𝐶3(𝑛+1)
) −

((𝑧2+𝑀)𝐶+𝑘1
∗𝑧3)𝑃(𝑚 𝑒−𝑧𝜂−

1

2
𝑛)Ec

𝐶3𝑚2                (22) 

 

where the stated hypergeometric in Eq. (22) is the hypergeometric function, 𝑛 = 1 −
𝑃

𝑧𝐶
, 𝑚 = −

𝑃

𝑧𝐶
,  

and 𝑃 =
Pr

(1+
4

3
𝑅𝑑)

. 

 
4. Result and Discussion 
 

In order to solve and analyze this analysis, we have used Maple software to facilitate the process. 
So, in this section, we will discuss and analyze the results that we obtained. The effects of various 
influential parameters on the non-dimensional velocity 𝑓′(𝜂) and temperature 𝜃(𝜂) distributions 
will be explored and discussed. Both elastico-viscous (𝑘1

∗ < 0) and second grade fluids (𝑘1
∗ > 0) are 

considered. 
Impacts of porosity parameter 𝐾, magnetic parameter 𝑀 and velocity slip parameter 𝐿 on the 

non-dimensional velocity field 𝑓′(𝜂) are plotted in Figures 2, 3 and 4 respectively. Figure 2 presents 
the impact of porosity parameter 𝐾 on velocity field 𝑓′(𝜂) for both elastico-viscous and second grade 
fluids which it can be concluded that the increment of porosity parameter 𝐾 leads to decrement in 
the velocity field 𝑓′(𝜂) for both fluids. Physically, the existence of porous media is to increase the 
resistance to the fluid flow which causes decay in fluid velocity and related momentum layer 
thickness. Next, Figure 3 displays the change in velocity field 𝑓′(𝜂) for varying magnetic parameter 
𝑀 for both elastico-viscous and second grade fluids. It is found that the influence of magnetic 
parameter 𝑀 slowers the velocity field 𝑓′(𝜂). The higher the value of magnetic parameter 𝑀, the 
slower the velocity field 𝑓′(𝜂). Meanwhile, Figure 4 shows the impact of velocity slip parameter 
𝐿 towards the velocity field 𝑓′(𝜂), which it depicts that the presence of slip parameter decays the 
velocity field 𝑓′(𝜂). This is because, the presence of slip allows more fluid to slip past the sheet 
causing the flow to slow down. We also found out that the second-grade fluid increases the velocity 
field 𝑓′(𝜂) as being compared to the elastic-viscous fluid. 
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Fig. 2. Velocity profile for different values of 𝑲 Fig. 3. Velocity profile for different values of 𝑴 

 
Fig. 4. Velocity profile for different values of 𝑳 

 
Furthermore, Figures 5 to 10 are plotted to explore the impacts of porosity parameter 𝐾, 

magnetic parameter 𝑀, thermal radiation parameter 𝑅𝑑, Eckert number Ec, velocity slip 
parameter 𝐿 and Prandtl number Pr on the non-dimensional temperature field 𝜃(𝜂). Figure 5 depicts 
the change in temperature field 𝜃(𝜂) for varying porosity parameter 𝐾. It is observed that the higher 
the value of porosity parameter 𝐾 leads to an increment in temperature field 𝜃(𝜂) as well as more 
thermal layer thickness for both fluids. Then, Figure 6 reveals the effect of magnetic parameter 𝑀 on 
the temperature field 𝜃(𝜂). It is noticed that the higher the magnetic parameter, the stronger the 
temperature field 𝜃(𝜂). Physically, the Lorentz force that is produced by the transverse magnetic 
field is opposed to the motion of the flow, which produces the resistance that enhances the 
temperature. The effect of thermal radiation parameter 𝑅𝑑  on temperature field 𝜃(𝜂) is shown in 
Figure 7. The increasing values of thermal radiation parameter 𝑅𝑑 leads to stronger temperature 
field 𝜃(𝜂) as well as the thermal layer thickness. This means that, the radiation should be minimum 
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in order to initiate the cooling process. Same goes to Eckert number Ec which is the viscous 
dissipation parameter, where the increment of Eckert number enhances the temperature field 𝜃(𝜂) 
as shown in Figure 8. Also, as displays in Figure 9, the increases of velocity slip parameter 𝐿 causing 
the increment in temperature field 𝜃(𝜂). Again, we also found out that the second-grade fluid 
decreases the temperature field 𝜃(𝜂) as being compared to the elastic-viscous fluid. Meanwhile, 
Figure 10 illustrates the impact of Prandtl number Pr on the temperature field 𝜃(𝜂). It is noted that 
the temperature field 𝜃(𝜂) is lower for increasing values of Prandtl number Pr for both fluids, 
elastico-viscous and second grade fluids respectively.  

 

  
Fig. 5. Temperature profile for different values of 
𝑲 

Fig. 6. Temperature profile for different values of 
𝑴  

  
Fig. 7. Temperature profile for different values of 
𝑹𝒅 

Fig. 8. Temperature profile for different values of 
Ec 
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Fig. 9. Temperature profile for different values of 
𝑳 

Fig. 10. Temperature profile for different values of 
Pr 

 
Moreover, Table 1 is arranged to analyze the skin friction coefficient −𝑓′′(0) for varying porosity 

parameter 𝐾, magnetic parameter 𝑀, and velocity slip parameter 𝐿. It is shown that the skin friction 
coefficient −𝑓′′(0) value is increasing as the value of magnetic parameter 𝑀 and porosity parameter 
𝐾 increasing, in the presence of both elastico-viscous and second grade fluids. Meanwhile differ for 
velocity slip parameter 𝐿, where the value of skin friction coefficient −𝑓′′(0) is decreasing when the 
value of velocity slip parameter 𝐿 increasing. We also have compared the value of skin friction 
coefficients −𝑓′′(0)  with the analytical results provide by Nayak et al., [17] and it shows a good 
agreement.  

 
Table 1  

Comparison of skin friction coefficients 

M K 𝑘1
∗ L 

−𝑓′′(0) 
Nayak et al.,  [18] Present 

1 
0.01 

-0.5 0 
2.00499 2.00499 

2 2.82843 2.82843 

0.5 

0.01 

-0.5 
0 

1.73781 1.73781 

2 

2.64575 2.64575 
1 - 0.65017 
2 - 0.38889 

0.2 0.5 - 0.90628 
1 - 0.62063 

1 
0.01 

0.5 0 
1.15758 1.15758 

2 1.63299 1.63299 

0.5 
0.01 

0.5 0 
1.00333 1.00333 

2 1.52753 1.52753 

1 0.01 
1 0 

1.00250 1.00250 
 2 1.41421 1.41421 

0.5 0.01 
1 0 

0.86891 0.86891 
 2 1.32288 1.32288 
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Furthermore, Table 2 depicts the numerical data for local Nusselt number −𝜃′(0) of different 
values of thermal radiation parameter 𝑅𝑑, Eckert number Ec, and velocity slip parameter 𝐿 for both 
elastico-viscous and second grade fluids. It is noted that the local Nusselt number −𝜃′(0) is reducing 
as thermal radiation parameter 𝑅𝑑, Eckert number Ec, and velocity slip parameter 𝐿 increasing for 
both fluids. Also, in order to convince the validity of the method we used, we also have compared 
the value of Nusselt number −𝜃′(0) with the previous work done by Nayak et al., [18], Liu [6] and 
Datti et al., [4], and it can be seen that the values are almost the same as can be seen in Table 3 and 
4. Table 3 displays the numerical data for local Nusselt number −𝜃′(0) for different values of 
magnetic parameter 𝑀 and Prandtl number Pr for second grade fluid as to be compared with 
previous work by Nayak et al., [18] and Liu [6]. The values of Nusselt number −𝜃′(0) are decreasing 
as the magnetic parameter 𝑀 increasing, while the opposite trend occurs for Prandtl number Pr. 
Then, Table 4 shows the numerical data for local Nusselt number −𝜃′(0) for different values of 
magnetic parameter 𝑀 and porosity parameter 𝐾 for elastico-viscious fluid as to be compared with 
previous work by Nayak et al., [18] and Datti et al., [5]. The increment in porosity parameter 𝐾 causes 
decrement in heat transfer coefficient which is the Nusselt number −𝜃′(0). 

 
Table 2 
Nusselt numbers for elastico-viscous and second grade fluids 
for M = 1, Pr = 1 and K = 0.01  

𝑘1
∗  𝑹𝒅  Ec L −𝜽′(𝟎)  

1 

0.1 0.1 1 0.67753 

0.3 

0.1 
1 

0.57966 
0.2 0.56643 

0.3 
1 0.55320 
2 0.43419 

-0.1 

0.1 0.1 
1 

0.65394 

0.3 

0.1 0.55788 
0.2 1 0.54566 

0.3 
1 0.53344 
2 0.42072 

 
Table 3  
Comparison of Nusselt numbers for a second-grade fluid for 𝒌𝟏

∗  = 
1.0, Ec = 0.2, 𝑹𝒅 =0, L = 0 and K= 0.01  

M Pr 
−𝜃′(0) 
Liu [6] Nayak et al., [18] Present 

0 
1 1.337265 1.331574 1.332375 
10 4.48696 4.478859 4.482695 

1 
1 1.13333 1.131589 1.132255 
10 3.74805 3.741224 3.744717 

 
Table 4 
Comparison of Nusselt numbers for a second-grade fluid for Ec = 0, 𝑹𝒅 =0, Pr = 1 and L = 0  

𝑘1
∗  M K 

−𝜃′(0) 
Datti et al., [5] Nayak et al., [18] Present 

0 

0 
0.01 

1.3333 
1.331932 1.331932 

2 1.126898 1.126898 

1 
0.01 

1.2158 
1.214771 1.214771 

2 1.055361 1.055361 

-0.1 0.1 
0.01 1.3035 1.302129 1.302129 

2  1.093343 1.093343 
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5. Conclusion 
 

The slip Darcy boundary layer flow of viscoelastic fluid and heat transfer over a linear 
stretchable surface with the presence of magnetohydrodynamic, porous medium, viscous dissipation 
and thermal radiation have been discussed. The governing partial differential equations are reduced 
to non-linear ordinary differential equations facilitate by appropriate similarity transformation. These 
non-linear ordinary differential equations were then solved analytically by using exact analytical 
method. The conclusion can be listed as follows: 

I. Increment in the value of porosity parameter 𝐾, magnetic parameter 𝑀 and velocity slip 
parameter 𝐿 lead to decrement in velocity field 𝑓′(𝜂). 

II. Increment in the value of porosity parameter 𝐾, magnetic parameter 𝑀, velocity slip 
parameter 𝐿, thermal radiation parameter 𝑅𝑑 and Eckert number Ec (viscous dissipation 
parameter) lead to increment in temperature field 𝜃(𝜂). 

III. Increment in the value of Prandtl number Pr, decays the temperature field 𝜃(𝜂). 
IV. Both velocity 𝑓′(𝜂) and temperature 𝜃(𝜂) fields display opposite behavior for velocity slip 

parameter 𝐿. 
V. The second-grade fluid (𝑘1

∗ > 0) enhances the velocity field 𝑓′(𝜂) and reduces the 
temperature field 𝜃(𝜂) compared to elastico-viscous fluid (𝑘1

∗ < 0). 
VI. Elastico-viscous fluid (𝑘1

∗ < 0)  enhances the skin friction coefficient −𝑓′′(0) and reduces 
the heat transfer coefficient −𝜃′(0) compared to second grade fluid. 

VII. Skin friction coefficient −𝑓′′(0) is increasing for larger magnetic parameter 𝑀 and porosity 
parameter 𝐾, while decreasing for larger value of velocity slip parameter 𝐿 for both fluids. 

VIII. Local Nusselt number −𝜃′(0) for both fluids is higher for smaller porosity parameter 𝐾, 
magnetic parameter 𝑀, velocity slip parameter 𝐿, thermal radiation parameter 𝑅𝑑 and 
Eckert number Ec, while the opposite trend for Prandtl number Pr. 
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