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In this paper, the flow of blood through an inclined cylindrical tube subjected to an 
inclined magnetic field was analysed. The blood flow was considered under the 
influence of uniformly distributed magnetic particles. The Caputo-Fabrizio fractional 
derivative was used to study the flow of magnetic blood in an inclined cylindrical 
tube. The blood flow was driven by an oscillating pressure gradient and an external 
magnetic field. The analytical solutions were obtained by means of the Laplace and 
finite Hankel Transforms. The effects of fluid parameters such as Hartmann (Ha) and 
Reynolds (Re) numbers on the velocities of blood and magnetic particles were 
graphically presented using MATHCAD. The results show that magnetic field would 
reduce the velocities of blood and magnetic particles due to Lorentz forces. 
Meanwhile, the velocities of blood and magnetic particles increase with respect to 
Re. The velocity of magnetic particles is always lesser than that of blood regardless of 
the presence of magnetic field. 

Keywords:  
Caputo Fabrizio derivative; blood flow; 
magnetohydrodynamics; cylindrical 
domain Copyright © 2020 PENERBIT AKADEMIA BARU - All rights reserved 

 
1. Introduction 
 

Biomagnetic Fluid Dynamics (BFD) revolves around the study of fluid flow under the 
interference of magnetic field. As reported by Pao et al., [1], biomagnetic fluid exists in human body 
and its motion is influenced by magnetic field. Many studies in BFD have been carried out since the 
past few centuries. BFD is manly applied in bioengineering and medical sciences such as developing 
magnetic tracer, targeting transport of medical drugs using magnetic particles as drug carriers, 
developing magnetic cell separation devices, treating cancer tumor, etc. The underlying fluid 
dynamics has attracted the interest of many researchers [2].  

Blood is one of the biological fluids that can conduct electricity due to the strong presence of 
erythrocytes (red blood cells). Erythrocytes are indeed negative charge carriers that can provide 
magnetic effect on the vessel walls. This may change the pulsatile nature of the blood flow Bansi et 
al., [3]. According to Haik et al., [4], Ferro-Hydrodynamics (FHD) has the same characteristics as 
BFD. 
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The flow of an electrically conductive liquid is marginally affected by the fluid magnetization 
and there is no influence of induced current at low Reynolds number. Therefore, similar to 
Magneto Hydrodynamics (MHD), fluid magnetization is considered in the mathematical model of 
BHD. Choudhari et al., [5] studied the impact of slip velocity on peristaltic blood flow by using the 
Herschel-Bulkley model in an elastic tube. They found that the volume flux in a flexible tube 
diminishes with an increase in the permeable parameter and it increases with an increment in the 
slip parameter. Blood containing nanoparticles has been previously modelled as the third grade 
non-Newtonian fluid [6]. The porosity and the existence of magnetic field were considered in the 
study as well. By using the analytical approach, the researchers found that the velocity increased 
with respect to the pressure gradient. Nevertheless, thermophoresis increased as the Brownian 
motion parameter decreased.  

The study of MHD is very useful in bio-engineering especially in the study of Magnetic 
Resonance Imaging (MRI), heart attack and cancer treatment [7]. The mathematical model of blood 
flow in tiny blood vessel subjected to magnetic field has been previously studied [8]. The authors 
considered the blood as Newtonian fluid with the suspension of erythrocytes and the cell-free layer 
surrounding the core. Their findings indicated that the velocity and flow rate reduced as the 
strength of the magnetic field increased. Sharma et al., [9] studied the blood flow in the 
catheterized stenosed artery subjected to slip velocity with the existence of a transverse magnetic 
field. They found that the wall shear stress increased as the strength of the transverse magnetic 
field increased. Hatami et al., [10] have analyzed the MHD blood flow with gold nanoparticles. The 
blood was treated as the third grade nanofluid in a hollow blood vessel. This problem was solved by 
applying the Least Square Method (LSM), the Galerkin method (GM) and the fourth order Runge-
Kutta method. It was found that the velocity decreased in the presence of magnetic field. A 
mathematical model based on fractional derivative was derived to study the effect of magnetic field 
on the blood flow inside the oscillatory arteries [3]. The blood flow was driven by periodic pressure 
gradient and body acceleration. The exact solution was obtained by using the Hankel and Laplace 
Transforms. They found that fractional derivative is valuable in controlling the blood temperature 
and velocity.  

The use of fractional order derivative in mathematical modeling has found numerous 
applications such as those in physics, fluid mechanics, mathematical biology and electrochemistry 
[11-13]. Besides that, as compared to the ordinary traditional calculus, the model derived from 
fractional calculus is more general and accurate. Considering the significance of fractional 
derivatives, the researchers [14] used fractional calculus to study the flow of Oldroyd-B fluid in 
stenosed arteries. The derived mathematical model of tapered stenosed artery in the presence of 
pressure gradient might help medical practitioners in treating cardiovascular diseases. The free 
convection flow of an incompressible fractional second-grade fluid near the vertical plate has been 
studied by using Caputo and Caputo Fabrizio derivatives [15]. Based on the comparative study, the 
effects of flow and fractional parameters on the temperature and velocity profiles were obtained. 
They found that the temperature values obtained from both fractional models decreased with 
respect to Prandtl number. 

In a general physiological system, some arteries are not perfectly horizontal or vertical. As a 
result, the effect of gravity should be considered in the flow calculation involving inclined arteries. 
The unsteady non-Newtonian blood flow in an inclined, catheterized and overlapping stenosed 
artery has been analyzed [16]. The finite difference method (FDM) was used to solve the stated 
problem. They showed that axial velocity, flow rate and resistance impedance were heavily 
dependent on parameters such as wall slip and inclination angle. The pulsatile flow of Herschel-
Bulkley fluid through multiple inclined multiple stenoses with periodic body acceleration has been 
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analyzed [17]. The study revealed that the velocity increased as the body acceleration increased. 
The influence of heat transfer on the peristaltic transport of magnetohydrodynamic through a 
porous medium has been studied [18]. The blood was modeled as an incompressible MHD second 
grade fluid that travelled in an inclined asymmetric channel. The authors used the analytical 
perturbation method to solve the problem. Based on the study, the pressure gradient and the size 
of trapped bolus increases as the inclination angle increased. 

Based on our review, most of researchers did not considered inclined cylindrical tube in their 
studies. It can be seen easily that in physiological systems all arteries are not horizontal, in which 
few of them are inclined. In the current work, motivated from the above studies, the blood vessel 
was modeled as an inclined cylindrical tube subjected to an inclined magnetic field. Blood flow was 
driven by the oscillating pressure gradient in the z-direction. A fractional mathematical model of 
Caputo-Fabrizio was developed in the cylindrical coordinate system to study the magnetic blood 
flow. The fractional models of blood flow and particle motion under the influence of magnetic field 
were solved analytically by using the joint method of Laplace and finite Hankel Transforms. The 
analytical solutions were then plotted using the mathematical software, i.e. Mathcad. 
 
2. Methodology  
 

The circular section of the artery was shown in Figure 1. In this study, blood flow occurred in an 
inclined cylindrical tube of radius R0 under the influence of uniformly distributed magnetic particles. 
The magnetic blood particles that travelled in the axial direction (i.e. z-direction) were driven by an 
oscillating pressure gradient. Meanwhile, an external magnetic field was applied perpendicularly 
throughout the inclined cylindrical vessel. 

In this study, the magnetic Reynolds number was taken small enough as the entire blood flow 
stream was subjected to an external magnetic field. In other words, the induced magnetic field was 
assumed negligible as compared to the applied magnetic field. At t=0, the cylindrical tube, the 
blood and the magnetic particles were treated as stationary. 

 

 
Fig. 1. Geometry figure of the magnetic blood flow 

 
The governing equations are the Navier-Stokes equations describing the blood flow, the 

Maxwell’s relations describing the magnetic field and the Newton’s second law describing the 
particle motion. The Maxwell equations are 

 

𝛻 ⋅ 𝐵
→

= 0, 𝛻 × 𝐵
→

= 𝜇0 𝐽
→

, 𝛻 × 𝐸
→

= −
𝜕𝐵

→

𝜕𝑡
,          (1) 
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where �⃗�  is the magnetic flux intensity, 𝜇0 is the magnetic permeability, �⃗�  is the electric field 

intensity and 𝐽  is the current density given by [10], [16] 
 

𝐽
→

= 𝜎(𝐸
→

+ 𝑉
→

× 𝐵
→

),             (2) 
 

Here 𝜎 is the electrical conductivity and �⃗�  is the velocity field. The electromagnetic force 𝐹 𝑒𝑚 is 
defined as [3] 
 

𝐹 𝑒𝑚 = 𝐽 × �⃗� = 𝜎(�⃗� + �⃗� + �⃗� ) × �⃗� = −𝜎𝐵0
2𝑢(𝑟, 𝑡)�⃗�         (3) 

 

where �⃗� is the unit vector in the z-direction and �⃗� = 𝑢(𝑟, 𝑡)�⃗�  is the axial velocity of the blood. The 

force 𝐹 𝑒𝑚 is included in the momentum equations. 
The unsteady blood flow in an axisymmetric cylindrical tube of radius R0 under the influence of 

uniform transverse magnetic field and pressure gradient of the form [17] 
 

−
𝜕𝑝

𝜕𝑧
= 𝐴0 + 𝐴1 𝑐𝑜𝑠(𝜔𝑡),     𝐴0 > 0           (4) 

 
was considered. Here, the constants A0 and A1 are the amplitudes of the pulsatile magnetic field 
and pressure gradient that give rise to systolic or diastolic pressure.  

The momentum equation for fluid flow in the cylindrical coordinate system(r,𝜃, z) is [8,19] 
 

𝜕𝑢

𝜕𝑡
= −

1

𝜌

𝜕𝑝

𝜕𝑧
+ 𝜐 (

𝜕2𝑢

𝜕𝑟2 +
1

𝑟

𝜕𝑢

𝜕𝑟
) +

𝐾𝑁

𝜌
(𝑣 − 𝑢) −

𝜎𝐵0
2 𝑠𝑖𝑛 𝜃

𝜌
+ 𝑔 𝑠𝑖𝑛𝜙,       (5) 

 
where 𝜌 is the fluid density, 𝜐 is the kinematic viscosity, p is the pressure, N is the number of 
magnetic particles per unit volume, K is the Stokes constant, 𝑢 is the fluid velocity and 𝜈 is the 
velocity of the particle. The term (𝐾𝑁/𝜌)(𝜈 − 𝑢) was introduced to model the force due to the 
relative motion between fluid and magnetic particles. It was assumed that the Reynolds number of 
the relative velocity was small. Hence, the force between the magnetic particles and the blood is 
proportional to the relative velocity.  

The motion of magnetic particles is governed by the Newton’s second law [20] 
 

𝑚
𝜕𝑣

𝜕𝑡
= 𝐾(𝑢 − 𝑣)             (6) 

 
where m is the average mass of the magnetic particles. 

In order to consider the time-fractional model, Eqs. (5) and (32) can be multiplied by𝜆 =

√(𝑅0𝜌/𝐴0) to yield a term with the dimension of time t. Therefore, the governing equations of the 

time-fractional model are 
 

𝜆𝛼𝐷𝑡
𝛼𝑢 = −

𝜆

𝜌
(𝐴0 + 𝐴1 𝑐𝑜𝑠(𝜔𝑡)) + 𝜆𝑣 (

𝜕2𝑢

𝜕𝑟2 +
1

𝑟

𝜕𝑢

𝜕𝑟
) +

𝐾𝑁𝜆

𝜌
(𝑣 − 𝑢) −

𝜎𝐵0
2𝜆

𝜌
+ 𝑔𝜆 𝑠𝑖𝑛 𝜙    (7) 

 
and 
 

𝜆𝛼𝐷𝑡
𝛼𝑣 =

𝐾𝜆

𝑚
(𝑢 − 𝑣)             (8) 
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where the Caputo-Fabrizio derivative operator is 
 

𝐷𝐶𝐹
𝑡
𝛼𝑢(𝑟, 𝑡) =

1

1−𝛼
∫ 𝑒𝑥𝑝 (−

𝛼(𝑡−𝜏)

1−𝛼
)

𝑡

0

𝜕𝑢(𝑟,𝜏)

𝜕𝜏
𝑑𝜏     (9) 

 
The Laplace transform of the Caputo-Fabrizio time derivative can be written as 
 

𝐿{ 𝐷𝐶𝐹
𝑡
𝛼𝑢(𝑟, 𝑡)} =

𝑠𝐿{𝑢(𝑟,𝑡)}−𝑢(𝑟,0)

(1−𝛼)𝑠+𝛼
               (10) 

 
The initial boundary conditions of the fluid inside the cylindrical domain of radius R0 are 
 
𝑢(𝑟, 0) = 0,   𝑣(𝑟, 0) = 0,   r ∈ [0, 𝑅0], 𝑢(𝑅0, 𝑡) = 0,   𝑣(𝑅0, 𝑡) = 0,   𝑡 > 0               (11) 
 
For dimensionless study, the following non-dimensional parameters can be introduced 
 

𝑟∗ =
𝑟

𝑅0
,  𝑡∗ =

𝑡

𝜆
,  𝑢∗ =

𝑢

𝑢0
,  𝑣∗ =

𝑣

𝑢0
, 𝐴0

∗ =
𝜆𝐴0

𝜌𝑢0
,  𝐴1

∗ =
𝜆𝐴1

𝜌𝑢0
,  𝜔∗ = 𝜆𝜔,  𝑔∗ =

𝑔

𝑢0
2/𝑅0

               (12) 

 
where u0 is the characteristics velocity. 

By introducing the above parameters and dropping the * notation the non-dimensional forms of 
Eqs. (7), (8), and (11) are 

 

𝐷𝑡
𝛼𝑢 = 𝐴0 + 𝐴1 𝑐𝑜𝑠(𝜔𝑡) +

1

𝑅𝑒[
𝜕2𝑢

𝜕𝑟2+
1

𝑟∗
𝜕𝑢∗

𝜕𝑟∗]
2
𝑠𝑖𝑛𝜙

𝐹

               (13) 

 
𝐺 ⋅ 𝐷𝑡

𝛼𝑣 = 𝑢 − 𝑣               (14) 
 
where 𝑅𝑒 = 𝑅0/𝜆𝜐 is the Reynolds number, 𝑅 = 𝐾𝑁𝜆/𝜌 is the particles concentration parameter, 
𝐻𝑎2 = 𝜎𝐵0

2𝜆𝑠𝑖𝑛𝜃/𝜌 is the Hartmann number and 𝐹 = 𝑅0/𝜆𝑢0𝑔is the inclination angle parameter. 
The non-dimensional boundary conditions are 
 
𝑢(𝑟, 0) = 0,  𝑣(𝑟, 0) = 0,  r ∈ [0,1],  𝑢(1, 𝑡) = 0,  𝑣(1, 𝑡) = 0,  𝑡 > 0               (15) 
 

The use of Laplace Transform is suitable when the temporal variable t is adopted in the blood 
flow model (see Eqs. (7), (8)) and the boundary conditions (15). After the transformation process, 
we have 
 
𝑠𝑢(𝑟,𝑠)

𝑠+𝛼(1−𝑠)
=

𝐴0

𝑠
+

𝐴1𝑠

𝑠2+𝜔2
+

1

𝑅𝑒
[
𝜕2�̅�(𝑟,𝑠)

𝜕𝑟2
+

1

𝑟

𝜕𝑢(𝑟,𝑠)

𝜕𝑟
] + 𝑅�̅�  − (𝑅 + 𝐻𝑎2)�̅�(𝑟, 𝑠) +

𝑠𝑖𝑛𝜙

𝑠𝐹
               (16) 

 

𝐺
𝑠�̄�(𝑟,𝑠)

𝑠+𝛼(1−𝑠)
= �̄�(𝑟, 𝑠) − �̄�(𝑟, 𝑠)               (17) 

 
�̄�(1, 𝑠) = 0,   �̄�(1, 𝑠) = 0               (18) 
 
From Eq. (17), the following equation can be obtained 
 

�̄�(𝑟, 𝑠) =
𝑠+𝛼(1−𝑠)

𝐺𝑠+𝑠+𝛼(1−𝑠)
�̄�(𝑟, 𝑠)                (19) 
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Upon substituting �̄�(𝑟, 𝑠) from Eq. (19) into Eq. (16) 
 

[
𝑠

𝑠+𝛼(1−𝑠)
− 𝑅 (

𝑠+𝛼(1−𝑠)

𝑠+𝑠𝐺+𝛼(1−𝑠)
) + 𝑅 + 𝐻𝑎2] �̄�(𝑟, 𝑠) =

𝐴0

𝑠
+

𝐴1𝑠

𝑠2+𝜔2 +
1

𝑅𝑒[
𝜕2�̄�

𝜕𝑟2+
1

𝑟

𝜕�̄�

𝜕𝑟
]
𝑠𝑖𝑛𝜙

𝑠𝐹

               (20) 

 
Applying the finite Hankel Transform of order zero (i.e. applying the boundary condition (15) in Eq. 
(20)), the following equation can be obtained 
 

[
𝑠

𝑠+𝛼(1−𝑠)
− 𝑅 (

𝑠+𝛼(1−𝑠)

𝑠+𝑠𝐺+𝛼(1−𝑠)
) + 𝑅 + 𝐻𝑎2] �̄�𝐻(𝑟𝑛, 𝑠) = [

𝐴0

𝑠
+

𝐴1𝑠

𝑠2+𝜔2 +
𝑠𝑖𝑛𝜙

𝑠𝐹
]

𝐽1(𝑟𝑛)

𝑟𝑛
−

1

𝑅𝑒�̄�𝐻𝑛

              (21) 

 

where �̄�𝐻(𝑟𝑛, 𝑠) = ∫ 𝑟�̄�(𝑟, 𝑠)𝐽0(𝑟𝑛𝑟)𝑑𝑟
1

0
 represents the finite Hankel transform of the velocity 

function. Here, �̄�(𝑟, 𝑠) = 𝐿𝑇[𝑢(𝑟, 𝑡)] are the positive roots of the equation 𝐽0(𝑥) = 0, where J0 is 
the Bessel function of order zero and it belongs to the first kind. By simplifying the coefficient of 
�̄�𝐻(𝑟𝑛, 𝑠) in Eq. (21), the following equations can be formulated 
 

�̄�𝐻(𝑟𝑛, 𝑠) =
𝑠2𝑥5𝑛+𝑠𝑥6𝑛+𝛼2

𝑠2𝑥2𝑛+𝑠𝑥3𝑛+𝑥4𝑛
[
1

𝑠
(𝐴0 +

𝑠𝑖𝑛 𝜙

𝐹
) +

𝐴1𝑠

𝑠2+𝜔2
]
𝐽1(𝑟𝑛)

𝑟𝑛
                  (22) 

 

�̄�𝐻(𝑟𝑛, 𝑠) = [
𝑥9𝑛

𝑠−𝑥7𝑛
+

𝑥10𝑛

𝑠−𝑥8𝑛
] [

1

𝑠
(𝐴0 +

𝑠𝑖𝑛𝜙

𝐹
) +

𝐴1𝑠

𝑠2+𝜔2]
𝐽1(𝑟𝑛)

𝑟𝑛
                  (23) 

 

�̄�𝐻(𝑟𝑛, 𝑠) = 𝐴0 +
𝑠𝑖𝑛𝜙

𝐹
[

𝑠−1

𝑠−𝑥7𝑛
𝑥9𝑛 +

𝑠−1

𝑠−𝑥8𝑛
𝑥10𝑛]

𝐽1(𝑟𝑛)

𝑟𝑛
+ 𝐴1

𝑠

𝑠2+𝜔2 [𝑥9𝑛
1

𝑠−𝑥7𝑛
+ 𝑥10𝑛

1

𝑠−𝑥8𝑛
]

𝐽1(𝑟𝑛)

𝑟𝑛
     (24) 

 

Note, the parameters in Eq. (22) and (23) introduced for simplifying the coefficient of �̄�𝐻(𝑟𝑛, 𝑠) are 
 

𝑥1𝑛 = 𝐻𝑎2 + 𝑅 +
𝑟𝑛
𝑅𝑒

 

 
𝑥2𝑛 = 1 + 𝐺 − 𝛼 − 𝑅 − 𝑅𝛼2 + 2𝑅𝛼 + 𝑥1𝑛 + 𝛼2𝑥1𝑛 − 2𝛼𝑥1𝑛 + 𝐺𝑥1𝑛 − 𝐺𝛼𝑥1𝑛, 
 
𝑥3𝑛 = 𝛼 + 2𝑅𝛼2 − 2𝑅𝛼 − 2𝑥1𝑛𝛼

2 + 2𝛼𝑥1𝑛 + 𝐺𝛼𝑥1𝑛,   𝑥4𝑛 = 𝛼2𝑥1𝑛 − 𝑅𝛼2, 
 
𝑥5𝑛 = 1 + 𝛼2 − 2𝛼 + 𝐺 − 𝐺𝛼,     𝑥6𝑛 = −2𝛼2 + 2𝛼 + 𝐺𝛼, 
 

𝑥7𝑛 =
−𝑥3𝑛 + √𝑥3𝑛

2 − 4𝑥2𝑛𝑥4𝑛

2𝑥2𝑛
,    𝑥8𝑛 =

−𝑥3𝑛 − √𝑥3𝑛
2 − 4𝑥2𝑛𝑥4𝑛

2𝑥2𝑛
, 

 

𝑥9𝑛 =
𝑥7𝑛

2 𝑥5𝑛+𝑥7𝑛𝑥6𝑛+𝛼2

𝑥7𝑛−𝑥8𝑛
,       𝑥10𝑛 =

𝑥8𝑛
2 𝑥5𝑛+𝑥8𝑛𝑥6𝑛+𝛼2

𝑥8𝑛−𝑥7𝑛
,                  (25) 

 
The Laplace Transform of the image function �̄�𝐻(𝑟𝑛, 𝑠) in Eq. (24) can be obtained by using the 
Robotnov and Hartley’s functions 
 

𝐿𝑇−1 [
1

𝑠𝑤+𝑦
] = 𝐹𝑤(−𝑦, 𝑡) = ∑

(−𝑦)𝑛𝑡(𝑛+1)𝑤−1

𝛤((𝑛+1)𝑤)
, 𝑤 > 0∞

𝑛=0                   (26) 
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𝐿𝑇−1 [
𝑠𝑧

𝑠𝑤+𝑦
] = 𝑅𝑤,𝑧(−𝑦, 𝑡) = ∑

(−𝑦)𝑛𝑡(𝑛+1)𝑤−1−𝑧

𝛤((𝑛+1)𝑤−𝑧)
, 𝑅𝑒(𝑤 − 𝑧) > 0∞

𝑛=0                 (27) 

 

�̅�𝐻(𝑟𝑛, 𝑡) =
𝐽1(𝑟𝑛)

𝑟𝑛
[(𝑒𝑥7𝑛𝑡

− 1) (
𝐴0𝑥9𝑛

𝑥7𝑛
+

𝑥9𝑛 𝑠𝑖𝑛𝜙

𝑥7𝑛𝐹
) + (𝑒𝑥8𝑛𝑡

− 1) (
𝐴0𝑥10𝑛

𝑥8𝑛
+

𝑥10𝑛 𝑠𝑖𝑛 𝜙

𝑥8𝑛𝐹
) + 𝐴1𝑥9𝑛𝑒

𝑥7𝑛𝑡
∗

𝑐𝑜𝑠(𝜔𝑡) +𝐴1𝑥10𝑛𝑒
𝑥8𝑛𝑡

∗ 𝑐𝑜𝑠(𝜔𝑡)]                     (28) 

 
By inverting the finite Hankel Transforms (i.e. Eq. (28)), we obtain 
 

𝑢(𝑟, 𝑡) = 2∑
𝐽0(𝑟𝑟𝑛)

𝑟𝑛𝐽1
2(𝑟𝑛)

× 𝑢𝐻(𝑟𝑛, 𝑡)
∞
𝑛=1                      (29) 

 

𝑢(𝑟, 𝑡) = 2∑
𝐽0(𝑟𝑟𝑛)

𝑟𝑛𝐽1(𝑟𝑛)
[(𝑒𝑥7𝑛𝑡 − 1) (

𝐴0𝑥9𝑛

𝑥7𝑛
+

𝑥9𝑛 𝑠𝑖𝑛𝜙

𝑥7𝑛𝐹
) + (𝑒𝑥8𝑛𝑡 − 1) (

𝐴0𝑥10𝑛

𝑥8𝑛
+

𝑥10𝑛 𝑠𝑖𝑛𝜙

𝑥8𝑛𝐹
)∞

𝑛=1 +

𝐴1𝑥9𝑛𝑒
𝑥7𝑛𝑡 ∗ 𝑐𝑜𝑠(𝜔𝑡) + 𝐴1𝑥10𝑛𝑒

𝑥8𝑛𝑡 ∗ 𝑐𝑜𝑠(𝜔𝑡)]                   (30) 
 
The magnetic particle velocity can then be obtained from Eq. (17) 
 

�̄�(𝑟, 𝑠) =
𝑠+𝛼−𝛼𝑠

𝑠+𝐺𝑠+𝛼−𝛼𝑠
�̄�(𝑟, 𝑠)                       (31) 

 
𝑣(𝑟, 𝑡) = 𝑥12𝑛(1 − 𝑥11𝑛)[𝑢(𝑟, 𝑡) ∗ 𝑒𝑥12𝑛𝑡],  0<𝛼<1                   (32) 
 
In Eqs. (30) and (32), 𝑓 ∗ 𝑔 represents the convolution product of f and g. The parameters 
introduced in Eq. (32) are 
 

𝑥11𝑛 =
1−𝛼

𝐺−𝛼+1
,   𝑥12𝑛 =

𝛼

𝐺−𝛼+1
                     (33) 

 
Finally, the convolution product 𝑓 ∗ 𝑔can be calculated as 
 

(𝑓 ∗ 𝑔)(𝑡) = ∫ 𝑓(𝜏)𝑔(𝑡 − 𝜏)𝑑𝜏
𝑡

0
                     (34) 

 
3. Results and Discussions 
 

The velocities of fluid and the magnetic particles (Eqs. (30) and (32)) can be solved numerically 
by using the positive roots of the Bessel function J0. In the numerical computation, a series 
consisting of 500 terms was generated for solving the inverse Hankel Transform equation. The 
following parameters were adopted while performing the simulation using Mathcad: A0 = 0.5, A1= 
0.6, G = 0.8, R = 0.5, Re = 4, ω = π/4 and Ha = 2 (see [20]). The velocities of blood and magnetic 
particles in the r-direction were shown in Figures (2) – (11). The influence of fractional order𝛼 at 
various Hartmann numbers Ha, Reynolds numbers Re and inclination angles 𝜙was studied in order 
to establish better understanding of the stated problem. 

In order to validate the current model, the results presented in Figure (2) were compared 
against those from previous study [20] (by setting α=1 in Eq. (32)). The agreement is encouraging. 

Figures (3) – (5) show the effect of inclined magnetic field on the velocities of blood and 
magnetic particles. Seemingly, the velocities of the magnetic particles reduce appreciably as 
Hartmann number increases. Generally, the presence of magnetic field in the blood stream would 
retard the blood motion due to the rise in resistive drag force. In order to identify the effect of 
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inclined magnetic field on both fluid and particle distributions, Figures (3) – (5) are plotted and the 
results show that both velocities decrease appreciably as Ha increases. Generally, the presence of 
magnetic field in the blood flow tends to slow down the particle motion due to the rise in resistive 
or Lorentz force. This finding agrees well with those found in Ref. [4]. This observation might be 
useful in some medical treatment processes. 
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Fig. 2. Geometry domain of the magnetic blood flow 
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Fig. 3. Profiles of axial velocities u(r,t) and v(r,t) at different fractional parameters against r 
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Fig. 4. Profiles of axial velocities u(r,t) and v(r,t) at different fractional parameters against r 
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Fig. 5. Profiles of axial velocities u(r,t) and v(r,t) at different fractional parameters against r 

 
Figures (6) – (8) show the effects of Reynolds number, Re on the velocities of blood and 

magnetic particles. In general, Re increased with respect to the velocities, implying that there is a 
drop in the blood viscosity which would ease the blood flow. This finding is in good agreement with 
those reported in Bansi et al. [3]’ study. 
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Fig. 6. Profiles of axial velocities u(r,t) and v(r,t) at different fractional parameters against r 
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Fig. 7. Profiles of axial velocities u(r,t) and v(r,t) at different fractional parameters against r 
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Fig. 8. Profiles of axial velocities u(r,t) and v(r,t) at different fractional parameters against r 

 
The u(r,t) and v(r,t) profiles at different inclination angles 𝜙 are plotted in Figures (9) – (11). As 

observed, the speeds of fluid and magnetic particles in the inclined artery are higher than those in 
the non-inclined artery, as it is easier to move the blood through an inclined artery. It should be 
noted that the magnetic particle velocity is lower than the blood velocity due to the resistive force. 
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Fig. 9. Profiles of axial velocities u(r,t) and v(r,t) at different fractional parameters against r 
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Fig. 10. Profiles of axial velocities u(r,t) and v(r,t) at different fractional parameters against r 
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Fig. 11. Profiles of axial velocities u(r,t) and v(r,t) at different fractional parameters against r 

 
4. Conclusions 
 

A mathematical model has been developed to analyse the blood flow in an inclined cylindrical 
artery subjected to the transverse magnetic field. The new definition of Caputo-Fabrizio fractional 
derivative was used to compute the velocities of fluid and magnetic particles. An additional 
mathematical solution is usually required to derive the ordinary model; however, by using the 
current approach, the ordinary model (𝛼 = 1) for the velocity equation can be directly obtained as 
the equation is fully compatible. The governing non-dimensional fractional partial differential 
equation has been solved analytically by using both Laplace (with respect to t) and finite Hankel 
Transforms. Based on the numerical results, the velocities of blood and magnetic particles decrease 
with respect to Hartmann number. Nevertheless, the velocities increase at increasing Reynolds 
number. The numerical results show that the inclination angle has a significant impact on the 
velocities of blood and magnetic particle. This finding might be useful in the diagnosis and 
therapeutic treatment of some medical problems. Also, the current finding could lead to the better 
designs of pads and machines.  
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