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In the present paper, the effect of homogeneous-heterogeneous reactions on MHD 
Casson fluid over a  stretchable rotating disk with variable thickness is examined. Slip 
effects are taken into account. The governing coupled nonlinear partial di fferential 

equations are reduced into a  system of coupled nonlinear ordinary di fferential 
equations by us ing Von Karman s imilarity transformation. Further, solutions are 
obta ined via  efficient semi-analytical method Optimal Homotopy Analysis Method 

(OHAM). The results are presented graphically in order to see the influence of 
pertinent parameters on the velocity and concentration fields. Homogeneous reaction 

parameter and heterogeneous reaction parameter have a converse impact on fluid 
concentration. 
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1. Introduction 
 

In recent years, numerous researchers have attracted towards the fluid flow by a rotating disk. It 

is because of its remarkable applications in engineering and industrial areas such as jet motors, 
computer storage devices, rotating machinery, medical equipment, spin coating and many others. 

The pioneering work of Von Karman [1] on hydrodynamic flow over an infinite rotating disk has given 
a new dimension to fluid flow over a rotating disk. He also presented the well-known transformation 

which reduces the governing partial differential equations into ordinary differential equations. 
Cochran’s [2] analyzed the rotating disk problem which was considered by Von Karman [1] and 

obtained a higher degree of accuracy via asymptotic solutions. Further, Batchelor [3] examined the 
work of Ref [1] and contended that the fundamental assemblage of liquid would spool with steady 

angular velocity and boundary layers would create on both the discs as the Reynolds number 
expanded. Stewartson [4] demonstrated experimentally and theoretically that the rotation of the 
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main body of fluid depends on the rotation of the disc and in continuation to this , Benton [5] 

improved Cochran’s method of solutions by considering the unsteady case. The concept of fluid flow 
over a rotating disk was revisited by Anderson et al., [6] and Ming [7] with the analysis of the non-

Newtonian fluid. Ahmad [8] studied the impact of variable liquid properties flow due to a porous  
rotating disk. Further, Yin et al., [9] examined the flow and heat transfer conduct of nanofluid due to 

a rotating disk. Sheikholeslami et al., [10] studied the impact of centrifugal and gravitational forces 
on nanofluid spraying on an inclined rotating disk. Yin et al., [11] extended the work of Ref [9] by 

considering three types of nanoparticles-Cu, Al2O3 and CuO-with water-based nanofluids. 
The surface of sheet/disc can be considered with variable thickness because it’s many industrial 

applications such as in architectural, mechanical, civil, aeronautical and marine engineering. Fang et 
al., [12] explored the liquid flow over a variable thickened surface. Xun et al., [13] extended the work 

of Fang et al., [12] to the rotating disk and scrutinized the MHD flow of Ostwalde- wale fluid with 
decreasing power-law index parameter. Hayat et al., [14] examined the flow due to a rotating disk 

with a thickness in the presence of radiation. Imtiaz et al., [15] considered the slip velocity at the 
solid-fluid interface and studied the characteristics of magnetohydrodynamic flow by a rotating 

variable thickened disk. Moreover, Prasad et al., [16-20] examined analytically the geometry of the 
variable thickened surface with nanofluid/ Casson nanofluid with different external effects. 

Homogeneous and heterogeneous reactions occur in a wide variety of chemically reacting 
systems namely, combustion, catalysis and biochemical systems. These reactions generally take place 
in food processing, manufacturing of ceramics, the formation of fog, production of polymers, crops 

damaging due to freezing, electric power generating systems and many others. Choudary and Merkin 
[21] who initiated the work on a simple isothermal model for homogeneous and heterogeneous  

reactions in boundary layer flow with similar diffusivities. Chowdary and Merkin [22] revisited and 
extended their previous work by taking two different diffusivities. They have taken homogeneous  

reactions by cubic autocatalysis and heterogeneous reaction by the first-order isothermal process. 
Merkin [23] studied the isothermal model for homogeneous and heterogeneous  reactions for flow 

over a flat plate. The influence on the stagnation point flow towards the stretching sheet with 
chemical reactions was examined by Bachok and Ishak [24]. Kameshwaran et al., [25] examined the 

effects of homogeneous and heterogeneous reactions in a nanofluid flow over a porous 
stretching/shrinking sheet. Impact of melting heat transfer and homogeneous -heterogeneous  

reactions on MHD flow has been reported by Hayat et al., [26]. Effect of homogeneous and 
heterogeneous reactions on the Ferrofluids over a rotating disk was analyzed by Hayat et al., [27] by 

taking the viscous dissipation into account. Lavanya [28] studied the MHD rotating flow over a porous  
channel in presence of magnetic field. An experimental analysis of the thermal effect on viscoelastic 
elastomer by considering magnetic effect was reported by Touraband Aguib [29] and several 
researchers have examined the Newtonian fluid/non-Newtonian fluid considering heat transfer with 
different geometries and configurations [30-36]. 

To the best of the author's knowledge, no attempt has been made to study the Casson fluid over 
a stretchable rotating variable thickened disk. The present paper aims to investigate the effects of 
slip velocity and homogeneous-heterogeneous on a Casson fluid over a stretchable rotating variable 
thickened disk. The coupled governing nonlinear partial differential equations are converted into a 

system of coupled nonlinear ordinary differential equations by using Von Karman similarity 
transformation. The transformed equations are solved semi analytically via Optimal Homotopy  

Analysis Method (OHAM) (See [37-38]). Convergence analysis and error analyses of obtained 
solutions are confirmed overtly. Various physical parameters on velocity and concentration fields are 

evaluated and plotted graphically. Skin friction is deliberated through different flow variables. With 
certain limiting conditions the present investigation is compared with published literature.  
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2. Methodology 

2.1 Mathematical Formulation 
 

Let us consider two dimensional steady, viscous, incompressible and axisymmetric flow of an 
electrically conducting non-Newtonian fluid model namely, Casson fluid model over a stretchable 

rotating disk with the homogeneous and heterogeneous chemical reactions. A simple model for a 
homogeneous and heterogeneous chemical reaction is given by, 

 

2 3 ,A B B  rate = 2

1k ab             (1) 

 
The single, first order isothermal chemical reaction on the catalyst surface is  

 

,A B rate = 
2k a              (2) 

 
where a and b are the dimensionless concentration of the chemical species A and B,

1k and 
2k are rate 

constants. We consider both the reaction processes are isothermal. Further, the fluid occupies the 
semi-infinite region over a stretchable rotating disk placed at a variable thickness  0 1

m
z c r R


  and 

disk rotates with an angular velocity   and the stretching rate
1c .  Here c is the disk thickness 

coefficient, m is the disk thickness index and
0R  is the feature radius of the disk. The rheological 

equation of state for anisotropic and incompressible Casson fluid is given by, 
 

 

 

,

,

2 / 2

2 / 2

B y ij c

ij

B y c ij c

P e

P e

   


   

  


 
 



           (3) 

 

where 
ij ije e   and ije is the  

th
,i j component of deformation rate,  is the product of component 

with itself, c is a critical value of this product based on the non-Newtonian model, B is the plastic 

dynamic viscosity of the non-Newtonian fluid and 
yP is the yield stress of the fluid. The physical model 

of the variable thickened rotating disk is as shown in Figure 1.  
 

 
Fig. 1. Physical model of the rotating disk 
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Thereafter, it is assumed that a uniform magnetic strength 0B  is employed perpendicular to the 

circular disk along the z-axis. The effect of the induced magnetic field is to be ignored under the 
hypothesis of a small magnetic Reynolds number.  Under these assumptions and usual boundary 
layer approximations, the governing equations for the continuity, the momentum and the 
concentration in cylindrical polar coordinates are, 
 

0
u u w

r r z

 

 
  

             
(4) 
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2

02
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(8) 

 
The appropriate boundary conditions for the problem is given by,  
 

 1 1 2 2 2 0

0

v
, v Ω , 0, , at 1 /

0, v 0, , 0

m
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u a b
u rc r w D k a D k a z c r R

z z z z

u a a b as z

 
   
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


         

         

(9) 

 
where , v andu ware the velocity components in the direction of , andr z respectively.   is the density 

of the fluid,   is the viscosity of the fluid,  is the electrical conductivity,   is the Casson parameter, 

B0 is the magnetic flux density, andA BD D are the diffusion species coefficients of A and B, 1 2and  are 

the velocity slip coefficients along and vu directions respectively. 

Von-Karman similarity transformations are  
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(10) 

 
Using Eq. (10) in to Eq. (4-8) reduces to the following system of coupled highly nonlinear ordinary 

differential equations. 
 

2 0H F m F                            (11) 
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   
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(15) 

 
Subjected to the boundary conditions,  
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where  0r r R   is a dimensionless constant,  2

0Re R  is a Reynolds number, 
0R r R is the 

dimensionless radius,    
1 1

2

0 0

n

c R R v
 

 is the dimensionless disk thickness coefficient, 

 2

0Mn B   is the Hartmann number,  / ASc v D  is the Schmidt number,  2

1 0 /ΩK k a is the 

measure of strength of homogeneous reaction,  1 1A c  is scaled stretching parameter, 
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   are velocity slip parameters,
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1 1

2

2 0 0 01
nm

s Ak k R D r R R v
 

   is the measure of strength of the heterogeneous reaction,  

 /B AD D   is the ratio of the diffusion coefficient. In most instances, it can be assumed that the 

diffusion coefficients of chemical species A and B are of similar size. This postulate provides us to 

make the assumption that the diffusion coefficients andA BD D  are equal  . . 1 ,i e  then we have,  

 

    1J                            
(17) 

 
using Eq. (17), Eq. (14) and Eq. (15) reduces to, 
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2 21 11

Re 1 1 0
mn n

R m F H K
Sc

     
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(18) 

 
Corresponding boundary conditions become, 
 

     , 1sk       
                                                                                                                          (19) 

 
For the computation purpose, we define, 
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                 , , , whereH h F f G g                                  (20) 

 
by using Eq. (20) in similarity Eq. (11-13) and Eq. (18) becomes 
 

 2 0h f m f                                                                                                                                   (21) 
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(24) 

 

with corresponding boundary conditions are, 
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Here prime denotes derivative with respect to  and , , andh f g  are axial, radial, tangential velocity 

profiles and concentration profile respectively.  
The important physical quantity of engineering interest in this problem is the skin friction 

coefficient 
fC  which is given by, 
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                                                                                  (26) 

 

where zr zand   are called radial and tangential shear stress at the surface of the disk and is defined 

by,  
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Substitute Eq. (10) in Eq. (26) we get, 
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2.2 Method of Solution 

2.2.1 Optimal Homotopy Analysis Method (OHAM) 
 

Optimal Homotopy analysis method has been applied to solve nonlinear coupled ordinary 
differential Eq. (21) to Eq. (24) with corresponding boundary conditions Eq. (25). The OHAM scheme 

breaks down a nonlinear differential equation into an infinite number of linear subproblems whose 
solutions are found analytically. In the frame of OHAM, we are independent to pick the auxiliary 

linear operator and introductory approximation. This is worthwhile over the other iterative 
procedures where convergence is to a great extent attached to a decent initial approximation of the 

solution. The OHAM differs from other analytical approximation methods as it does not depend on 
small or large physical parameters. This is obtained by employing artificial convergence control 

parameters which guaranty convergence of the series solution.  The OHAM has been successfully 
applied to a wide range of nonlinear problems. Now we assume the initial guesses for axial, radial, 

tangential velocities and concentration according to the given boundary conditions Eq. (25), 
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We select the linear operators in the form,  
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The expressions of exact residual errors are written as: 
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We used the average squared residual errors instead of exact residual errors 

       , , andh f g

p h p f p g pE E E E

 because they have taken much time. 
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         t h f g

p p h p f p g pE E E E E

                                                             (32) 

 

where  t

pE  is the total residual error,  / , 0,1,.. .y y P y P   Now we minimize the error function 

     , ,h f g

p h p f p gE E E and  pE


in , , ,h f g  and obtain the optimal value of , , , .h f g 

For pth order approximation, the optimal value of , , ,h f g   for , , ,h f g  is given by,

       
0, 0, 0, 0

f gh
p f p g pp h

E E EE

h h h h



  

   
    respectively. Evidently,    lim , lim ,h f

p h p f
p p

E E
  

 

   lim , limg

p g p
p p

E E


    

corresponding to a convergent series solution. Table 1 represents the 

values of the individual average squared residual error at a different order of approximations by 
considering the optimal values of 1.365, 1.2209, 1.23586, 0.295229h f g     

 which have 

been obtained by minimizing the averaged residual errors at the 12th order approximation. It can be 

clearly observed that average squared residual errors are getting smaller and smaller as we increase 
the order of approximations. As such, by taking the order of approximation sufficiently large and by 

picking the convergence control parameters to minimize the average squared residual error, we can 
get accurate solutions. 

 
Table 1 
 Individual average squared residual error as a function of the number 
of iterations when parameters are fixed at 

1Re 0.9, 0.3, 0.5, 0.5, 1, 1.2,A n m Mn      

1 20.3, 0.4, 10,        0.5.sK k Sc    We have optimal 

convergence control parameter values of 1.365, 1.2209,h f 

1.23586,g   0.295229.    

p 
h

pE  
f

pE  
g

pE  pE
 

CPU time 

(s) 

2 5.63x10-3 2.74x10-3 1.08x10-3 2.67x10-6 8.10522 

4 3.67x10-4 2.98x10-5 3.11x10-4 3.06x10-7 53.5464 

6 2.04x10-5 7.34x10-6 3.81x10-5 2.19x10-7 254.843 

8 1.28x10-6 1.24x10-6 2.94x10-6 4.03x10-8 1093.12 

10 1.59x10-7 1.16x10-7 5.87x10-7 2.09x10-8 4373.54 

12 2.77x10-8 2.86x10-8 2.29x10-7 1.23x10-8 15389.4 
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2.2.2 Validation of methodology 

 
Here, the exactness of the OHAM technique which is employed to solve the present problems is 

described. Without loss of all-inclusive statement, consider the case where  

1 1 2Re 0.9, 0.3, 0.5, 0.5, 1, 1.2, 0.3, 0.4, 10, 0.5.sA n m Mn K k Sc                  The 12th- order 

approximate solution is recorded. The corresponding optimal convergence-control parameters are 
found to be 1.365, 1.2209, 1.23586, 0.295229.h f g      

 Moreover; it is found that the 

residual error of each governing equation diminishes as a function of the order of approximation, as 
appeared in Figure 2. 

 

 
Fig. 2. Residual error vs. Order of approximation 

 

For the validation of the OHAM, the results are compared with the available results in the literature 
(see Table 2) and the comparison shows an excellent agreement with the results of Anderson et al., 
[6], Ming et al., [7], Xun et al., [13], and Hayat et al., [14]. 

 
Table 2 
 Comparison of results for    0 and 0f g   when 

1 1 2 0, 1.2,m A Mn        

0.5, 0.5, 1,Re 0.9,Sc K ks n          

Skin 

friction 

Anderson 

et al., [6] 

Ming et 

al., [7] 

Xun et al., 

[13] 

Hayat et 

al., [14] 

Present 
Result 

 0f   0.510 0.51021 0.510231 0.5109 0.5115 

 0g  0.616 0.61591 0.615921 0.61598 0.61405 

 
3. Results  
 

The main objective of this section is to present the analysis of the graphical results obtained for 
various pertinent parameters namely, dimensionless constant ,  disk thickness coefficient ,  disk 

thickness index ,m velocity slip parameters 1 2and ,   Hartmann number ,Mn  Casson fluid parameter 

,  power law exponent parameter ,n  Reynolds number Re,  strength of heterogeneous  reaction 

2 4 6 8 10 12
10 9

10 7

10 5

0.001

approximation of order p

e
rr

o
r
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parameter ,sk  Schmidt number ,Sc  strength of homogeneous reaction parameter ,K scaled 

stretching parameter A1on axial velocity  h  , radial velocity  f  , tangential velocity  g   and 

concentration field    . The numerical result of skin friction     0 0f and g    for various physical 

parameters is tabulated in Table.3. 
Figure 3(a) through 3(d) elucidates that the impact of and m    on velocity and concentration field. 

For 0,m  all the three velocity fields decreases whereas the concentration field increases for higher 

the value of   and exactly the opposite trend is observed in the case of 0m . This is evident from 
the expression    

1 1
2

0 0

n

c R R v
 

  that   is inversely proportional to feature radius 
0R  due to this, 

for increasing values of  , the marginally small surface of the disk is in contact with fluid particles 

and which provides less resistance between the particles and improves the liquid flow. Interestingly, 

a similar trend is recorded for increasing values of   and this is because 0R  is a decreasing function 

of   which enhances liquid flow and reduces the concentration distribution (See Figure 4(a) to 4(d)).  
Figure 5(a) and 5(b) elucidates the impact of and Mn   on  f   

and  g  . It is clear from these 

figures that increasing the value of    results in diminishing fluid velocity which resist the liquid flow. 

As Casson parameter approaches larger values, fluid starts to behave like a Newtonian fluid. 

Physically, an increase in   means    , a decrease in the yield stress, hence reduction in 

boundary layer thickness is recorded. The applied magnetic field has the ability to slow down the 
momentum of fluid and this leads to decays in momentum boundary layer thickness. Therefore, 

increasing Mn  reduces the radial and tangential velocity profiles. The impact of Re  and n on the 
radial, tangential velocity and concentration fields are plotted in Figure 6. Both radial and tangential 
velocity increases as Re  increases and it is because of the fact that larger  2

0Re ,R   results in 

viscous force decay, due to this momentum boundary layer thickness enhanced, whereas the reverse 
trend is observed in the case power law exponent parameter n (See Figure 6(a) and 6(b)). Figure 6(c) 
elucidates the impact of Re  on    . An Increment in Re  results in the decrease of concentration 

profiles whereas the power-law exponent parameter increases the profiles. Influence of slip 

parameters 1 2and  on velocity fields are plotted in Figure 7(a). As 
1 2and   increases, both radial and 

tangential velocities decays and results in the squeeze of the momentum boundary layer thickness 
and in the case of A1, the results are opposite to that of the slip parameters. Physically, an increase 
in the scaled stretching parameter produces more pressure on the fluid flow and hence enhancement 
in the radial velocity field is recorded (See Figure 7 (b)). Impact of the strength of the homogeneous  

reaction parameter K and strength of heterogeneous reaction parameter sk on the concentration 

profile    is analyzed in Figure 8. In addition to this, the behaviour of Sc  is also examined.  Since 

the chemical reactants are consumed when the homogeneous reaction occurs, for larger values of 

K the concentration distribution    reduces (See Figure 8 (a)). Further, for higher values of sk , 

raise in the concentration distribution     is observed. Rising behaviour of concentration profile is 

noted for higher values of Schmidt number Sc . The impact of physical parameters on    0 and 0f g   

is presented in Table 3. It is noticed that an increase in , andMn n    reduces the skin friction coefficient 

whereas the reverse trend is observed in the case of Reynolds number Re.  
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Fig. 3(a). Axial velocity profiles for different values of  and ,m  with 

Re = 1.5 , A1= =
1 =0.3, Sc = sk =n= K =0.5,=2, 

2 =0.4, Mn =1 

 

 
Fig. 3(b). Radial velocity profiles for different values of  and ,m  

with Re = 1.5 , A1= = 1 =0.3, Sc = sk =n= K =0.5,=2, 2 =0.4, 

Mn =1  
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Fig. 3(c). Tangential velocity profiles for different values of  

and ,m  with Re = 1.5 , A1= =
1 =0.3, Sc = sk =n= K =0.5,=2, 

2 =0.4, Mn =1  

 

 
Fig. 3(d). Concentration profiles for different values of  and ,m  

with Re = 1.5 , A1= = 1 =0.3, Sc = sk =n= K =0.5,=2, 2 =0.4, 

Mn =1  
 



CFD Letters 

Volume 11, Issue 4 (2019) 41-63 

53 
 

 
Fig. 4(a). Axial velocity profiles for different values of   and ,m  

with Re = 1.5 , A1=
1 =0.3, =1.2, Sc = sk =n= K =0.5,=2, 

2 =0.4, 

Mn =1 

 

 
Fig. 4(b). Radial velocity profiles for different values of   and ,m  

with Re = 1.5 , A1= 1 =0.3, =1.2, Sc = sk =n= K =0.5,=2, 2 =0.4, 

Mn =1 
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Fig. 4(c). Tangential velocity profiles for different values of   and 

,m  with Re = 1.5 , A1=
1 =0.3, =1.2, Sc = sk =n= K =0.5,=2, 

2

=0.4, Mn =1 
 

 
Fig. 4(d). Concentration profiles for different values of   and ,m  

with Re = 1.5 , A1= 1 =0.3, =1.2, Sc = sk =n= K =0.5,=2, 2 =0.4, 

Mn =1 
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Fig. 5(a). Radial velocity profiles for different values of  and  Mn

with Re = 1.5 , A1= =
1 =0.3, =1.2, Sc = ,m = sk =n= K =0.5,  

2 =0.4 

 
 

 
Fig. 5(b). Tangential velocity profiles for different values of 

 and  Mn with Re = 1.5 , A1= = 1 =0.3, =1.2, Sc = ,m =

sk =n= K =0.5,  2 =0.4 
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Fig. 6(a). Radial velocity profiles for different values of  Re 

and n with Mn =1, A1= =
1 =0.3, =1.2, Sc = ,m = sk = K

=0.5, =2, 
2 =0.4 

 

 
Fig. 6(b). Tangential velocity profiles for different values of  

Re and n with Mn =1, A1= = 1 =0.3, =1.2, Sc = ,m = sk = 

K =0.5, =2, 2 =0.4 
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Fig. 6(c). Concentration profiles for different values of  Re 

and n with Mn =1, A1= =
1 =0.3, =1.2, Sc = ,m = sk = K

=0.5, =2, 
2 =0.4 

 
 

 
Fig. 7(a). Radial and Tangential velocity profiles for different 

values of  1  and 2  with Re=1.5, A1= =0.3, =1.2, n= Sc = 

,m = sk = K =0.5, =2, Mn =1 
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Fig. 7(b). Radial velocity profiles for different values of A1 with 

Re=1.5, Mn =1,  = 
1 =0.3, Sc = ,m = sk = K  =n=0.5, =2, 

2

=0.4, =1.2 
 

 

 
Fig. 8(a). Concentration profiles for different values of Sc

and K  with Re=1.5, A1 = = 1 =0.3, =1.2, n = ,m = sk = 

0.5, =2, Mn =1, 2 =0.4 
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Fig. 8(b). Concentration profiles for different values of Sc and sk  

with Re=1.5, A1 = = 
1 =0.3, =1.2, n = ,m = K = 0.5, =2, Mn =1, 

2 =0.4 

 
 



CFD Letters 

Volume 11, Issue 4 (2019) 41-63 

60 
 

Table 3   
Values of skin friction, convergence control parameter and average squared residual error for different physical parameters with 

1 0.3, 0.5sA k Sc K     
1  

2  Re  n  Mn    m       ' 0f  f  
10

fE   ' 0g
 g  

10

gE  CPU  

Time(sec) 

0.3 0.5 1.5 0.5 1 2 

 -0.5 
 
0.3 

 

0.5 0.13535 0.34962 1.50x10-7 0.76623 1.07266 4.24x10-7 523.49 
2 0.14627 1.04145 6.69x10-7 0.77603 1.08028 5.11x10-7 515.18 
4 0.15353 1.04764 8.07 x10-7 0.78907 1.08985 6.51 x10-7 563.64 

   0.5 
0.5 0.11281 0.52162 3.66 x10-7 0.62934 0.74742 3.35 x10-7 504.16 
2 0.10911 0.70818 2.83 x10-7 0.62256 0.74554 3.31 x10-6 533.01 
4 0.10447 0.60482 1.41 x10-7 0.61353 0.74379 3.37 x10-6 530.68 

0.3 0.5 1.5 0.5
 

1 2 

-0.5 

0.5 

1.2 

0.14732 1.04254 7.11 x10-7 0.77751 1.08152 5.43 x10-7 561.82 

1.2 0.16011 1.05418 1.04 x10-6 0.80074 1.09835 9.08 x10-7 577.87 
2 0.17627 1.06472 1.38 x10-6 0.82677 1.11048 1.49 x10-6 550.61 

 0.5 
0.5 0.10831 0.70388 2.12 x10-7 0.62135 0.74526 3.22 x10-6 538.81 
1.2 0.09875 0.68892 1.54 x10-8 0.60435 0.74314 3.39 x10-6 502.08 

2 0.08757 0.71018 1.29 x10-7 0.58472 0.74552 5.16 x10-6 567.42 

0.3 0.5 1.5 0.5 

0.5 
1 

 0.5 0.3 1.2 

0.05352 0.58382 3.04 x10-5 0.50176 0.55623 1.61 x10-5 528.33 
5 0.06445 0.89318 2.61 x10-7 0.60112 0.93482 3.71 x10-6 532.78 

10 0.06791 0.99012 4.51 x10-7 0.64966     1.01311 2.08 x10-6 535.46 

1 
1 0.09772 0.55368 2.01 x10-6 0.56621 0.55775 9.62 x10-6 500.25 
5 0.12436 0.90232 4.75 x10-7 0.67584 0.92467 7.61 x10-7 511.62 
10 0.13014 0.97888 3.59 x10-7 0.69578 1.00429 3.79 x10-7 497.99 

0.3  0.5 

1.5 
0.1 

1 2   0.5 0.3 1.2 

0.10112 0.59072 3.65 x10-7 0.58989 0.61326 7.71 x10-6 528.57 
2 0.09231 0.49288 1.11 x10-5 0.53782 0.47568 9.84 x10-6 530.46 
3 0.08456 0.36592 1.06 x10-4 0.48151 0.33624 3.72 x10-6 531.54 
1.5 

0.5 

0.11058 0.71098 3.27 x10-7 0.62537 0.74625 3.31 x10-6 522.19 

2 0.10581 0.60152 1.99 x10-8 0.60485 0.67888 5.31 x10-6 531.62 
3 0.09965 0.57746 8.06 x10-7 0.57687 0.59172 8.48 x10-6 539.34 

0.3 

0.2 

1.5 0.5 1 2   0.5 0.3 1.2 

0.08601 0.50817 6.87x10-7 0.62257 0.74485 5.97x10-6 532.74 

0.6 0.12781 0.70677 1.48x10-7 0.54829 0.74692 2.05x10-6 540.29 
1.0 0.14837 0.59622 2.94x10-8 0.44015 0.74625 9.51x10-7 539.89 

0.1 
0.4 1.5 0.5 1 2   0.5 0.3 1.2 

0.13241 0.52218 2.35x10-7 0.63176 0.75121 3.15x10-6 563.68 
0.3 0.11103 0.71219 3.53x10-7 0.62618 0.74651 6.57x10-6 554.09 

0.5 0.09575 0.71852 3.51x10-7 0.62207 0.74491 6.52x10-6 570.86 
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4. Conclusions 

 
In the present paper, we examined the impact of homogeneous and heterogeneous  

reaction on Casson fluid due to a stretchable rotating disk in the presence of slip effects and 
variable thickness. Some of the interesting points as follows, 

 
I. Fluid concentration increases due to raising the values of the Schmidt number and 

power-law exponent parameter. 
II. The opposite trend is observed in the case of homogeneous reaction parameter and 

heterogeneous reaction parameter. 
III. Increasing values of Slip parameter, Casson parameter and Hartmann number oppose 

the fluid flow. 
IV. For increasing the values of disk thickness coefficient and dimensionless constant, 

momentum boundary layer thickness enhanced whereas the reverse trend is recorded 
in the case of concentration distribution. 
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