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This paper has investigated the steady magnetohydrodynamic (MHD) flow and heat 
transfer induced by an exponentially shrinking sheet with partial slip, thermal radiation 
and suction. Similarity variables are introduced to transform the governing equations 
into non-linear ordinary differential equations. Then, the bvp4c solver in Matlab 
software is utilized to solve the transformed ordinary differential equations. The 
effects of magnetic parameter and mass suction parameter are analyzed and 
presented. From the results, we notice that first and second solutions exist in certain 
range of suction parameter. Hence, we continue further in performing a stability 
analysis. We found the first solution was more stable and the skin friction coefficient 
increased when suction increased. 
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 1. Introduction 
 

A few decades ago, several authors have studied about heat transfer and fluid flow passing 
stretching or shrinking sheet. Wang [1] has investigated the problem of a shrinking sheet with the 
stagnation flow. Saleh et al., [2] investigated steady mixed convection stagnation flow towards a 
vertical shrinking sheet. Hafidzuddin et al., [3] analyzed the unsteady problem for the three-
dimensional flow of the permeable stretching/shrinking surface. In recent years, the studies of 
magnetohydrodynamic (MHD) have received a great of attention due to its important in many field. 
The numerous investigations on MHD have been reviewed in the literature [4-8].   

Many researchers [9-13] showed that dual solution exist when the velocity ratio exceed unity, 
i.e., the sheet moves in opposite direction to the free stream. Recently, there has been growing 
interest in the stability analysis of dual solutions [14-15]. The analysis helps determine the stability 
and significance of the solutions to the problem. According to Merkin [11], positive eigenvalues mean 
the solution is stable and negative eigenvalue imply otherwise. Ishak [16] and Yasin et al., [17] study 
the case of shrinking sheet and they concluded that second solution is unstable while first solution is 
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stable. Nazar et al., [18] investigated the stability analysis of three-dimensional flow induced with 
shrinking sheet in a Cu-water nanofluids. They also found that second solution is unstable and vice 
versa.  

Based on previous study, the present investigation extends the problem by Sharma et al., [12] to 
the case of magnetohydrodynamic (MHD) flow over an exponentially shrinking sheet. Stability 
analysis is conducted to identify the stability of dual solutions obtained.  

 
2. Problem Formulation  
 

A steady two-dimensional case of MHD flow passing an exponentially permeable shrinking sheet 
is considered. The governing equations are written in usual notation as: 
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The conditions at the boundary are: 
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Where    0 exp 2wv x V x L ,  0 expU U x L   and  0 0exp 2wT T x L v . 0V  is the mass flux velocity 

with 0 0V  (corresponds to the suction) and 0 0V   (corresponds to the injection). U  represents the 

velocity of the shrinking, wT  represents the temperature of variable at the sheet, L  represents the 

length, 0U  represents the velocity and 0T  represents the temperature.  Here  1 exp 2N N x L 
 

represents velocity slip factor while  1 exp 2D D x L 
 is the thermal slip factor. Both 1N  and 1D  are 

initial value for velocity and thermal slip factor, respectively. 0N D   is the no-slip case. For the 
radiation flux rq , we used Rosseland approximation and we can write:  
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Where *k  is the mean absorption coefficient and *  is Stefan-Boltzman constant. We further 
assumed that the term 4T  can be expressed as a linear function of temperature itself. Thus, 4T  can 
be expanded using Taylor series. Next, the terms of higher order are ignored and yields: 
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Introducing stream function   which always be denoted as u y    and v x   . Next, we 

introduce the following similarity variables: 
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Using Eq. (7), we get 
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Primes here denote differentiation with respect to  . We are used Eqs. (5) and (7). Thus, Eqs. (2) and 

(3) become 
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parameter for radiation.  The transformed boundary conditions are: 
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where  1 0 2 0N U L   ,  1 0 2 0D U L    and 0 0 2S V U L  . S  is the parameter for the 

constant mass transfer. 0S   corresponds to the suction while 0S   corresponds to the injection. 
The main physical quantities in this study are the skin friction coefficient, fC  and local Nusselt 

number, xNu . fC  and xNu  are defined as follows 
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Substituting Eqs. (5) and (7) into Eq. (12) and we obtain 
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Where    0Re expx U L x L  is the local Reynolds number. 
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3. Stability Analysis  
 

In this study, we are using the stability analysis developed by Weidman et al., [19]. According to 
them, a variable   has to be introduced. To perform stability analysis, unsteady cases are considered. 
Hence, Eqs. (2) and (3) will be replaced by 
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Here, t  refers to the time. Next, we introduced the new dimensionless variables for the unsteady 
problem based on the variables (7) previously 
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So that, Eqs. (14) and (15) change to the following equations 
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With the following boundary conditions 
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We can test the stability of the solution    0f f   and    0    . It is satisfying the 

boundary-value problem in Eqs. (9) to (11). We can write 
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Here,   is an unknown eigenvalue.  ,F    and   ,G    are small relative to  0f   and  0  . After 

that, Eq. (20) is substituted into Eqs. (17) and (18) and obtained as below 
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Together with the following boundary conditions 
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After that, we set 0  ,  0F F   and  0G G   to obtain the following: 
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And the boundary conditions: 
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By relaxing a boundary condition on  0G   or  0 'F  (see [20]), we can determine the possible values 

of  . The aim of this procedure is to determine the stability of the problem and for this present 

problem, we relax  0 ' 0F   . Then, we solved the system with the new condition at the boundary

 0 '' 0 1F  . 

 
4. Methodology  
 

By apply similarity transformation method, the three partial differential equations were 
transformed to become two ordinary differential equations. After that, we solved numerically Eqs. 
(9) and (10) together with boundary conditions in Eq. (11) by using bvp4c function in Matlab. In this 
study, we fixed the values of 0.1R      and Pr 0.7 . To ensure that our results are correct, a 
comparison has been made with the results obtained by Sharma et al., [18]. We found that the 
comparisons are in excellent agreement for 2.20S   and 0M  . Figure 1 represents the skin friction 
coefficient at the surface for selected values of M  while Figure 2 shows the heat transfer rate at the 
surface for selected values of M . From both figures, we noticed that there are admit dual solutions 
when 

c
S S , where cS  is the critical value of suction. To delay or accelerate the separation of the 

boundary layer, we can set magnetic parameter M  as controller parameter because when the value 
of M  is increases, the range of the solution will be increasing. Thus, we can conclude that the changes 
of the rate of heat transfer and surface stress are influenced by magnetic parameter M . 
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S with M for several values of  '' 0fVariation of. 1 .Fig 

  

 
S with M for several values of  ' 0 Variation of. 2 .Fig 

 
Further, Figures 3 to 6 display profiles to support the dual solutions that exist in Figures 1 and 2. 

Figures 3 and 5 shows profiles for the velocity while both Figures 4 and 6 show the temperature 
profiles. All profiles show the thickness of the boundary layer for the second solution always presents 
greater compared to the first solution. There are display first and second solutions. Hence, a stability 
analysis is conducted to know which one is unstable and stable. Table 1 presents the smallest 
eigenvalues   for selected values of M  and S . From Table 1, it is clearly shown that the smallest 

eigenvalue    is positive for the first solution and it is in opposite value for the second solution. Thus, 

the first solution is linearly stable while second solution is linearly unstable. 
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Fig. 3. Velocity profile for different values of M  with 

2.20S   
Fig. 4. Temperature profile for different values of 

M  with 2.20S   
  

  
Fig. 5. Velocity profile for different values of S  with

0M   

Fig. 6. Temperature profile for different values of 

S  with 0M   
 

Table 1  
Smallest eigenvalues   for some values of M  and S  

M S First Solution Second Solution 

0 

2.18 
2.20 
2.22 
2.24 

0.3015 
0.3952 
0.4758 
0.5427 

-0.2985 
-0.3903 
-0.4671 
-0.5316 

0.1 

2.18 
2.20 
2.22 
2.24 

0.8358 
0.8774 
0.8987 
0.9293 

-0.5289 
-0.6394 
-0.6886 
-0.7349 

0.2 

2.18 
2.20 
2.22 
2.24 

1.1906 
1.2384 
1.3251 
1.3749 

-0.7827 
-0.8243 
-0.8643 
-0.9028 
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5. Conclusion 
 

A study on magnetohydrodynamic (MHD) flow induced by shrinking sheet with partial slip, 
thermal radiation and suction was carried. Similarity transformations were introduce to reduce the 
partial differential equations into ordinary differential equations. The bvp4c solver was then used to 
solve the ordinary differential equations and boundary conditions. The results showed that increasing 
the magnetic parameter, it is contribute to increase the surface stress and heat transfer rate. Then, 
also we found that there are exists dual solution. The stability analysis was done to determine the 
stability of dual solutions. Based on the results, the first solution are stable and have physical 
meaning. 
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