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This study aims to investigate the steady two-dimensional laminar boundary layer flow 
past a fixed (Blasius) or past a moving (Sakiadis) semi-infinite flat plate in water-based 
nanofluids with partial slip and thermal convective boundary condition. The similarity 
equations are solved numerically for three types of metallic or non-metallic 
nanoparticles such as copper (Cu), alumina (Al2O3), and Titania (TiO2) in the base fluid 
of water with the Prandtl number Pr = 6.2 to investigate the effect of the solid volume 
fraction parameter 𝜑 of the nanofluids. The governing partial differential equations are 
transformed into a system nonlinear ordinary differential equation using a similarity 
transformation which is then solved numerically using a shooting method in Maple 
software. The numerical results are presented in tables and graphs for the skin friction 
coefficient Cf and local Nusselt number Nu which represents the heat transfer rate at 
the surface as well as the velocity and temperature profile for a range of various 
parameters such as nanoparticles volume fraction, slip parameter and Biot number. 
The results indicate that the solid volume fraction affects the fluid flow and heat 
transfer characteristics. 
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1. Introduction 
 

In 1908, Blasius [1] was among the first who studied the problems of boundary layer flow past a 
static semi-infinite flat plate, without considering the heat transfer aspect. Blasius himself gave the 
matching inner and outer series solutions and the Blasius equation was never yielded to the exact 
analytical solution. While, in 1961, Sakiadis [2] had been investigated the boundary layer flow over a 
continuous solid surface moving with constant velocity. He found the exact equation as Blasius, but 
in different boundary conditions. Pantokratoras [3] had presented a theoretical study of the effect of 
variable fluid properties on the classical Blasius and Sakiadis flow. These investigation concerns about 
engine oil, water and air taking into account the variation of their physical properties with 
temperature. The result of numerical simulation of the governing equations and cover large 
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temperature differences are obtained. Ishak et al., [4] have studied the extended classical Blasius and 
Sakiadis equations, by considering a uniform free stream parallel to a fixed or moving flat plate, which 
has more practical significance. It is assumed that the plate is subjected to constant heat flux, and 
moves in the same or opposite direction to the free stream.  

However, the above problems have not dealt with the nanofluid. In this field, there are two types 
of model that have been found which are Buongiorno [5] model and Tiwari and Das [6] model. Tiwari 
and Das [6] model analyse the behaviour of nanofluids into the nanoparticle volume fraction 𝜑 
parameter. Ahmad et al., [7] had investigated the classical problems of forced convection boundary 
layer flow and heat transfer past a semi-infinite static flat plate (Blasius problem) and past a moving 
semi-infinite slat plate (Sakiadis problem) using nanofluids. This problem solved by using the model 
proposed by Tiwari and Das [6] by the shooting method. It is found that the inclusion of nanoparticles 
into the base water fluid has produced the increasing of skin friction, heat transfer coefficients and 
volume fraction. Then, Bachok et al., [8] had extended the Blasius and Sakiadis problems in 
nanofluids, by considering a uniform free stream parallel to a fixed or moving flat plate, which has 
more practical significance. The plate was assumed moves in the same or opposite direction to the 
free stream. The effect of the nanoparticle volume fraction parameter of the nanofluids on the heat 
transfer characteristics is investigated. The results indicate that dual solutions exist when the plate 
and the free stream move in opposite directions. Anuar and Bachok [9] have studied the classical 
problems of boundary layer flow and heat transfer characteristics past a semi-infinite static flat plate 
(Blasius problem) and past a moving semi-infinite slat plate (Sakiadis problem) in a water-based 
nanofluids with Prandtl number (Pr = 6.2) by using the effects of Brownian motion Nb, 
thermophoresis Nt and nanoparticle volume fraction 𝜑 parameters. Then, Devi and Suriyakumar [10] 
have presented a theoretical study on the effect of magnetic field on the classical Blasius and Sakiadis 
flow of nanofluids over an inclined plate. They choose two types of nanoparticles such as copper and 
alumina in the base fluid of water with Prandtl number, Pr = 6.2. The investigations on nanofluids 
were continued by Chan et al., [11] and Zulkifli et al., [12] who analyses effect on the moving surface 
with convective boundary condition and viscous dissipation, respectively. 

Noghrehabadi et al., [13] have analysed the development of the slip effects on the boundary layer 
flow and heat transfer over a stretching surface in the presence of nanoparticle fractions. In the 
modeling of nanofluid the dynamic effects including the Brownian motion and thermophoresis are 
considered. A similarity solution is presented in the case of constant wall temperature. The solution 
depends on a Prandtl number, slip factor, Brownian motion number, Lewis number, and 
thermophoresis number. These five parameters are numerically investigated for the dependency of 
the local Nusselt and local Sherwood numbers. But, they did not investigate the effects of a slip 
boundary condition in the presence of dynamic effects of nanoparticles yet. The slip parameter had 
strongly influenced the flow velocity and the surface shear stress on the stretching sheet and also 
reduced Nusselt number and reduced Sherwood number. The stability of unsteady boundary layer 
flow and heat transfer over stretching/shrinking sheet immersed in Cu-water nanofluid with the 
presence of partial slip, Soret and Dufour effects have been studied by Dzulkifli et al., [14]. Najib et 
al., [15] investigated on boundary layer flow and mass transfer near stagnation point past a stretching 
or shrinking cylinder in copper water nanofluid under consideration of chemical reaction and slip 
effect. The numerical results indicate that with examination of slip at the boundary causes to 
decrease the skin friction coefficient but increased the mass transfer rate. Then, the problem of the 
flow of H2O-C2H6O2 (50:50) based boehmite alumina nanofluid over a Blasius and Sakiadis in the 
presence of slip effects and viscous dissipation effects were analysed by Ganesh et al., [16]. The 
problems show that as the slip conditions enhanced, the velocity profile is increase for Blasius case 
and decrease for Sakiadis case. 
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Bataller [17] had analysed the effects of thermal radiation on the laminar boundary layer about 
a flat-plate in a steady stream of fluid (Blasius flow), and about a moving plate in a quiescent ambient 
fluid (Sakiadis flow) both under a convective surface boundary condition. Ishak et al., [18] had studied 
the steady laminar boundary layer flow over a moving plate in a moving fluid with convective surface 
boundary condition and in the presence of thermal radiation. They investigated under certain 
conditions, the present problem reduces to the classical Blasius and Sakiadis problems. They found 
that the heat transfer rate at the surface decreases in the presence of thermal radiation and 
convective boundary condition. Azam et al., [19] have been studied the partial slip and convective 
boundary condition of the Carreau nanofluid with the presence of magnetic field. They found that by 
increasing the Biot number in shear thickenings and shear thinning fluids will increase the 
temperature and nanoparticle concentration. Then, Yasin et al., [20] have been study the effect of 
thermal radiation and Newtonian heating on the stagnation point flow past a flat surface with the 
presence of magnetic field. 

Therefore, in this paper, we extend the work of Ahmad et al., [7] by including the effect of partial 
slip and thermal convective boundary condition on the steady two-dimensional laminar boundary 
layer flow past a Blasius and Sakiadis semi-infinite plate in a nanofluid by using Tiwari and Das [6] 
model. The effects of the partial slip, thermal convective boundary condition, solid volume fraction 
and the types of nanoparticles on characteristics of energy flow will be studied numerically and 
discussed further. For some particular cases of the present study, the results are compared with 
Ahmad et al., [7] to support their validity. 

 
2. Methodology  

 
Consider the steady two-dimensional boundary layer flow past a fixed (Blasius) or past a moving 

(Sakiadis) semi-infinite flat plate in a water-based nanofluid containing different types of 
nanoparticles: Cu, Al2O3 and TiO2. It is assumed that the nanofluid is incompressible, laminar flow 
and the viscous dissipation and radiation effects are neglected. Let 𝑢 and 𝑣 be the velocity 
components along 𝑥 and 𝑦 directions (Figure 1). The flow takes places at 𝑦 ≥ 0 where 𝑦 is the 
coordinate measured normal to the surface. Further, we assume that the uniform temperature and 
the uniform nanofluid volume fraction at the surface of the plate are 𝑇𝑤 and 𝐶𝑤, while the uniform 
temperature and the uniform nanofluid volume fraction far from the surface of the plate are 𝑇∞ and 
𝐶∞, respectively. 

  

 
Fig. 1. Physical flow model of the problem 
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𝑢
𝜕𝑇

𝜕𝑥
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𝜕𝑇

𝜕𝑦
= 𝛼𝑛𝑓

𝜕2𝑇
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We assume that these equations are subject to the boundary conditions 
 
i) Blasius problem 
 

𝑣 = 0, 𝑢 = 𝐿 (
𝜕𝑢

𝜕𝑦
)  at 𝑦 = 0 

 
𝑢 = 𝑈 as 𝑦 ⟶ ∞             (4) 
 
ii) Sakiadis problem 
 

𝑣 = 0, 𝑢 = 𝑈 + 𝐿 (
𝜕𝑢

𝜕𝑦
)  at 𝑦 = 0 

 
𝑢 = 0 as 𝑦 ⟶ ∞             (5) 
 
Where 𝑢 and 𝑣 are the velocity components along the axes 𝑥 and 𝑦. 𝑈 is the constant velocity of the 
free stream or that of a moving flat plate and 𝐿 denotes the slip length, 𝑇 is the temperature of a 
nanofluid. The boundary conditions for the energy equation are 
 

−𝑘 (
𝜕𝑇

𝜕𝑦
) = ℎ𝑓(𝑇𝑤 − 𝑇) at 𝑦 = 0, 𝑇 = 𝑇∞ as 𝑦 ⟶ ∞        (6) 

 
It is that 𝜌 is the pressure of nanofluid, 𝜇𝑛𝑓 is the dynamic viscosity of the nanofluid, 𝜌𝑛𝑓 is the 

density of the nanofluid and 𝛼𝑛𝑓 is the thermal diffusivity of the nanofluid, which are given by Oztop 

and Abu-Nada [21]. 
 

𝜇𝑛𝑓 =
𝜇𝑓

(1 − 𝜑)2.5
, 𝜌𝑛𝑓 = (1 − 𝜑)𝜌𝑓 + 𝜑𝜌𝑠 , 𝛼𝑛𝑓 =

𝑘𝑛𝑓

(𝜌𝐶𝑝)
𝑛𝑓

 

 

𝑘𝑛𝑓

𝑘𝑓
=

(𝑘𝑠 + 2𝑘𝑓) − 2𝜑(𝑘𝑓 − 𝑘𝑠)

(𝑘𝑠 + 2𝑘𝑓) + 𝜑(𝑘𝑓 − 𝑘𝑠)
, (𝜌𝐶𝑝)𝑛𝑓 = (1 − 𝜑)(𝜌𝐶𝑝)

𝑓
+ 𝜑(𝜌𝐶𝑝)𝑠 

 
Where 𝜑 is the nanoparticle volume fraction parameter of the nanofluid, 𝑘𝑛𝑓 is the thermal 

conductivity of the fluid fraction, 𝑘𝑠 is the thermal conductivity of the nanoparticle volume fraction, 
𝜌𝑓 is the reference density of solid fraction, 𝜇𝑓 is the viscosity of the fluid fraction and (𝜌𝐶𝑝)𝑛𝑓 is the 

heat capacitance of the nanofluids, where 𝐶𝑝 is the specific heat at constant pressure. The viscosity 
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𝜇𝑛𝑓 of the nanofluid given by Brinkman [22] can be approximated as the viscosity of the base fluid 

𝜇𝑓 containing a dilute suspension of fine spherical particles.  

To obtain a similarity solution for Eqs. (1) – (6), the similarity transformation is introduced 
 

𝜓 = (𝑈𝜐𝑓𝑥)
1

2𝑓(𝜂), 𝜃(𝜂) =
(𝑇−𝑇∞)

(𝑇𝑤−𝑇∞)
, 𝜂 = (𝑈 𝜐𝑓𝑥⁄ )

1

2𝑦          (7) 

 
Where 𝜐𝑓 is the kinematic viscosity of the fluid fraction and 𝜓 is the stream function that is defined 

as 𝑢 =
𝜕𝜓

𝜕𝑦
 and 𝑣 = −

𝜕𝜓

𝜕𝑥
, which satisfy Eq. (1). By substituting variables Eq. (7) into Eqs. (2) and (3), 

the transformed ordinary differential equations are obtained 
 

1

(1−𝜑)2.5(1−𝜑+𝜑𝜌𝑠 𝜌𝑓)⁄
𝑓′′′ +

1

2
𝑓𝑓′′ = 0           (8) 

 
1

Pr

𝑘𝑛𝑓 𝑘𝑓⁄

[(1−𝜑)+𝜑(𝜌𝐶𝑝)
𝑠

(𝜌𝐶𝑝)
𝑓

⁄ ]
𝜃′′ +

1

2
𝑓𝜃′ = 0          (9) 

 
The corresponding initial and boundary conditions (4), (5) and (6) are 
 
𝑓(0) = 0, 𝑓′(0) = 𝜎𝑓′′(0), 𝑓′(∞) ⟶ 1                    (10) 
 
𝑓(0) = 0, 𝑓′(0) = 1 + 𝜎𝑓′′(0), 𝑓′(∞) ⟶ 0                    (11) 
 
𝜃′(0) = 𝐵𝑖(𝜃(0) − 1), 𝜃(∞) ⟶ 0                     (12) 
 
where primes denote differentiation with respect to 𝜂. Pr = 𝜐𝑓 𝛼𝑓⁄  is the Prandtl number,  

 

𝜎 = 𝐿 (
𝑈

𝜐𝑓𝑥
)

1 2⁄

 is the slip parameter and  

 

𝐵𝑖 =
𝑐

𝑘
(

𝜐𝑓

𝑈
)

1 2⁄

 is the Biot number. 

 
Quantities of pratical interest which are the skin friction coefficient 𝐶𝑓 and the local Nusselt number 

𝑁𝑢 are defined as 
 

𝐶𝑓 =
𝜏𝑤

𝜌𝑓𝑈2 , 𝑁𝑢 =
𝑥𝑞𝑤

𝑘𝑓(𝑇𝑤−𝑇∞)
                      (13) 

 
Where 𝜏𝑤is the surface shear stress and 𝑞𝑤 is the surface heat flux which can be expressed as 
 

𝜏𝑤 = 𝜇𝑛𝑓 (
𝜕𝑢

𝜕𝑦
)

𝑦=0
, 𝑞𝑤 = −𝑘𝑛𝑓 (

𝜕𝑇

𝜕𝑦
)

𝑦=0
                    (14) 

 
With 𝜇𝑛𝑓 is the dynamic viscosity of nanofluids and 𝑘𝑛𝑓 is the thermal conductivity of nanofluids. 

Using the variables of similarity (7), we obtained  
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𝑅𝑒𝑥
1 2⁄

𝐶𝑓 =
1

(1−𝜑)2.5 𝑓′′(0), 𝑅𝑒𝑥
−1 2⁄

𝑁𝑢 = −
𝑘𝑛𝑓

𝑘𝑓
𝜃′(0)                   (15) 

 
3. Numerical Scheme 
 

The nonlinear ordinary differential Eqs. (8) and (9) subject to the boundary conditions (10) and 
(11) form a two-point boundary value problem (BVP) and has been solved numerically using the 
shooting method. It is an iterative algorithm technique implemented in Maple program which 
attempts to identify the appropriate initial conditions for a related initial value problem (IVP). 
Bhattacharyya and Layek [23] and Bhattacharyya et al., [24] have been described this method in their 
papers. In this method, the suitable finite values of 𝜂, say 𝜂∞, which depend on the values of the 
parameters were considered. First, high-order Eqs. (8) and (9) should be reduced to the first order 
equations by introducing some variables as follows 

 

𝑓′ = 𝑝, 𝑝′ = 𝑞,
1

(1−𝜑)2.5(1−𝜑+𝜑𝜌𝑠/𝜌𝑓)
𝑞′ +

1

2
𝑓𝑞 = 0                   (16) 

 

𝜃′ = 𝑟,
1

Pr

𝑘𝑛𝑓 𝑘𝑓⁄

[1−𝜑+𝜑(𝜌𝐶𝑝)
𝑠

/(𝜌𝐶𝑝)
𝑓

]
𝑟′ +

1

2
𝑓𝑟 = 0                    (17) 

 
With the boundary conditions 
 
𝑓(0) = 0, 𝑝(0) = 𝜎𝑞(0), 𝑝(𝜂∞) = 1                     (18) 
 
𝑓(0) = 0, 𝑝(0) = 1 + 𝜎𝑞(0), 𝑝(𝜂∞) = 0                    (19) 
 
𝑟(0) = 𝐵𝑖(𝜃(0) − 1), 𝜃(𝜂∞) = 0                     (20) 
 
Now we have a set of ‘partial’ initial conditions 
 
𝑓(0) = 0, 𝑝(0) = 𝜎𝑞(0), 𝑞(0) =? , 𝜃(0) = (𝑟(0) 𝐵𝑖⁄ ) + 1, 𝑟(0) =?.                (21) 
 

As we notice, we do not have the values of 𝑞(0) and 𝑟(0), i.e., 𝑓′′(0) and −𝜃′(0). Thus, we are 
setting the different initial guesses for the values and apply the Runge-Kutta-Fehlberg method to see 
if this guess matches the boundary conditions at the very end. Differing the initial slopes gives rise to 
a range of profiles that indicate from the initial point the trajectory of a projectile 'shot'. That initial 
slope is sought which results in the trajectory ‘hitting’ the target, that is, the final value (Bailey et al., 
[25]).  

The velocity and the temperature profiles are needed to check, to determine the solution 
obtained is valid or not. The correct profiles must satisfy the boundary conditions at 𝜂 = 𝜂∞ 
asymptotically. This process is repeated for other guessing values of 𝑞(0) and 𝑟(0) for same values 
of parameters.  
 
4. Results and Discussion 
  

The effect of the nanoparticle volume fraction 𝜑, slip parameter 𝜎 and Biot number 𝐵𝑖 are 
analysed for three different nanofluids: Cu, Al2O3 and TiO2 as the working fluids and water as the base 
working fluid. The Prandtl number is taken to be Pr = 6.2 and nanoparticles value fraction is 
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considered from 0 to 0.2 (0 ≤ 𝜑 ≤ 0.2), where 𝜑 = 0 is corresponding to the regular fluid. The 
thermophysical properties of the base fluid and nanoparticles are listed in Table 1. 

 
Table 1 
Thermophysical properties of the fluid phase (water) and 
nanoparticles Oztop and Abu-Nada [21] 
Physical properties Fluid phase (water) Cu Al2O3 TiO2 

𝐶𝑝 (J/kgK) 4179 385 765 686.2 

𝜌 (kg/m3) 997.1 8933 3970 4250 
𝑘 (W/mK) 0.613 400 40 8.9538 

 
Figures 2(a) until 3(b) illustrate the variations of the skin friction 𝑓′′(0) and local Nusselt number 

−𝜃′(0) for different nanoparticles, Biot number, nanoparticle volume fraction and also slip 
parameter for both Blasius and Sakiadis problem. These reduced skin frictions and reduced Nusselt 
number are shown graphically for several values of slip parameter 𝜎 and Biot number Bi. Figures 2 
(a) and (b) illustrate the variations of the skin friction coefficient given by Eq. (15) with parameter 𝜑 
for three different nanoparticles: Copper Cu, Alumina Al2O3 and Titania TiO2, respectively when Pr = 
6.2. It is interesting to observe that the skin friction coefficient increases almost monotonically with 
increasing 𝜑 but the reverse effect for slip parameter for both Blasius and Sakiadis problem. These 
figures show that Al2O3 has the lowest skin friction coefficient and the difference between the values 
for TiO2 and Al2O3 is very small, as can be seen from Tables 2 and 3 and Figures 2 (a) and (b). 

However, this behaviour is the same as the reported by Ahmad et al., [7]. This is explained by 
looking at Eq. (11) where the ordinary differential equation shows that the nanoparticle volume 
fraction ' parameter and slip parameter 𝜎 give the effect to the result. Other than that, Tables 2 and 
3 also shows the comparison of skin friction coefficient with Ahmad et al., [7], which show a 
favourable agreement, thus give confidence that the numerical results obtained are accurate. 

However, we are more interested to know the influenced of the nanoparticle volume fraction 
𝜑 parameter and slip 𝜎 parameter towards the heat transfer rate. The variation of Nusselt number 
with 𝜑 for Blasius and Sakiadis problem are presented in Figures 3 (a) and (b) considering the various 
value of 𝜎 parameter. It is seen that Nusselt number increase when parameter 𝜑 increase and it is 
also increased when parameter 𝜎 increasing for Blasius problem but not in Sakiadis problem. From 
Figure 3 (a), Cu has the highest heat transfer rate, while TiO2 has the lowest heat transfer rate 
compared to Cu due to domination of conduction mode of heat transfer. Table 1 clearly shows that 
TiO2 has the lowest value of thermal conductivity compared with Cu and Al2O3. In contrast, for the 
Sakiadis problem, Al2O3 has the highest heat transfer rate. The thermal conductivity of Al2O3 is 
approximately one-tenth of Cu, as given in Table 1. However, it has its unique property which is low 
thermal diffusivity. A decrease in thermal diffusivity leads to a higher temperature gradient and thus 
will increase enhancement in heat transfers. However, Cu nanoparticle has a high value of thermal 
diffusivity and therefore, this automatically will reduce the temperature gradient and will affect the 
performance of Cu-water working fluid. In summation, it is noted that the lowest heat transfer rate 
obtained to TiO2 nanoparticles. 

Further, Figures 4 - 7 presents the velocity and temperature for both Blasius and Sakiadis 
problems for some values of nanoparticle volume fraction 𝜑 parameter (0 ≤ 𝜑 ≤ 0.2) when Pr = 6.2 
, Bi = 0.1 and Cu-water as a working fluid. Figures 4 and 6 show that the momentum boundary layer 
increases with nanoparticle volume fraction 𝜑 for the Blasius problem, while decrease with 
nanoparticle volume fraction 𝜑 for the Sakiadis problem. However, Figures 5 and 7 show that the 
thermal boundary layer thickness increases with an increase in the parameter 𝜑 because of the 
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increase in the local Nusselt number, as can be seen from Figures 3. Therefore, nanofluids are capable 
of changing the velocity and temperature profiles within the boundary layer.  

However, for Figures 8 - 11 presents the velocity and temperature for both Blasius and Sakiadis 
problems for different values of slip parameter 𝜎, (𝜎 = 0, 0.2, 0.4) when Pr = 6, 2, Bi = 0.1, 𝜑 = 0.1 
and Cu-water as working fluid. Figures 8 and 10 show that the momentum boundary layer increases 
with slip 𝜎 parameter for the Blasius problem but decreases for Sakiadis problem. It is same goes for 
the thermal boundary layer thickness in Figures 9 - 11 which is decreases for Blasius problem but 
increases for Sakiadis problems as the slip 𝜎 parameter increase. It can be seen that all these profiles 
are asymptotically satisfied all boundary conditions Eqs. (10) - (12). Hence, the numerical results we 
obtained are valid. 

 
Table 2 

Values of 𝑅𝑒𝑥
1 2⁄

𝐶𝑓 for the Blasius problem 

𝜎 𝜑 Ahmad et al., [7] Present 

Cu-water Al2O3-water TiO2-water Cu-water Al2O3-water TiO2-water 

0 0 0.3321 0.3321 0.3321 0.3321 0.3321 0.3321 
0.002 0.3355 0.3339 0.3340 0.3355 0.3339 0.3340 
0.004 0.3390 0.3357 0.3359 0.3390 0.3357 0.3359 
0.008 0.3459 0.3394 0.3398 0.3459 0.3394 0.3398 
0.01 0.3494 0.3412 0.3417 0.3494 0.3412 0.3417 
0.012 0.3528 0.3431 0.3436 0.3528 0.3431 0.3436 
0.014 0.3563 0.3449 0.3456 0.3563 0.3449 0.3456 
0.016 0.3597 0.3468 0.3476 0.3597 0.3468 0.3476 
0.018 0.3632 0.3487 0.3495 0.3632 0.3487 0.3495 
0.02 0.3667 0.3551 0.3515 0.3667 0.3551 0.3515 
0.1 0.5076 0.4316 0.4362 0.5076 0.4316 0.4362 
0.2 0.7066 0.5545 0.5642 0.7066 0.5545 0.5642 

0.2 0    0.3298 0.3298 0.3298 
0.002    0.3332 0.3316 0.3317 
0.004    0.3367 0.3334 0.3336 
0.008    0.3435 0.3371 0.3375 
0.01    0.3469 0.3389 0.3394 
0.012    0.3503 0.3408 0.3413 
0.014    0.3537 0.3426 0.3432 
0.016    0.3571 0.3445 0.3452 
0.018    0.3605 0.3463 0.3471 
0.02    0.3639 0.3482 0.3491 
0.1    0.5030 0.4287 0.4332 
0.2    0.6996 0.5511 0.5606 

0.4 0    0.3238 0.3238 0.3238 
0.002    0.3271 0.3256 0.3257 
0.004    0.3304 0.3274 0.3275 
0.008    0.3370 0.3309 0.3313 
0.01    0.3403 0.3327 0.3332 
0.012    0.3436 0.3345 0.3351 
0.014    0.3469 0.3364 0.3370 
0.016    0.3502 0.3382 0.3389 
0.018    0.3534 0.3400 0.3408 
0.02    0.3567 0.3418 0.3427 
0.1    0.4908 0.4209 0.4252 
0.2    0.6816 0.5419 0.5509 
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Table 3 

Values of −𝑅𝑒𝑥
1 2⁄

𝐶𝑓 for the Sakiadis problem 
𝜎 𝜑 Ahmad et al., [7] Present 

Cu-water Al2O3-water TiO2-water Cu-water Al2O3-water TiO2-water 

0 0 0.4446 0.4446 0.4446 0.4438 0.4438 0.4438 
0.002 0.4492 0.4470 0.4471 0.4484 0.4454 0.4455 
0.004 0.4538 0.4494 0.4497 0.4530 0.4462 0.4463 
0.008 0.4630 0.4544 0.4548 0.4530 0.4486 0.4489 
0.01 0.4676 0.4568 0.4574 0.4623 0.4535 0.4540 
0.012 0.4722 0.4593 0.4600 0.4669 0.4560 0.4566 
0.014 0.4768 0.4618 0.4626 0.4715 0.4585 0.4592 
0.016 0.4814 0.4643 0.4653 0.4808 0.4635 0.4645 
0.018 0.4860 0.4668 0.4679 0.4854 0.4660 0.4671 
0.02 0.4906 0.4693 0.4705 0.4900 0.4685 0.4697 
0.1 0.6788 0.5778 0.5840 0.6784 0.5768 0.5830 
0.2 0.9446 0.7428 0.7556 0.9442 0.7410 0.7540 

0.2 0    0.3925 0.3925 0.3925 
0.002    0.3964 0.3925 0.3948 
0.004    0.4003 0.3968 0.3970 
0.008    0.4080 0.4011 0.4015 
0.01    0.4118 0.4033 0.4038 
0.012    0.4156 0.4055 0.4060 
0.014    0.4195 0.4076 0.4083 
0.016    0.4233 0.4098 0.4106 
0.018    0.4272 0.4120 0.4129 
0.02    0.4310 0.4142 0.4152 
0.1    0.5885 0.5103 0.5151 
0.2    0.8152 0.6588 0.6690 

0.4 0    0.3531 0.3531 0.3531 
0.002    0.3564 0.3550 0.3551 
0.004    0.3598 0.3570 0.3571 
0.008    0.3664 0.3608 0.3611 
0.01    0.3697 0.3627 0.3631 
0.012    0.3729 0.3647 0.3652 
0.014    0.3762 0.3666 0.3672 
0.016    0.3795 0.3686 0.3692 
0.018    0.3828 0.3706 0.3713 
0.02    0.3861 0.3725 0.3733 
0.1    0.5219 0.4591 0.4631 
0.2    0.7205 0.5949 0.6033 

 

 
(a) 

 
(b) 

Fig. 2. Variation of the skin friction coefficient with 𝜑 for (a) Blasius problem and (b) Sakiadis problem 
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(a) 

 
(b) 

Fig. 3. Variation of the Nusselt number coefficient with 𝜑 for (a) Blasius problem and (b) Sakiadis problem 
 

 

  
Fig. 4. Velocity profiles for various 𝜑 for the Blasius 
problem with Cu-water as working fluid with 𝜎 =
0.2 and Pr = 6.2 

Fig. 5. Temperature profiles for various 𝜑 for the 
Blasius problem with Cu-water as working fluid 
with 𝜎 = 0.2, 𝐵𝑖 = 0.1 and Pr = 6.2 

 

  
Fig. 6. Velocity profiles for various 𝜑 for the Sakiadis 
problem with Cu-water as working fluid with 𝜎 =
0.2 and Pr = 6.2 

Fig. 7. Temperature profiles for various 𝜑 for the 
Sakiadis problem with Cu-water as working fluid 
with 𝜎 = 0.2, 𝐵𝑖 = 0.1 and Pr = 6.2 
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Fig. 8. Velocity profiles for various 𝜎 for the Blasius 
problem with Cu-water as working fluid with 𝜑 =
0.1 and Pr = 6.2 

Fig. 9. Temperature profiles for various 𝜎 for the 
Blasius problem with Cu-water as working fluid 
with 𝜑 = 0.1, 𝐵𝑖 = 0.1 and Pr = 6.2 

 

  
Fig. 10. Velocity profiles for various 𝜎 for the Sakiadis 
problem with Cu-water as working fluid with 𝜑 =
0.1 and Pr = 6.2 

Fig. 11. Temperature profiles for various σ for the 
Sakiadis problem with Cu-water as working fluid 

with 𝜑 = 0.1, 𝐵𝑖 = 0.1 and Pr = 6.2 

 
5. Conclusions 
 

We have studied theoretically and analysed the effects of partial slip and thermal convective 
boundary condition on the flow and the heat transfer characteristics for both Blasius and Sakiadis 
problems in the presence of nanofluids, and considered using the model proposed by Tiwari and Das 
[6]. The effects of nanoparticle volume fraction 𝜑, slip parameter 𝜎, as well as Biot number on the 
skin friction coefficient and heat transfer rate at the surface, were investigated and discussed. The 
problem was solved using a shooting method by Maple software. The results indicate that 
 

i) As the slip parameter 𝜎 increase, the skin friction will decrease for both Blasius and Sakiadis 
problems, while the Nusselt number increase for Blasius problem but decrease for Sakiadis 
problem. 

ii) As the Biot number increase, the thickness of the thermal boundary layer also increase for 
both Blasius and Sakiadis problems. 

iii) The presence of nanoparticles into the base water fluid has produced an increase in the skin 
friction and the heat transfer (Nusselt number) coefficients, which increases significantly with 
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an increase in nanoparticle volume fraction. The addition of nanoparticles showed an 
improvement in the heat transfer rate. 

iv) Nanofluids are capable of changing the velocity and temperature profiles in the boundary 
layer. 

v) Cu has the highest values for both skin friction coefficient and Nusselt number in the base 
fluid of water with the Prandtl number Pr = 6.2 compared with TiO2 and Al2O3. 
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