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method. To investigate the computational accuracy for GTDTM, the explicit factor is
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reduced from 1 (fully explicit) to O (fully implicit). The results show that the lower the
explicit factor, the propagated wave will be damped with a faster speed. As a remedy,
the Courant number is reduced when the explicit factor is small. In fact, Euler implicit
scheme is not an effective approach to solve the hyperbolic wave equation. However,
the minimum Courant number required due to different explicit factor has been
computed too for future implementation of GTDTM.
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1. Introduction

Wave equation has been widely applied in engineering physics such as the investigation on tidal
wave [1], modelling on ultrasonic pretreatment [2], vibration of quantum particles [3], simulation of
mountain wave [4] and formation of Keller-Miksis equation which governs the high-speed bubble
dynamics [5,6]. Since wave equation appears as hyperbolic partial differential equation, designing
suitable numerical stencils for time-marching scheme is a critical issue among numerical scientists to
ensure computational accuracy.

The most popular method in time discretisation of wave equation is Euler explicit method, in
which the spatial derivative of the equation is presumed to hold current time step. This is probably
due to its simplicity and excellent accuracy, provided that the grid size is small enough. The
improvised versions of explicit method comprise Lax method [7-8], Delfim-Soares explicit method [9]
and higher order explicit time-stepping method [10]. They are proven to be efficient in the
computation of wave equation and other hyperbolic equations.
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Nevertheless, the application of implicit time-stepping method in solving hyperbolic equation is
not as favored as explicit scheme. Besides than its complexity, implicit scheme may lead to
asymptotically obliterating amplitude [8,11]. To solve the problem, there are basically three types of
approaches have been proposed. First method is through combination of the explicit and implicit
scheme can be combined, and the example of this is trapezoidal differencing method [8]. Second
approach is via the increment of higher order accuracy of Taylor’s series expansion, and the examples
for this comprise leap-frog method [8], dissipation-adaptive method [11], Lax-Wendroff method [12],
high order Runge-Kutta method, and Malkoti method [13]. The third way is via deploying of
correction step. The methods which were developed using this method are MacComack method,
Rusanov method and Warming-Kutler-Lomax method, and the details of these methods can be found
in the work of Tannehill et al., [8]. Implicit-explicit multistep method is recently proposed by Gao and
Mei [14] too, yet their numerical scheme, finite element Galerkin approach is applied instead of finite
difference method.

However, for most of these improvised methods, their computational performance is left
unexamined via practical numerical modelling of wave equation. In this paper, a generalized
trapezoidal differencing method [8] will be developed to solve acoustic wave, inspired by the
generalization of discretized heat equation from Reith et al., [15]. The possible way to set right the
annihilation of wave will be investigated as well.

2. Formulation of Wave Equation

Consider a string as illustrated in Figure 1, the equilibrium of forces in one dimensional domain
can be formed from the Newton’s second law:

F=ma=pVa

2
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where p, AP, F and F. is the density of string, vertical displacement of the string, string tension and
external force applied on the string respectively. By taking Ax to be infinitely close to zero, Eq. (1)
can be simplified as in Eq. (2). Then Eq. (2) is differentiated with first derivative of x to form Eq. (3).

2
D Ax2+AP2%t—?:F(x,t)cos[é’(x,t)} F, (2)

) 1+(%j2 58?23:cos[e(x,t)]i[F(x,t)]+F(x,t)%{cos[e(x,t)]hleze (3)

Now, by applying the trigonometric equation as in Egs. (4) and (5) into Eq. (3), the wave equation
as in Eq. (6). The physical assumption made during the simplification are: (a) the displacement
gradient dP/0dx is equivalent to 1; and (b) in vertical harmonic oscillation, the rate of change of force
per unit distance across x-axis will be zero.
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Fig. 1. The propagation of energy via
oscillating string

In Eq. (6), c represents the wave speed, which can be further related with the wave frequency f
and wavelength A as shown in Eqg. (7). Wave speed for sound is dependent on the transmitting
medium and the ambient temperature. For example, the wave of sound moves with the approximate
speed of 344 m/s and 1500 m/s in air and water respectively when the ambient temperature is 20°C.
The details of the speed of sound can be referred in the work of Miiller and Mdser [16].

c="fA (7)
3. Generalised Trapezoidal Differencing Time-Marching Scheme

The discretized equation of Eq. (5) using trapezoidal differencing time-marching scheme [8] is
shown in Eq. (8).

Pn+l_2Pn Pn—l 1 P n+1_2Pn+1 P n+1 P n_2Pn P n
i i th :CZ—( i ThHa + i+1 i thia (8)

i+1
At? 2 AX? AX?

Note that for the spatial discretisation, half of the stencils are built based on the future time step,
while the other half are holding the current time step. For a generalized equation, Eq. (8) can be
further modified to form Eq. (9). Rearrangement of the stencil in Eq. (9) will form Eq. (10).
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AX

In Eq. (8), B (< 1) is known as explicit factor, i.e. when B is 0, 1 and 0.5, then Eq. (10) will become
fully implicit, fully explicit and trapezoidal differencing method respectively. Eq. (10) can be further
re-expressed to yield a matrix as shown in Eq. (11) for the ease of computation.

n+1

1+2a(1-8)  a(B-1) 0 R

a(f-1) 1+2a(1-p) : P
: a(p-1)
0 a(B-1) 1+2a(1-5)) P,
PY" (a) (2@-ap) ap - 0 (RY

_ F?z s 0 s 0{,8 2(1.—aﬁ) . : P, 1)
: : : a(ﬁ—l)
P, 2 0 aff 2(l—aﬂ) P,

where:

ri=a(l-B)S+apS
X=a (1_ ﬁ) I:)m—lni3 + a:m::’m—lni4

The solution of wave equation via Eq. (11) is named as Generalised Trapezoidal Differencing Time-
Marching (GTDTM) scheme. The second term of the right-hand side of Eq. (11) is matrix which
imposes the boundary condition. The first term and last term in the matrix represents the source of
acoustic wave (Dirichlet boundary condition) and the end-wall boundary condition of the problem
domain (Neumann boundary condition). In our problem, the Neumann boundary condition set will
enforce a non-reflecting wall for wave. The symbol m represents the maximum nodes available in the
problem domain, while the mathematical expression of S and a is shown in Eq. (12) and Eq. (13)
respectively,

S =P, sin(2x ft) (12)
AtV
o —(cgj (13)
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where fand t is the wave frequency and instantaneous time of the wave propagation. The frequency
and Pmax set the current work is 20 kHz and 2x10° uPa respectively, while speed of sound c is set as
344 m/s. The grid number is 1400. To ensure time marching stability, the Courant-Friedrichs-Lewy
condition must be fulfilled [17]. In our simulation the initial Courant number Co applied is 0.5, and its
can be expressed mathematically as in Eq. (14). Upon computation of the results, the possible
damped pressure will be translated as attenuation of sound pressure level L,, which can be
mathematically represented as in Eq. (15).

Co:\/gzcﬁ (14)
AX

Pn
L, =20lo
’ g(R’efJ

4. Results and Discussion

(15)

P =20Pa

It can be found that with the increasing value of explicit factor, the damping of the sinusoidal
wave can be apparently observed, as shown in Figure 2. At B = 1, which lead to fully explicit scheme,
shows an oscillation of wave without “damping” effect, while at = 0, the solution is fully implicit
and the wave propagation will be silenced soon after it travels away from the source. This implies
that the increment of weightage for the component of implicit time-marching in Generalised
Trapezoidal Differencing Time-Marching Scheme will greatly deteriorate the results. This is in
accordance with the findings by Tannehill et al., [8] and Bathe and Baig [18] that the implicit scheme
is the source if numerical instability during the non-linear solution of time.

However, the change of B will not affect the wavelength, which is maintained as 0.0172 um all
the time despite the trimming of wave amplitude.

4
3‘><l()

P (pPa)
< (3]

'
[

15



Penerbit

CFD Letters '
Volume 12, Issue 2 (2020) 11-21 Akademia Baru
4
3 x 10 : | :
2 -
1 -
=
(-}
‘5 O ‘_A'n'.n'.'._..
a,
-1 —
2 i
3 1 | 1 I 1 1
0 2 4 6 8 10 12 14 16 18
x (um) x10°
) (b)
3 X ]0 T T T T T
2k i

P (uPa)
-I—- [ —
1 1

ok 4
_3 1 1 L | 1 L | 1
0 2 4 6 8 10 12 14 16 18
x (pm) %10°
\ (c)
3 Xlo T T T T T
2 i
l -
el
[-|
20 M
L8
B J
) i
_3 1 1 1 | 1 | 1 1
0 2 4 6 8 10 12 14 16 18
X (pum) «10°
(d)

16



CFD Letters
Volume 12, Issue 2 (2020) 11-21

L %10
bl T T
7|
I N
)
aF N
2k i
3 ! I I
0 2 4 6 8 10 12 14 16 18
x (pum) «10°
(e)
x10*
3 T T T
2_ -
1 |
=
A
= o fiflliw
R,
-1
7L 4
3 1 1 1
0 2 4 6 8 10 12 14 16 18
X (pem) % ”f

(f)
Fig. 2. Wave propagation when the explicit factor B is: (a) 1.0; (b) 0.8; (c)
0.6; (d) 0.4; (e) 0.2; (f) 0.0 when Co =0.5

The attenuation of wave can be further quantified via the records on the maximum amplitude
for every cycle of wave and the resultant sound pressure level reduction, as shown in Figure 3(a) and
3(b) respectively. The maximum amplitude and resultant sound pressure level is reducing in
exponential way and negative linear way respectively. Although the blue line as in Figure 3(a) which
represents the maximum pressure for B = 1 appears to be unstable, yet there is no annihilation
observed. The see-sawing of the results is possibly caused by the insufficient spatial grids.
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To improve the GTDTM scheme, the remedy is endeavored by reducing the Courant number.
Since the maximum annihilation happens at B = 0, the effect of Co to the results accuracy is further
as investigated. The coefficient of determination R? and average error E for comparison between the
computed pressure and the actual pressure can be analyzed using Egs. (16) and (17) respectively. The
actual pressure is calculated by taking B = 1 with small Co of 0.05.

n

SRt~ (Pocas |

R?=1-1

, > (16)
le {( Pl )computed - Paverage}
1 n
Average Error = - ; (P eomputes ~ (P o (17)

Figure 4(a) and (b) illustrates the effect of Co to the propagated wave pattern and the averaged
error. For examination purpose, the spatial domain is zoomed into the distance only up to 6.16 x 10*
um, the total time is set only to 150 us while the grid size is reduced only to 160. The Courant number
is reduced until an undamped wave is obtained. Co is gradually decreased until the convergence is
reached (i.e. the results will not change any more by increment of Courant number). From Figure 4(a)
and (b), it is clearly shown that by decreasing the Co, the averaged error will be reduced. However,
the significant reduction of Co is required to obtain a result with R? approaches to 1.

In order to ensure the numerical accuracy for every B, Co is gradually reduced upon convergence.
The maximum Co required and the CPU time required to a stable and undamped computation has
been computed as in Table 1. The results are obtained with processor of Intel® Core™ i7-8700K CPU
@ 3.40 GHz with RAM 32.0 GB. It can be clearly observed that the minimum Courant number required
is very high while the CPU time is very expensive when B = 0. Moreover, the algorithm needs to store
the field memory up to five time-steps due to the necessity of boundary condition.
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Fig. 4. Effect of reduction in Courant number to: (a) propagated wave pattern;
and (b) average error

Indeed, despite implicit method is unconditionally stable, yet during the solution of hyperbolic
equation, it does not give much advantages compared with fully explicit method. In fact, the time
step required for implicit solver is much higher than the explicit solver. Moreover, the
implementation of the boundary condition is difficult when Co has been decreased to deal with the
implicit damping. This is possibly the main reason why in most of the available literature working on
the improvement of time integration method for linear wave equation, modification based on explicit
methods [9-10,19-22] are more preferable. Some modifications on implicit method [11,18,23] have
been reported too, yet with the cost of computational complexity.
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Table 1
Maximum Courant number for stable computation and CPU time required for
different B
B Co R? CPU Time (seconds)
0.0 0.00005 1.00 10701.837
0.1 0.00080 1.00 583.662
0.2 0.00100 1.00 473.085
0.3 0.00200 1.00 240.449
0.4 0.00400 1.00 117.598
0.5 0.00500 1.00 95.535
0.6 0.00600 1.00 79.622
0.7 0.00800 1.00 59.667
0.8 0.01000 1.00 48.148
0.9 0.02000 1.00 23.800
1.0 0.05000 1.00 9.358

The value of Co in Table 1 would ensure an undamped wave propagation despite a course grid.
However, with the increment of grid resolution, the Co can be increased, especially if the value of B
is 1.0. Therefore, in solving GTDTM, Co independence study is required too besides than mesh
independence study, so that the value of Co in which the result will not change anymore regardless
of smaller value of Co can be identified.

5. Concluding Remarks

Generalised Trapezoidal Differencing Time-Marching (GTDTM) Scheme has been developed to
solve the hyperbolic wave equation. With the decreasing value of explicit factor B, the resultant
waves are oscillating with a damped manner, and upon some distance, the wave will be fully
annihilated. To rectify the dissipative issue, the Courant number is reduced, and the maximum
Courant number required for each B has been computed for the ease of implementation for GTDTM.
Indeed, for efficient computation of hyperbolic wave equation, explicit method is still more favorable
compared with implicit method.
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