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In this work, the micropolar fluid flow and heat and mass transfer past a horizontal 
stretching sheet through a porous medium are studied including the Soret-Dufour 
effect in the presence of viscous dissipation. A uniform magnetic field is applied 
transversely to the direction of the flow. The governing differential equations of the 
problem are transformed into a system of non-dimensional differential equations 
which are solved numerically by Nachtsheim-Swigert iteration technique along with 
the sixth order Runge-Kutta integration scheme. The velocity, microrotation, 
temperature and concentration profiles are presented for different parameters and 
interpreted at length. Results show that with an increase in vortex viscosity ratio 
parameter, suction parameter and radiation parameter, velocity is decreased whereas 
it increases with the increase of magnetic parameter, Darcy number and Eckert 
number. Angular velocity significantly elevated by increasing the suction parameter, 
surface nonlinearity parameter and magnetic parameter. Temperature gradient 
escalate with the increase of magnetic parameter and Dufour number, while a reverse 
trend is observed in case of increase of Darcy number, Eckert number and Soret 
number. Concentration gradient putrefies with Schmidt number and Dufour number. 
However, concentration grows with Soret number. The present problem finds 
significant applications in hydromagnetic control of conducting polymeric sheets and 
magnetic materials processing. 
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1. Introduction 
 

Micropolar fluids, distinctly non-Newtonian in nature, are referred to those that contain micro-
constituents belonging to a class of complex fluids with non-symmetrical stress tensor [1]. These 
fluids respond to micro-rotational motions and spin inertia, and therefore can support couple stress 
and distributed body torque which are not achievable with the classical Navier-Stokes equations or 
the viscoelastic flow models [2]. The Micropolar fluid models designed by Eringen [3] are developed 
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to make an analysis of the flow characteristics of physiological fluids (blood containing corpuscles), 
colloidal suspensions, paints, liquid crystal suspensions, oils containing fine suspensions, industrial 
contaminants containing toxic chemicals, lubricants, organic/inorganic hybrid nanocomposites and 
clay which are fabricated by melt intercalation [4].  

External convective boundary layer flows from horizontal and vertical flat stretchable sheets have 
been investigated quite extensively. Tough early studies explained few important flows in viscous 
fluid but non-Newtonian fluid like micropolar fluid has received less attention towards boundary 
layer flows adjacent to sheets (or indeed other geometries) as it has several applications in 
technological processes. Crane [5] noted that usually the stretching sheet is assumed to be 
inextensible, but situations may arise in the polymer industry in which it is necessary to deal with a 
stretching plastic sheet. For examples, materials manufactured by aerodynamic extrusion processes 
and heat-treated materials traveling between a feed roll and a wind-up roll or on a conveyor belt 
possess the characteristics of a moving continuous stretching surface. Moreover, numerous 
metallurgical processes occupy the system of cooling of continuous strips or filaments by drawing 
them through a quiescent fluid and that in the process of drawing, these strips are sometimes 
stretched. An important matter is that the final product depends to a great extent on the rate of 
cooling. By drawing such strips in an electrically conducting fluid subjected to a magnetic field, the 
rate of cooling can be controlled and a final product of desired characteristics can be achieved [6]. 
The study of heat and mass transfer is necessary for determining the quality of the final product. The 
boundary layer models for steady or unsteady micropolar fluids in various geometries (stationary or 
moving surface, linear or nonlinear stretching surface etc) with/or without heat transfer considering 
various flow conditions (no-slip or slip, suction/injection at the surface) and thermal boundary 
conditions (constant/variable surface temperature or heat flux) have extensively been studied by 
numerous researchers [7-21]. 

Ishak [22] initiated the numerical study of thermal boundary layer flow over a stretching sheet in 
a micropolar fluid. Later, Ahmed et al., [23] provided the numerical solution for the micropolar fluid 
over a non-linearly stretching sheet. Prasad et al., [24] conducted a speculative exploration to study 
the influence of convective heat transfer during the flow of micropolar fluid past a stretching surface. 
Rawat et al., [25] scrutinized the influence of multi-physical components flow in a non-Darcy porous 
medium through the nonlinear stretching surface. These studies have all demonstrated the 
significant influence of boundary surface of the stretching sheet on thermofluid dynamic 
characteristics in micropolar fluids. Consequently, assorted hypothetical and practical attributes of 
the flow and heat transfer with regards to micropolar fluids recently have been explored [26,27]. 
Also, a stable structure given by nanofluid has attracted many investigators are Eid et al., [28] did 
recent investigation about Carreau nanofluid flow numerically through nonlinear stretching sheet. 
Again Eid et al., [29] extended the Carreau nanofluid flow with chemically reactive species. Al- 
Hossainy et al., [30] described discussion about MHD nanofluid flow for external yield stress effect. 
Eid [31] explored the facts about non-Newtonian bio-nanofluid flow in suction/blowing process with 
effects of NP shapes. Lahmar et al., [32] did work about squeezing unsteady nanofluid flow under 
inclined magnetic field and variable thermal conductivity effects.  

Moreover, the thermal-diffusion (Soret) effect, has been utilized for isotope separation, and in 
mixtures between gases with very light molecular weight (Hz, He) and of medium molecular weight 
(Nz, air). The diffusion-thermo (Dufour) effect was found to be of a considerable magnitude such that 
it cannot be ignored, described by Eckert and Drake [33] in their book. Recently plenty of 
investigators used Soret and Dufour effects are Hayat et al., [34] (for axi-symmetrical viscous flow), 
Makinde and Olanrewaju [35] and Shateyi et al., [36] (for mixed convection viscous flow), 
Srinivasacharya and Kaladhar [37] (for couple stress fluid), Shamshuddin and Siva Reddy [38] (for free 
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convection rotating micropolar fluid flow) and Shamshuddin et al., [39] (for mixed convection 
rotating micropolar fluid flow). 

Modeling of viscous dissipation effects on a flow of a fluid-saturated porous medium was 
considered by several authors and they have modelled this effect in different ways. Darcy’s law was 
agreed by most of the authors. But till now various authors [40-42] are taking only one term with 
velocity derivative for viscous dissipation effect in Darcy medium which is wrong. Recently, Al-
Hadhrami [43] proposed a new model for viscous dissipation in a porous medium which is probably 
adequate for most practical purposes, which motivated us to undertake and extend the studies of 
Rehman et al., [20] and Bhargava et al., [44]. Motivated by the above-referenced work and the 
numerous possible industrial applications of the problem, it is of paramount interest in this study in 
order to clarify the parametric behavior of the flow of free convection of a micropolar fluid over a 
horizontal stretching sheet in the presence of dynamic effects of viscous dissipation, thermal-
diffusion, and diffusion-thermo. 
 
2. Problem Formulation  
 

We consider the isothermal, steady, laminar, hydromagnetic free convection flow of an 
incompressible micropolar fluid flowing past a stretching sheet coinciding with the plane 0y  , the 

flow being confined in the region 0y  . The flow configurations and the coordinate system are 

shown in Figure 1. The flow under consideration is also subjected to a strong transverse magnetic 

field 0B  with a constant intensity along the y  axis. Two equal and opposite forces are introduced 

along the x axis so that the surface is stretched keeping the origin fixed.  
 

 
Fig. 1. Schematic diagram of flow configuration 

 
It is assumed that the velocity of a point on a sheet is proportional to its distance from the slit. All 

the fluid properties are assumed to be isotropic and constant. Under the usual boundary layer and 
Boussinesq approximations, the governing equations for the problem under consideration can be 
written as (Rehman et al., [20], Bhargava et al., [44]) 
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In Eq. (2) the Darcian porous drag force term is defined by the term,
p

S u

k




 
  
 

, which is linear 

in terms of the translational velocity, u . With 0S  , the micropolar effects disappear and this term 

reduces to the conventional Newtonian Darcy drag force i.e.
p

u

k
 . The micro-rotation component, 

N , is coupled to the linear momentum Eq. (2) via the angular velocity gradient term, 
S N

y




. A 

coupling exists between the translational velocity components, u  and v , in Eq. (3) via the convective 

acceleration terms, 
N

u
x




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N
v

y




. Furthermore, there is a second coupling term linking the angular 

velocity with the x direction velocity gradient in Eq. (3), 2
S u

N
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. The microrotation 

viscosity (or spin-gradient viscosity) S  is defined by 
2
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 [26]. We note that in the viscous 

shear diffusion term,
2
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S u

y
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
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 
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, the Newtonian kinematic viscosity is now supplemented by the 

Eringen micropolar vortex viscosity, S . In the present work, it is assumed that the micro-inertia per 
unit mass j  is constant. Also, positive or negative n  indicates the acceleration and deceleration of 

the sheet from the extruded slit respectively. The last term on the right-hand side of the energy 
equations Eq. (4) signifies the viscous dissipation effect in Darcy media through porous media, which 
is modelled according to the theory proposed by Al-Hadhrami et. al., [43]. Thermal radiation is 
simulated using the Rosseland diffusion approximation Sparrow [45] and in accordance with this the 

radiative heat flux rq  is given by 
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,               (6) 

 

where 1 is the Stefan-Boltzmann constant and 1  is the mean absorption coefficient. Unexpressed 

in the Rosseland diffusion model is a unidirectional radiative flux and the condition is r rq q

y x

 


 
. 

This model is valid for optically thick media in which thermal radiation propagates only a limited 
distance prior to experiencing scattering or absorption [46]. The local thermal radiation intensity is 
due to radiation emanating from proximate locations in the vicinity of which emission and scattering 
are comparable to the location of interest. For zones where conditions are appreciably different, 
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thermal radiation has been shown to be greatly attenuated before arriving at the location under 
consideration. The energy transfer depends on conditions only in the area adjacent to the plate 
regime i.e. the boundary layer regime. It is assumed that the temperature differences within the flow 

are sufficiently small such that 4T  may be expressed as a linear function of temperature. This is 

accomplished by expanding 4T  in a Taylor series about T and neglecting higher-order terms, thus  

 
4 3 44 3T T T T   .              (7)  

 
The appropriate boundary conditions suggested by the physical conditions are 

 
(i) On the plate surface 
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(ii) matching with the quiescent free stream 
 

u U , 0N  ,T T , C C  as y ,         (9) 

 
where the subscripts w  and refer to the wall and boundary layer edge, respectively. The 

relationship between the microrotation function N and the surface shear u y   is chosen for 

investigating the effect of different surface conditions for the microrotation of the micropolar fluid 
elements. The conditions are generally of importance in micropolar boundary layer analysis. When 
microrotation parameter 0S  , we obtain 0N   which represents not able to rotate (Rehman et 
al., [20]). Finally, ,A D and   are the constants.no-spin condition i.e. the microelements in a 

concentrated particle flow-close to the wall are  
 
3. Similarity Solutions 
 

The partial differential equations Eq. (1)-(5) are transformed into non-dimensional form by mean 
of following dimensionless variables (see Anwar Beg et al., [47]) 
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Substituting Eqs. (6), (7) and (10), into Eqs. (1)-(5), produces the following ordinary differential 
equations 
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with the corresponding boundary conditions 
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Here, the primes denote differentiation with respect to   (non-dimensional y-coordinate) and 
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the suction parameter are local similarity parameters which are required in the non-
dimensionlization of the model. This is a perfectly valid approach which has been used by many 
scientists including heat transfer and magnetofluid dynamics. It retains the requisite validity of the 
physical and solutions presented in our paper are locally independent of information from other 
streamwise locations as noted by Sparrow and Yu [48] and Pantokratoras [49]. 
 
3.1 Skin Friction, Rate of Heat and Mass Transfer 
 

The parameters of engineering interest for the present problem are the skin friction coefficient 

 fC , plate couple stress  wM , local Nusselt number  Nu  and Sherwood number  Sh , which 

indicate physically the wall shear stress, couple stress, the rate of heat transfer and the local surface 
mass flux, respectively. The dimensionless skin-friction coefficient, couple stress, Nusselt number, 
and Sherwood number for impulsively started plate are given by 
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where Re is the Reynolds number, and hence the values proportional to the skin-friction coefficient, 

couple stress, Nusselt number and Sherwood number are  0f  ,  0h ,  0   and  0 , 

respectively.  
 
4. Numerical Computation 
 

The numerical solutions of the non-linear differential equations Eq. (11) to (14) under the 
boundary conditions (15) are performed by applying a shooting method namely Nachtsheim and 
Swigert [50] iteration technique (guessing the missing values) along with sixth-order Runge-Kutta 
iteration scheme. A step size of 0.01   is chosen to satisfy the convergence criterion of 10-6 in all 

cases. The value of   is found in each iteration loop by      . The maximum value of  to 

each group of parameters  , n , M , Gr , Da , wf ,  , Pr , R , Ec , S , Sc ,  , Du  and Sr  is 

determined, when the values of the unknown boundary conditions at 0   do not change to 

successful loop with error less than 10-6. In order to verify the effects of the step size  , the 

computations were performed for the model with three different step sizes as 0.01  ,

0.005   and 0.001  . As shown in Figures 2-5 the differences between various cases are 

minimal. 
 

 
Fig. 2. Distribution of velocity for different values 
of   

 
Fig. 3. Distribution of microrotation for different 
values of   
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Fig. 4. Distribution of temperature for different 
values of   

 
Fig. 5. Distribution of concentration for different 
values of   

 
5. Results and Discussion 
 

For the purpose of discussing the results of the flow field represented in Figure 1, the numerical 
computations are presented in the form of non-dimensional velocity, angular velocity, temperature 
and concentration profiles in Figures 6-37. We set the 1.0, 0.003, 5.0, 0.2, 3.0,n Da Gr M     

3.0, 0.02, 0.3, 0.5, 0.5, 0.5, 0.5R Ec Du Sc Sr fw        values of parameter unless 

otherwise mentioned in specific figures/tables. Figures 6-8 demonstrate the impact of micropolar 
material parameter or the vortex viscosity ratio parameter on translational velocity, microrotation 

and temperature contours across the flow characteristics. The micropolar parameter, S    

symbolize the ratio of Eringen vortex viscosity to Newtonian kinematic viscosity. When 0   vortex 

viscosity vanishes  0   and the micropolar gas reduces to a Newtonian gas. For 0  with 

progressively larger values of  , the concentration of micro-elements is exalted significantly, and 
spinning motions will be inhibited. It is seen that the translational velocity distribution (see Figure 6) 
is greater for a feeble micropolar fluid ( 0.2)  as compared with a study micropolar fluid ( 1.0) 

. Micro-polarity therefore perpetually induces acceleration near the sheet and afterward, it shows 
escalation nature far away from the sheet. Figure 7 shows that the magnitude of microrotation 
velocity at the wall is also strongly intensified as   increases. The microrotation profiles grow 
consistently from the wall to the free stream, i.e. the peak magnitude in microrotation (angular 
velocity) is always attained at the wall irrespective of the value of  . This is due to the presence of 
an increasing concentration of microelements which enhances vortex viscosity. A similar trend is also 
observed in the case of temperature profiles (Figure 8). It is observed that slowly and gradually 
temperature rises as   increases.  

Figures 9-12 show the effect of suction on the distributions of linear momentum, microrotation, 
temperature, and concentration, respectively. It can be inspected from Figure 9 that the velocity 

diminishes with an increasing value of wf  and hence slow down the boundary layer flow. Physically, 

the increase of wf  indicates that 0 0v   which gives the mass transfer at the sheet due to suction. 

Also, the velocity of the fluid is more at 0  for larger values of wf . As  the velocity of the 

fluid converges to the boundary conditions at 8  . Here the case of 0wf   is considered 

throughout the study. The presence of suction causes adherence of the boundary layer to sheet 
surface whereas blowing results in the opposite effect. In the case of suction, a markedly lower linear 
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velocity is computed (Figure 9). The removal of micropolar fluid via the sheet pores destroys 
momentum in the boundary layer. Figure 10 indicates that the response in microrotation to 

coordinate. Here suction is found to accelerate the microrotation. In general, injection or blowing 
induces weak acceleration in the spin of microelements. However, behaves reversely further from 
the wall where injection decelerates the microrotation.  
 

 
Fig. 6. Distribution of velocity 
for different values of   

 
Fig. 7. Distribution of microrotation 
for different values of   

 
Fig. 8. Distribution of temperature 
for different values of   

 

 
Fig. 9. Distribution of velocity for different 

values of wf  

 
Fig. 10. Distribution of microrotation for 

different values of wf  

 

 
Fig. 11. Distribution of temperature for 

different values of wf  

 
Fig. 12. Distribution of concentration for 

different values of wf  
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From this, it is clearly revealed that microelements are space-dependent and depending on the 
location of the mass flux wall condition exerts a different influence. This is the reason for angular 
velocity accelerates in case of suction. Figures 11-12 exhibits that both temperature and 
concentration of the fluid is suppressed with wall suction. The associated thermal and solutal 
boundary layer thickness are therefore both decreased with grater suction effect. 

Figures 13-16 display the micropolar gas flow characteristics with various nonlinear stretching 

parameter  n . This parameter arises throughout all the boundary layer equations Eq. (11)-(14). 

Generally, with greater positive n  values, corresponding to deceleration of the stretching wall. Hence 
velocity distribution is decreased (Figure 13). Acceleration in microrotational profiles is marked with 
an increasing n  value (Figure 14). It is found from Figure 15 that temperature contours increase for 
the case of fluid suction. It is also noticeable that for fluid suction temperature profiles do not 
crossover away from the stretching sheet and increases with an increase of n . Uniformly moving 
surface represents 0n  . Figure 16 portrays the effect of nonlinear stretching parameter on the 
concentration. The same trend occurred in temperature is seen in concentration as the sheet is being 
stretched 0n  i.e. concentration gradient increases with an increase in n . All the flow characteristics 
peak near the sheet. However, after some distance from the sheet the influence of n  values are 
reversed. Once again asymptotically smooth decays to the free stream are achieved for all 
distributions.  
 

 
Fig. 13. Distribution of velocity for different 
values of n  

 
Fig. 14. Distribution of microrotation for 
different values of n  

 

 
Fig. 15. Distribution of temperature for 
different values of n  

 
Fig. 16. Distribution of concentration for 
different values of n  
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Figures 17-19 represent the effects of magnetic field parameter  M  on velocity, angular velocity 

and temperature. This parameter has evidently a suppressive effect on the velocity and angular 
velocity (microrotation) profiles as shown in Figures 17 and 18. Micro-rotation and velocity are 

strongly damped with greater positive magnetic field parameter  M owing to the Lorentzian drag 

force components, which causes a reduction in the fluid velocity. Lesser regulation (i.e. acceleration) 
of the velocity flow and spin of micro-elements is therefore attained with a stronger magnetic field. 
It is noted that despite the inhibiting effect of magnetic field on the velocity field, flow reversal is 
never induced (i.e. the velocity remains positive even with the very strong magnetic field). The 
classical velocity shoot near the generator wall is also captured in the computations as is seen in 
Figure 17. Overall the implications for magnetohydrodynamic generator performance is that subtle 
adjustments can be achieved in performance via the modification in the transverse magnetic field 

since M  is linearly directly proportional to 2

0B . Asymptotically smooth solutions are obtained for all 

M values as shown by the gradual modest of all profiles with large   values. This confirms the 

prescription of an adequately large infinity boundary condition. The enhancement in temperatures 
(Figure 19) with positive M  is attributable to the dissipation in the kinetic energy expended in 
dragging the micropolar gas against the action of the transverse magnetic field (for 0M   the field 
is inhibiting, for 0M   it is assistive). Additional force manifests in the addition of the thermal energy 
to the gas, which causes a rise in temperature. 

Figures 20-22 depict the variations of velocity, angular velocity component and temperature with 

buoyancy parameter  Gr . Gr  is taken to be positive to represent cooling of the sheet by free 

convection currents. It arises in the buoyancy term, Gr , in the momentum equation. It has a 
profound influence on the thermo-fluid dynamics processes due to linear in nature. Figure 20 shows 
that velocity is amplified substantially near the boundary. At a critical distance from the wall, 
however, the influence of increasing Gr becomes inhibitive. It decelerates the velocity and this is 
maintained into the free stream. The influence of free convection currents decays further from the 
wall and this leads to retardation in the flow. Gr embodied the relative influence of the thermal 
buoyancy force to the viscous hydrodynamic force. For 1Gr   the thermal buoyancy effect 
dominates viscous effects. Figure 21 reveals that although initially there is weak retardation in the 
angular velocity component, h , a sudden rise in profiles is noticed with higher values of Gr . Since 
Grashof number becomes assistive to the spin of microelements-h values are markedly elevated 
throughout the majority of the boundary layer regime and attain asymptotically a non-zero value in 
the free stream. Peak microrotation however consistently arises quite soon in the boundary layer. 

The temperature function   is reduced near the wall with greater Gr values. Thermal boundary 

layer thickness is therefore decreased.  
Figures 23, 24 present the evolution of micropolar fluid flow characteristics with Darcy number

 Da . Velocity profiles reveal that initially although there is weak acceleration. Later velocity attains 

increasing nature and becomes assistive to the higher values of Da  and pointedly exalted throughout 
the majority of the boundary layer regime. This is due to diminishing in Darcian drag force via 
procuring values of permeability of flow regime. Hence, the exceptional permeability of porous 
media builds the fluid flow while deceleration in micropolar fluid flow is attained subject to very 
lesser values of permeability. Temperature (Figure 24) is strongly inheritance with grater Da  
throughout the flow regime. The flow control is attained via a porous medium because of the large 
values of Da yields an exceptional reduction in temperature contours. The thermal energy inhibits 
from the surface of the sheet towards the flow field. This will reduce the temperature of the flow 
field and hence the thickness of the thermal boundary layer decreases. 
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Fig. 17. Distribution of velocity for different 
values of M  

 
Fig. 18. Distribution of microrotation for 
different values of M  

 

 
Fig. 19. Distribution of temperature for 
different values of M  

 
Fig. 20. Distribution of velocity for different 
values of Gr  

 

 
Fig. 21. Distribution of microrotation for different 
values of Gr   

 
Fig. 22. Distribution of temperature for 
different values of Gr  
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Fig. 23. Distribution of velocity for different 
values of Da  

 
Fig. 24. Distribution of temperature for 
different values of Da  

 
Figures 25, 26 encapsulate the variations of micropolar gas flow characteristics with Prandtl 

number  Pr . Pr describes the relative influence of momentum and thermal diffusivities. Low Pr

gases correspond to low-density gases, while high Pr values are associated with denser micropolar 
gases [51]. Since the present model is focused on gas flow as of air Pr 0.71  [20] is considered in 
the modeling, unless otherwise indicated. Here we address the additional cases of micropolar liquids 
which may also be utilized in MHD power generators. Pr also defines the relative potency of 
momentum diffusion in the velocity boundary layer to heat diffusion in the thermal boundary layer. 
These phenomena are of the same order of magnitude for the special case when Pr 1 . For Pr 1  
physically corresponds that heat will transfer at an exceptionally faster rate than the momentum 
[52]. For Pr 1 , physically corresponds that momentum will diffuse faster than the heat through the 
regime. With greater Pr values Figures 25 and 26 reveals that velocity and temperature decreases. 
With higher Pr , there is a sharp reduction in velocity and temperature profiles from the wall, 
whereas this reduction is much more gradual at low Pr . Similar results can be found in Wahid et al., 
[53] 
 

 
Fig. 25. Distribution of velocity for different 
values of Pr  

 
Fig. 26. Distribution of temperature for 
different values of Pr  

 
Figures 27, 28 illustrate the response in temperature and concentration functions to power-law 

index parameter   . This parameter relates to the variation in wall temperature and wall 

concentration features in a single term in the energy equation and concentration equation i.e. Eqns. 
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(13) and (14), namely  (2 / 1)n f    and  (2 / 1)n f   . For 0   the wall temperature 

increases with distance from the leading edge. The case 0   corresponds to an isothermal wall. In 

the primitive Eq. (8),   arises in the wall thermal boundary condition as ( )wT T T Ax    and wall 

solutal boundary condition as  wC C C Dx   . However, following normalization of the 

equations, it is featured in the thermal and solutal transport equations (13) and (14). Temperature 
and concentration are observed to be suppressed with positive   values. 

 

 
Fig. 27. Distribution of temperature for 
different values of   

 
Fig. 28. Distribution of concentration for 
different values of   

 
Figures 29, 30 illustrates the impact of the radiation effect on velocity and temperature contours. 

The radiation-conduction parameter, 3

1 1/ 4R T    defined as the relative contribution of thermal 

radiation heat transfer to thermal conduction heat transfer. This is an equitable approximation for 
optically thick micropolar flow, as considered here. This approximation, however, cannot simulate 
variation in optical thickness, which requires a more sophisticated flux model [52]. In the present 
simulations, we enclose attention to the special case of 1R  (thermal radiation dominates over 
thermal conduction). Thus, thermal radiative flux is substantial as disclosed in Figure 29. It is seen 
that there is strong retardation in the linear velocity with increasing R values. As the flow initiate and 
strengthen the thermal diffusion but impede momentum diffusion.  
 

 
Fig. 29. Distribution of velocity for different 
values of R  

 
Fig. 30. Distribution of temperature for 
different values of R  
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This advantage to an increase in momentum boundary layer thickness. Increasing the radiation-
conduction parameter is also found to decrease temperatures in the boundary layer (Figure 30). 
Thermal boundary layer thickness is therefore reduced with greater values of R . Physically speaking, 
an increase in radiation parameter means the release of heat energy from the flow region, and hence 
the boundary layer thickness becomes thinner. 

Figures 31, 32 illustrate the response in translational velocity and temperature functions to Eckert 

number  Ec . Ec  expresses the relationship between the kinetic energy in the flow and the enthalpy 

difference (Gschwendtner [54]). It, therefore, represents the conversion of kinetic energy into 
internal energy by work done against the viscous fluid stresses. Although this parameter is often used 
in a high-speed compressible flow, for example in rocket aerodynamics at very altitude, it has 
significance in high-temperature incompressible flows, which are encountered in energy systems, etc 
[55]. Positive Eckert number implies cooling of the wall and therefore a transfer of heat to the fluid. 
Convection is enhanced. It is seen that the translational velocity flow is accelerated (Figure 31). The 
proportion of kinetic energy dissipated as heat manifests also with a strong elevation in temperature 
(Figure 32). Thermal boundary layer thickness is therefore considerably increased with higher Eckert 
number. 
 

 
Fig. 31. Distribution of velocity for different 
values of Ec  

 
Fig. 32. Distribution of temperature for 
different values of Ec  

 
Figure 33 illustrates the response of concentration profiles to different values of the Schmidt 

number  Sc . Schmidt number is a fundamental parameter in species diffusion (mass transfer), which 

describes the ratio of the momentum to the molecular (species) diffusivity i.e. mSc v D  [56]. The 

Schmidt number, therefore, quantifies the relative effectiveness of momentum and mass transport 
by diffusion in the hydrodynamic (velocity) and concentration (species) boundary layers. It is 
observed that as the Schmidt number increases concentration decrease. The associated decrease in 
species diffusivity results in the less vigorous mass transfer which reduces concentration levels and 
also depletes the concentration boundary layer thickness. 

Figures 34-37 depict the impact of Dufour number  Du  and Soret number  Sr  on the 

temperature and concentration function, respectively. The Dufour number signifies the contribution 
of the concentration gradient to the thermal energy flux in the flow [56]. The influence of Soret 
number defines the effect of temperature gradient inducing significant mass diffusion effects [57]. 
Figures 34 and 35 show non-dimensional temperature and concentration profiles for different values 
of Du . As Du  increases, the temperature of the fluid increases, while, the concentration of the fluid 
decelerates in the boundary layer regime.  
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Fig. 33. Distribution of concentration for 
different values of Sc  

 

 
Fig. 34. Distribution of temperature for 
different values of Du  

 
Fig. 35. Distribution of concentration for 
different values of Du  

 
Figures 36 and 37 illustrate the temperature and concentration distributions for different values 

of Sr . It is seen that by increasing Soret number, the temperature distributions decrease, while, the 
concentration profiles increase in the flow field. This is because of the fact that the diffusive species 

with higher values of Soret parameter  Sr  has the tendency of increasing concentration profiles.  

 

 
Fig. 36. Distribution of temperature for 
different values of Sr  

 
Fig. 37. Distribution of concentration for 
different values of Sr  
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gives the result for viscous incompressible fluid these trends can be seen in Shamshuddin et al., [58]. 
From this, it is observed that the velocity of the Newtonian fluid is greater than that of the micropolar 
fluid. Hence, the temperature and concentration distributions are more influenced by the values of 
Du  and Sr . 
 
6. Conclusions 
 

In the present work, cross-diffusion, viscous dissipation and thermal radiation effects on the 
hydromagnetic stream of magnetic micropolar fluid due to a horizontal stretching sheet immersed in 
a non-Darcy porous medium have been analyzed numerically. Nachtsheim-Swigert iteration 
technique along with the sixth order Runge-Kutta integration scheme is utilized for a system of 
coupled nonlinear, non-dimensional ordinary differential equations, which are transformed by 
similarity variables subjected to power-law thermal and solutal boundary conditions. Results on the 

influence of several parameters (e.g. Prwf n M Gr Da R Ec Sc Du, , , , , , , , , , , and Sr ) on velocity, 

microrotation, temperature, and concentration are presented. Results show that the micropolar fluid 
velocity decreases with the increase of vortex viscosity ratio parameter, suction parameter and 
radiation parameter. However, the velocity increases by increasing the magnetic field parameter, 
Grashof number, Darcy number, and Eckert number. Microrotation distributions of the micropolar 
fluid augment for vortex viscosity ratio parameter, suction parameter and magnetic field parameter 
are elevated while the reverse trend is observed in case of Grashof number. Temperature 
distributions of the micropolar fluid escalate for vortex viscosity ratio parameter, suction parameter, 
magnetic field parameter, and Dufour number while the reverse trend is observed in case of Grashof 
number, Darcy number, Prandtl number, Eckert number, Soret number and thermal radiation 
parameter. Concentration profiles of the magnetic micropolar fluid putrefy for rising values of the 
suction, constant parameter, Schmidt number, and Dufour number. However, concentration 
distributions increase with the increase of Soret number and surface nonlinearity parameter. The 
present simulations have been confined to steady-state flow. Further investigation will consider 
transient model. It is envisaged that further interest in more realistic fluid flow in Artificial Cancellous 
bone prediction [59]. Effects in this regard are underway and will be communicated imminently. 
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