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Abstract

In this paper, flow of a power law fluid past a stationary spheroid is numerically
investigated.  The ranges of parameters investigated in this study are:  10 ≤Re ≤100; 1 ≤Pr
≤100; 0.4 ≤n ≤1.6; and 0.5 ≤E ≤2.  The variation of local Nusselt number on the surface of
both oblate and prolate spheroids was obtained.  The effect of modified Reynolds number,
modified Prandtl number, axis ratio, power law index on average Nusselt number were also
obtained.  A correlation was developed using least squares regression analysis.  The Nusselt
numbers predicted using this correlation were found to be in good agreement with the data
of earlier investigators.

Keywords: Power law; oblate spheroid; prolate spheroid; Reynolds number; Nusselt number;
Prandtl number;

1. Introduction

A vast majority of operations occur in the process industry involving flow of fluid past solids.
Some examples are packed beds, fluidized beds, pneumatic conveyors, filters, thickeners, cyclone
separators, hydrocyclones, centrifuges etc.  A comprehensive understanding of the transport processes
is essential in the design, operation and control of processes carried out in such equipment.  Without
having a thorough knowledge of these transport processes involving a single particle, understanding the
behavior of the multiparticle systems is not feasible.  Although many investigations were conducted in
this direction, the fluid employed was mainly Newtonian and the solids were regular shaped.  Since
most of the industrial fluids are non-Newtonian, these studies are of little use.  To elucidate the
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complex mechanism of heat or mass transfer between a fluid and a packed or a fluidized bed, it is
essential to understand the same between a single solid body and the moving fluid. Ample literature is
available detailing flow patterns, drag calculations and heat and mass transfer coefficients.  These
studies clearly illustrate the effect of various parameters such as the body shape, the kinematic
conditions of the far field and the flow and heat transfer conditions on the suspended body on bulk
properties like the drag coefficient and heat transfer coefficients. The flow and heat transfer of
Newtonian fluids past a solid object well understood, however, similar situation involving non-
Newtonian fluids is not so extensively investigated [1-3].

Majority of the non-Newtonian fluids can be successfully represented by power law model
[1,2].  Therefore, it is quite necessary to have a better understanding of the existing transfer process
between a single immersed particle in a flowing non-Newtonian fluid. Once the single particle analysis
is done, the multiparticle behavior can be understood by applying the cell model concept as was done
for the Newtonian fluids and some non Newtonian fluids [3].

Most of the earlier investigators [4,5] simplified the mathematical analysis using the boundary
layer approximations over regular and irregular shaped bodies like spheres and cylinders to obtain the
local Nusselt numbers as functions of the Prandtl and Reynolds numbers.  Therefore, the range of
applicability of these results was limited.  On the other hand Nakayama [6] adapted integral analysis
method to study heat transfer over axisymmetric bodies immersed in power law fluids.  Kawase and
Ulbrect [7] solved the full set of governing equations for the convective heat and mass transfer in the
creeping flow regime. A comprehensive review of these results and the proposed correlations was
provided by Chhabra [2] and Michaelidis [8].  Dhole et al [9,10] investigated the heat and fluid flow
over spherical particles with power law fluids.  Very few experimental studies were carried out on the
flow of a power law fluid past spherical bodies.  Kumar et al [11] reported the average Sherwood
numbers for benzoic acid dissolution in aqueous CMC solutions.  Ogawa et al [12] conducted
experimental work on the forced convective mass transfer of a viscoelastic fluid over a sphere and
cylinder for Reynolds number ranging from 1 to 200.   Hyde and Donalli [13] studied the dissolution of
benzoic acid in power law fluids.

Many of the studies reported above were on regular shaped bodies like spheres and cylinders.
Very little is known about the flow and heat transfer over spheroidal shaped bodies.  Masliyah and
Epstein [14,15] carried out investigations over oblate and prolate spheroidal bodies for Reynolds
number upto 100.  They also examined the heat and mass transfer problem in oblate and prolate
spheroids in air.  The correlations proposed for predicting Nusselt number were very difficult to use
because the characteristic length they defined was very tough to evaluate.  Tripathi et al [16] studied
the power law fluid flow past an oblate and a prolate spheroidal body and did large scale numerical
work on calculating the drag coefficients.  Alassar [17] studied the heat transfer characteristics of air
over an oblate spheroid  and solved  the  exact  problem analytically using the oblate spheroidal
coordinates.  Pailin and Koichi [18] examined the heat and mass transfer coefficients over oblate and
prolate spheroids for Newtonian fluids and observed enhanced Nusselt numbers over spheres for oblate
spheroids and a reduced Nusselt number for prolate spheroids.  Several investigations [19-21] on mass
transfer from spheroidal bodies to Newtonian fluids were also reported.  Al-Taha [22] proposed a
correlation for Nusselt and Sherwood numbers for spheroids in the range 0.1<E<5 and 1<Re<100.
Tripathi and Chhabra [23] studied the influence of dilatancy on the drag coefficient of oblate and
prolate spheroids and reported that at small Reynolds numbers, Re < 1, the power law index ‘n’ played
a  major  role  whereas  at large Reynolds numbers, its influence was insignificant.  A brief summary of
these studies is presented in Table.1.
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TABLE 1: SUMMARY OF SOME IMPORTANT STUDIES ON SPHEROIDAL PARTICLES

Author(s) Geometry Fluid Range Investigation
Dhole et al[10] Spheres Power Law 5 < Re < 200,     1 <

Pr < 400    0.5 < n <
2

Forced convective
heat transfer

Masliyah and
Epstein [15]

Oblate and Prolate Air Re  <  100 Heat and mass
transfer

Tripathi et al [16] Oblate and Prolate Power law fluid 0.4 < n < 1,   0.01 <
Re < 100, 0.2 < E <
5

Fluid flow

Alassar [17] Oblate Air 10 < Re < 500,    0.5
< E < 0.9

Heat transfer

Pailin and Koichi
[18]

Oblate and Prolate Newtonian Fluid 0.5 < Sc < 2,      1 <
Re  < 200

Heat and mass
transfer

Lochel and
Calderbank [19]

Oblate and Prolate Newtonian Fluid Re >> 1 Mass transfer

Skelland and
Cornish [20]

Oblate Air 130 < Re < 6000, 1
< E < 3

Mass transfer

Beg [21] Oblate Newtonian Fluid 1 < Re  < 400 Heat transfer
Al Taha [22] Oblate and Prolate Newtonian Fluid 1 < Re < 100,  0.2 <

E <5
Heat and mass
transfer

Tripathi and
Chhabra [23]

Oblate and Prolate Power law fluid 1 < n < 1.8,     0.2 <
E < 5        0.001 <
Re < 100

Fluid flow

Dhole et al[10] Spheres Power Law 5 < Re < 200,     1 <
Pr < 400    0.5 < n <
2

Forced convective
heat transfer

Masliyah and
Epstein [15]

Oblate and Prolate Air Re  <  100 Heat and mass
transfer

Tripathi et al [16] Oblate and Prolate Power law fluid 0.4 < n < 1, 0.01 <
Re < 100, 0.2 < E <
5

Fluid flow

Alassar [17] Oblate Air 10 < Re < 500,    0.5
< E < 0.9

Heat transfer

Pailin and Koichi
[18]

Oblate and Prolate Newtonian Fluid 0.5 < Sc < 2,      1 <
Re  < 200

Heat and mass
transfer

Lochel and
Calderbank [19]

Oblate and Prolate Newtonian Fluid Re >> 1 Mass transfer

Skelland and
Cornish [20]

Oblate Air 130 < Re < 6000, 1
< E < 3

Mass transfer

Beg [21] Oblate Newtonian Fluid 1 < Re  <  400 Heat transfer
Al Taha [22] Oblate and Prolate Newtonian Fluid 1 < Re < 100,  0.2 <

E <5
Heat and mass
transfer

Tripathi and
Chhabra [23]

Oblate and Prolate Power law fluid 1 < n < 1.8,     0.2 <
E < 5        0.001 <
Re < 100

Fluid flow
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Many fluids encountered in the process industry are highly viscous and the flow conditions are
often laminar.  The existing vast literature on the Newtonian fluids has very little applicability in these
practical cases.  Most of the studies available in the literature with non-Newtonian fluids were focused
on calculating the drag coefficients over regular and irregular shaped bodies.  The limited heat transfer
studies with non Newtonian fluids are restricted to only creeping flow conditions [3]. To the best of the
author’s knowledge, there is no work in the literature on heat transfer over irregular shaped bodies
immersed in non-Newtonian fluids.  It was well understood that the Carreau-Yasuda model has
adequate flexibility to fit a variety of polymeric fluids.  The power law model, a variant of the Carreau-
Yasuda model at high shear regions, is a much simpler model and has been used successfully to model
many non-Newtonian fluids.  The power law model often provides a rough prediction for viscosity of
non-Newtonian fluid [1].  Therefore, flow of a power law fluid over a spheroidal shaped body has been
chosen for the present study.  The characteristic length in present study is taken as the length of the
major axis which is clearly defined unlike the earlier correlations. By choosing appropriate values for
E, different bodies from needle shaped to disc shaped can be modeled.  The heat transfer problem is
analyzed and a simple correlation is developed that can predict the Nusselt number over a spheroid
given the Nusselt number over a sphere for the same Reynolds and Prandtl numbers.  It is  shown that
the proposed correlation predicts the Nusselt number even for the Newtonian fluids.  This correlation is
very much useful to the practicing engineer for his design calculations.

2. Problem Statement and Mathematical Formulation

The problem under consideration is shown in Fig 1.  The maximum Reynolds number is limited
so that the flow is two dimensional. A power-law fluid is streaming past a stationary spheroidal shaped
body in an infinite expanse of fluid at finite Reynolds number.  The objectis of length ‘2a’ in the
direction normal to flow and ‘2b’ in the direction parallel to flow called the major and minor axes
respectively.  The aspect ratio defined as b/a is represented as E.  Hence for an oblate spheroid E < 1
and for a prolate spheroid E > 1 and for a sphere E = 1.  The power law fluid of constant properties has
a velocity U∞ and temperature T∞ in the far field.  The object is maintained at a constant temperature of
Tw which is greater than T∞.  The heat transfer occurs by forced convection and the variation of the
physical properties with temperature is neglected.  The mathematical model essentially consists of the
continuity, momentum and energy equations [24].   These equations are converted into dimensionless
form by the scales 2a, U∞, m(U∞/2a)n-1, (T-T∞)/(Tw-T∞) for length, velocity, viscosity and temperature
respectively.  The dimensionless groups that resulted are the modified Reynolds number and the
modified Prandtl number.  Final equations expressed in dimensionless form are given below.

Continuity equation: . 0U  …(1)

Momentum equation: 1 .
Re ij

DU p
Dt

    …(2)

Energy equation: 21
Re Pr

DT T
Dt
  …(3)

The rheology of the power law fluid is given by 2ij ij  …(4)

where ij is the strain rate tensor given in terms of the velocity vector as
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…(5)

and the viscosity is given by
 1 / 2

2

2

nI


   
 

…(6)

where ‘n’ is the exponent in the power law and I2 is the second invariant of the rate of strain tensor.
The usual boundary conditions are the no slip conditions on the body and the free stream conditions far

away from the body.

(a) Prolate spheroid

(b) Oblate spheroid

Figure 1:  Schematic representation of the problem
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In the present case the characteristic length ‘L’ has been taken as the length equal to 2a. The
dimensionless local Nusselt number is given by the relation, Nu = nT ˆ/  where n̂ is the unit
outward normal to the spheroid surface. Once the temperature distribution over the surface of the body
is known the average Nusselt number is obtained by quadrature as

0

1 sin
2

Nu Nu d


  


 
. …(7)

3. Numerical Methodology and Validation

The governing partial differential equations (1) to (3) at steady state are solved numerically  by
the  well  known  staggered  grid  method [25].    The  convective  terms  are discretized using the
QUICK scheme.  Before analyzing the results of the present work it is important to make sure the
correctness of the numerical scheme.  Therefore, the validation is done by comparing the results for a
sphere in a power law fluid with that of Dhole et al [10], Alassars [17] and Al-Taha [22] for a
spheroidal body in a Newtonian fluid.  These results are shown in Table 2. It can be seen that the
results predicted with the present solution methodology are very close to the published literature
values, thus giving confidence that the present numerical scheme is able to predict the velocity and
temperature profiles with good accuracy.

TABLE 2. VALIDATION OF THE PRESENT WORK WITH THE LITERATURE

Re Pr n E Dhole et al
[10]

Alassar
[17]

Al-Taha
[22]

Present
work

10 0.71 1 0.75 3.56 3.74 3.56
20 0.71 1 0.75 4.31 4.47 4.3
40 0.71 1 0.75 5.35 5.52 5.35
80 0.71 1 0.75 6.80 6.99 6.79
100 0.71 1 0.75 7.46 7.58 7.45
10 5 0.6 1 5.83 5.84
10 5 2 1 4.77 4.74
10 200 2 1 13 13
100 5 0.6 1 14.65 14.70
100 20 2 1 15.76 15.80

4. Results and Discussion

The values of different variables considered in the present study are compiled in Table 3.   This
range covers the shear thickening (n > 1) and shear thinning (n < 1), from oblate to prolate spheroid
cases and well beyond the creeping flow velocities where most of the earlier analytical works have
been carried out.  The Reynolds number upper range is limited by the wake formation as observed by
Tripathi et al [16, 23] for the oblate spheroid.  Hence beyond this value asymmetry in the flow may
occur which could lead to three dimensional effects.  Since the present study is based on the
assumption of laminar conditions, Reynolds number values below 100 only are considered.
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TABLE 3. RANGE OF VARIABLES COVERED IN THE PRESENT STUDY

Variable Values
Re 10, 40, 80, 100
Pr 1, 5, 20, 100
n 0.4, 0.8, 1, 1.2, 1.6
E 0.5, 0.75, 1, 2

4.1. Variation of local Nusselt number over the spheroid surface

Figures 2(a) and 2(b) show the variation of local Nusselt number variation along the surface of
the spheroid.  From the plots of the figure it is conspicuous that the oblate spheroid exhibited a non-
monotonic variation whereas the prolate spheroid showed a monotonic variation of the local Nusselt
number.  Similar behavior was also reported by Pailin and Koichi [18] for the case of a Newtonian
fluid over a spheroid.  The local Nusselt number exhibited a large value at the front stagnation point
and then decreased till the point of separation and then again increased towards the rear stagnation
point.  Masliyah and Epstein [15] reported similar findings when analyzing the flow and heat transfer
from air to a spheroid.  Tripathi et al [16,23] also reported flow separation to occur for oblate spheroids
but not for the case of the prolate. There was a perfect fore-aft symmetry for the prolate case for a wide
range of flow behavior index and Reynolds numbers but the fore-aft symmetry is present in the oblate
case at very small Reynolds numbers only.  This asymmetry leads to wake formation and augments the
convective currents resulting in enhanced heat transfer coefficients.  Hence average Nusselt numbers
for oblate spheroids are larger than a sphere.  The sphere in turn has larger average Nusselt numbers
than the prolate spheroids.

4.2. Effect of power law index

Figures 3 and 4 show the effect of flow behavior index on the average Nusselt number for Re =
10 and 100 respectively. A close inspection of the plots of these figures reveals that the shear thinning
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fluid has resulted in  larger average Nusselt numbers as a sequential effect of reduction in viscosity.
This reduction in viscosity causes larger convective currents yielding enhanced heat transfer. The
influence of power law index is extremely significant at higher Pr values for a given Re value.  At low
Prandtl numbers the convective currents are weak and hence the Nusselt numbers are small.  At large
Prandtl numbers strong convective currents yielded increased Nusselt numbers. These effects are more
significant in the oblate case compared to the prolate case at all Reynolds numbers which is evident
from Figs. 5 and 6.  This is because the local Nusselt number for an oblate spheroid is always higher
compared to a prolate spheroid as evident from Fig.2.  The area average Nusselt number will thus be
higher for oblate spheroid.

Figure 3:  Average Nusselt number vs. flow behavior index for Re = 10

Figure 4:  Average Nusselt number vs. flow behavior index for Re = 100
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Figure 5:  Average Nusselt number vs. flow behavior index for Re = 10

Figure 6:  Average Nusselt number vs. flow behavior index for Re = 100

4.3. Effect of axis ratio

The effect of the shape of the object on average Nusselt number is shown in Fig. 7.  A close
examination of Figs. 7a and 7b, revealed that shear thinning along with higher Prandtl number leads to
a larger Nusselt number at any given Reynolds number.  It is evident from Fig. 7b that the effect of
shear thinning at larger Reynolds and Prandtl numbers leads to higher Nusselt number.  The reduction
in thermal boundary layer accounts for this.   At low Reynolds and Prandtl numbers the non-Newtonian
behavior is almost unimportant. But at higher Prandtl numbers the differences begin to appear and
become significant at higher Reynolds and Prandtl numbers.  The influence of increase in Reynolds
number has a strong effect on oblate spheroids due to the flow separation that occur at about a
Reynolds number of 30 [14].
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Figure 7:  Effect of axis ratio on average Nusselt number for (a) Re = 10 and (b) Re = 100

4.4. Effect of Reynolds number

The effect of Reynolds number on the Nusselt number is presented in Figs. 8a and 8b.  An
inspection of the plots in these figures reveal that the non-Newtonian characteristics reach significance
at higher Prandtl and Reynolds numbers.  Also oblate spheroids have a different characteristic behavior
at Reynolds numbers starting from  30 and at larger Prandtl numbers due to wake formation [14, 15].
Once the wake formation commences, enhanced heat transfer coefficients could be attained at large
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0.5 1 1.5 2
4

6

8

10

12

14

16

18

20

E

N
u

-  -  Pr = 100, Re = 10
---   Pr = 20,  Re = 10 (a)

n = 0.4
n = 0.8
n = 1
n = 1.2
n = 1.6

0.5 1 1.5 2
10

15

20

25

30

35

40

45

50

55

60

E

N
u

-   - Pr = 100, Re = 100
----  Pr = 20,   Re = 100

(b)
n = 0.4
n = 0.8
n = 1
n = 1.2
n = 1.6



Srinivas & Ramesh CFD Letters Vol. 6(1) 2014

11

Figure 8:  Effect of Re on average Nusselt number for

(a) n = 1.2 and (b) n = 0.4

5. Correlation

Having examined the effect of various parameters on the average Nusselt number it would be
useful for the practicing engineer if a correlation exists by which he could compute the average Nusselt
number over a spheroid. After testing various functional forms, a simple correlation has been
developed which is given by

)256.0exp(2917.1
1

1 E
Nu
Nu

E

E 


 …(8)
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developed using the Genetic Algorithms Toolbox in MATLAB so that a true global optima was found
which minimized the sum of squares of the deviations.  The correlating equation for the case of a
sphere, 1ENu  , has been developed by Dhole et al [10] in their work which is used directly in the present
work.  Equation 8 accurately predicts that the oblate spheroids have larger and prolate spheroids have
smaller Nusselt numbers compared to spheres at the same Reynolds and Prandtl numbers.  The validity
of equation (8) is also shown to be applicable for the case of spheroids in Newtonian fluids when
compared with the works of  Alassar [17] and Al-Taha [22].  These results are compiled in Table.4.

TABLE 4. VALIDATION OF THE PROPOSED CORRELATION FOR NEWTONIAN FLUIDS

6. Conclusions

A numerical study on heat transfer characteristics has been carried over spheroidal shaped body
immersed in a power law fluid. The ranges of parameters studied consist of a wide range of non-
Newtonian behavior, Reynolds and Prandtl numbers. It was observed that oblate spheroids have higher
Nusselt numbers and prolate ones have smaller Nusselt numbers compared to a sphere. The flow
separation that takes place in the oblate spheroid case at Reynolds numbers as low as 30 is responsible
for them having a larger Nusselt number compared to the prolate spheroids. This flow separation
coupled with large Prandtl numbers can yield very high heat transfer coefficients for the oblate
spheroids. Non-Newtonian characteristics are very signifiant at higher Prandtl numbers for all
Reynolds numbers. Finally a simple correlation has been developed by which one can predict the
Nusselt number over spheroidal shaped bodies in non-Newtonian fluids given the Nusselt number for a
sphere at the same Reynolds and Prandtl numbers. It is remarkable that this correction factor is only a
function of the aspect ratio, E. This correlation was also proved to be valid for the case of spheroids in
Newtonian fluids.

Nomenclature
a= half length of the major axis, m
b = half length of the minor axis, m
cp = specific heat of the fluid, J kg-1 K-1

E = Axis ratio, b/a
h= heat transfer coefficient, W m-2 K-1

I2 = second invariant of deformation tensor, s-2

Re E 1

1

E

E

Nu
Nu





Alassar
[17]

1

1

E

E

Nu
Nu





Al
Taha[22]

)256.0exp(2917.1
1

1 E
Nu
Nu

E

E 




Present work

10 0.6 1.11 1.02 1.11
40 0.6 1.10 1.04 1.11
100 0.6 1.11 1.05 1.11
10 0.8 1.05 1.01 0.95
40 0.8 1.05 1.02 0.95
100 0.8 1.05 1.02 0.95
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k = thermal conductivity of the fluid, W m-1 K-1

L = characteristic length equal to 2a, m
m = flow consistency index, Pa sn

n = flow behavior index
Nu = Nusselt number, hL/k
Pr = modified Prandtl number, cpm(U∞/L)n-1/k
p = dimensionless pressure
Re = modified Reynolds number, LnU∞2-n ρ/m
T = dimensionless Temperature
U = dimensionless velocity
x = stream wise coordinate, m
y = transverse coordinate, m

Greek symbols
ε = shear strain, s-1

η = apparent viscosity, Pa.s
θ = polar angle
ρ = density, kg/m3

τ = shear stress, Pa

Subscripts
i = dummy argument
j = dummy argument
w = wall condition
∞ = far off condition
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