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Abstract

The implementation and validation of the k-ε / k-ω SST (Shear-Stress-Transport) two-
equation turbulence model into the existing BGK (Bhatnagaar-Gross-Krook) flow solver
for compressible Navier-Stokes equations in two-space dimensions generalized coordinates
are presented. In developing the desired algorithm, the convection flux terms are discretized
by a semi-discrete finite difference method. Then, the resulting inviscid flux functions are
approximated by the gas-kinetic BGK scheme based on the approximate collisional
Boltzmann equation. For high-order spatial accuracy, the cell interface values required by
the inviscid flux functions are reconstructed via the MUSCL (Monotone Upstream-
Centered Schemes for Conservation Laws) variable interpolation method coupled with a
minmod limiter. As for the diffusion flux terms, they are discretized with a second-order
central difference scheme. An explicit-type time integration method known as the modified
fourth-order Runge-Kutta method is used to march the solution to steady-state. Four test
cases have been solved using the developed algorithm, namely turbulent flat plate,
transitional flat plate, turbulent RAE2822 airfoil and turbulent Sajben diffuser flows. The
accuracy of the solver is examined and results obtained from the computations are also
compared with available experimental or analytical data that will demonstrate good
agreement has been obtained.

Keywords: Finite difference; gas-kinetic BGK scheme; Navier-Stokes equations; turbulence
model; Boltzmann Model; MUSCL; modified fourth-order Runge-Kutta.

1. Introduction

In the development of flow solvers for practical gas dynamics applications, the key design
criterion is to maximize robustness and accuracy. This requirement is particularly important in
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compressible flows involving high-speed flow where intense shock waves and boundary layers may
simultaneously exist. Among those notable and successful are the Godunov-type and flux vector
splitting schemes. Besides these schemes, gas-kinetic schemes have attracted much attention in
recent years due to their superior accuracy, robustness and good resolution characteristics over
conventional schemes.

Recent developments have seen the emergence of another class of scheme known as the gas-
kinetic schemes that are developed based on the Boltzmann equation [1, 2]. Mainly, there are two
groups of gas-kinetic schemes and the difference lies within the type of Boltzmann equation use in
the gas evolution stage. One of them is the well-known KFVS (Kinetic Flux Vector Splitting)
scheme which is based on the collisionless Boltzmann equation and the other is based on the
collisional BGK model [3] where the BGK scheme is derived. Like any other FVS (Flux Vector
Splitting) method, the KFVS scheme is very diffusive and less accurate in comparison with the
Roe-type FDS (Flux Difference Splitting) method. The diffusivity of the FVS schemes is mainly
due to the particle or wave-free transport mechanism, which sets the CFL (Courant–Friedrichs–
Lewy) time step equal to particle collision time [4]. In order to reduce diffusivity, particle collisions
have to be modeled and implemented into the gas evolution stage. One of the distinct approaches to
take particle collision into consideration in gas evolution can be found in Ref. [1]. In this method,
the collision effect is considered by the BGK model as an approximation of the collision integral in
the Boltzmann equation. It is found that this gas-kinetic BGK scheme possesses accuracy that is
superior to the flux vector splitting schemes and avoids the anomalies of FDS-type schemes [5-9].

Most of the developments of the gas-kinetic schemes are focused on solving fluid governing
equations via the finite volume method. May et al. [10] have applied the gas-kinetic BGK finite
volume method for computing three-dimensional transonic flow with unstructured mesh. Zhang et
al. [11] have developed a second-order KFVS scheme for shallow water flows in one-dimension
space using finite volume method. Xu et al. [12] used BGK scheme cast in a finite volume manner
to study complicated flow phenomena that occur in a laminar hypersonic viscous flows, i.e. shock
boundary layer interaction, flow separation and viscous/inviscid interaction. These are just a few of
the many applications of the gas-kinetic schemes in the finite volume framework. On the other
hand, only a limited number of efforts are channeled into the development of the gas-kinetic
schemes via the finite difference method. To name a few, Ravichandran [13] in 1997 has developed
higher order KFVS algorithms using compact upwind difference operators to compute two-
dimensional compressible Euler equations. Omar et al. [14] in 2009 have successfully extended the
BGK scheme to solve compressible viscous laminar flow.

Turbulent flow motions occur in vast majority of fluid applications. To name a few: fluid flow
in a pipe, flow processes in combustion chamber and even flow over an airfoil will exhibit a chaotic
complex motion defined as turbulent flow. The most elegant solution to any turbulent flow is via
the Direct Numerical Simulation (DNS) of turbulence. This approach is implemented by
discretizing the Navier-Stokes equations with higher-order accurate numerical scheme and solved
using extremely fine grid mesh. An alternative approach to the DNS technique would be the
adoption of Large Eddy Simulation (LES), which draws the advantages of the direct simulation of
turbulence flows and the solution of the Reynolds averaged equations through closure assumptions.
Although the popularity of DNS and LES have become noticeable [15-17] due to rapid
development of high performance computing technology, the general trend of computing turbulent
flows still remain with the solution of Reynolds-Averaged Navier-Stokes (RANS) equations with
the inclusion of Reynolds stresses into the original full Navier-Stokes equations. Resolving the
turbulent flows via this means proved to be computationally cheaper [18, 19] compare to DNS and
LES. The closure equations that provide the additional Reynolds stresses in the RANS equations are
calculated from turbulence models.

In the present work, a gas-kinetic BGK-based flow solver is extended from the previous work
carried out in Ref. [14] to facilitate the computation of turbulent flow using the RANS equations. In
the developed solver, the BGK scheme is used to approximate the convective flux terms, while a
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second-order central scheme is used to discretize the diffusive flux terms of the RANS equations,
coupled with a combined k-ε / k-ω SST two-equation turbulence model to provide the required
Reynolds stresses to resolve the turbulent flow. The solver is tested with four typical turbulent flow
problems ranging from simple to complex flow domain. Hence, the computed results for turbulent
flat plate, transitional flat plate, turbulent RAE2822 airfoil and turbulent Sajben diffuser are
presented. As for validation purposes, available experimental or analytical data for respective test
cases would be used as comparison to the numerical solutions obtained from the solver. The
predictions showed that good agreement can be achieved via the flow solver in computing turbulent
flow.

2. Governing equations

The two-dimensional normalized compressible RANS equations can be written in the strong
conservative form as
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With ρ, U, V, p, e and T are the macroscopic density, x-component of velocity, y-component of
velocity, pressure, total energy and temperature, respectively. While, τxx, τxy, τyy are the shear stress
terms and qx, qy are the heat conduction terms. The normalization has been carried out by using the
following free stream reference quantities: density ρ∞, velocity U∞, pressure ρ∞U∞

2, temperature T∞,
reference length L∞, reference time L∞/U∞ and viscosity μ∞.

From the perspective of RANS computation, the viscosity μ in the stress terms and the term (μ
/ Pr) in the heat conduction terms of Eq. (1) are modeled as
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where the subscripts l and t represent laminar and turbulent contributions, respectively. The
parameter (Pr)t is called the turbulent Prandtl number and for air it is generally taken to be 0.9 for
wall bounded flows. The closure model chosen to yield the turbulent viscosity μt that appears in the
RANS equations is the combined k-ε / k-ω SST two-equation turbulence model which is given as
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(4)

where the production of turbulence Pk is defined as
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In order to employ the above governing equations for finite difference application in non-
regular domain, a transformation from the Cartesian coordinates (x, y) to generalized coordinates (ξ,
η) is necessary. The resulting transformation yields the following form for Eq. (1)
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The metric terms which appear in the above equations are related to the derivatives of x and y by
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and the Jacobian of transformation is given by
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The manners in which these terms are evaluated are clearly described by Hoffmann and Chiang
[20].

Similarly, the closure model in Eq. (3) and (4) cast in generalized coordinates can be
expressed as
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The closure constants (i.e. σk, σω, β, β* and α) found in Eq. (10) and (11) are provided in Ref.
[21]. By using similar transformation procedure as outlined beforehand, the transformed production
term Pk of Eq. (5) can be easily derived. Once the turbulent quantities k and ω have been computed
from the closure model provided in Eq. (10) and (11), respectively, the following relations are used
to determine the turbulent viscosity needed by the RANS equations
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Where a1 = 0.31, Ω is the absolute value of vorticity and F2 is the blending function expressed in
the following form
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3. Numerical methods

For the computation of the convective terms in the RANS equations, they are approximated
with a semi-discrete finite difference scheme and the result of such initiative is shown as follow
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The resulting inviscid flux functions at the cell interfaces are then approximated by the
corresponding numerical scheme, i.e. BGK. Since the present study is an extension of the flow
solver developed in the previous studies [8, 14] to incorporate two-equation turbulence model (i.e.
k-ε / k-ω SST) into the solver to facilitate the simulation of turbulent flow. The formulations of the
BGK scheme to approximate the flux functions found in Eq. (14) would remain totally the same as
in the previous studies. Thus, without any due elaboration on the aspects of the development of the
BGK scheme. The convective flux function F at a given cell interface, expressed in generalized
coordinates is outlined directly and can be written as follows
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Where φ is an adaptive parameter which is determined via physical flow quantities, the
superscripts e and f correspond to equilibrium and free stream flux functions, respectively. As for
the numerical inviscid flux function at the cell interface in the η-direction, it is obtained in a similar
manner and presented as
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The necessary treatment and formulations required for the calculation of parameter φ,
equilibrium and free stream flux functions appearing in both Eq. (15) and (16) are explained in
details in the previous works and they can be found in Ref. [1, 4, 7].

To increase the spatial accuracy of the BGK scheme to higher-order, the MUSCL approach
[22] is adopted together with the usage of a minmod limiter. Hence, the left and right states of the
primitive variables ρ, U, V, p at a cell interface could be obtained through the non-linear
reconstruction of the respective variables and are given as
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where Q is any primitive and ΔQi+1/2, j = Qi+1, j – Qi, j. The minmod limiter Ф used in the
reconstruction of flow variables in Eq. (17) is given as
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Where, the term ΔQratio represents the ratio term inside the parentheses of Eq. (17).
The diffusion flux terms appearing in the RANS equations are discretized with a second-order

central difference scheme where the approximation is applied at cell interface instead of at cell
point in order to avoid the difficulty of evaluating points in the finite difference equations which are
outside of the domain. Hence, the discretized diffusion flux terms would take on the following form
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All the terms inside the viscous flux vectors can be defined as a product in the following general
form [20]
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represented by the following expression
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Hence, the terms in Eq. (20) can be written as
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Subsequently, the second-order central difference approximation for the considered term can be
represented as follows
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The term located at the cell interface found in Eq. (23) is computed through the method of
averaging between two neighboring points. Thus, by adopting and expanding the procedure to other
terms found in the viscous flux vectors as outlined beforehand, the second-order central difference
approximation for the entire diffusion terms can be easily implemented.

As for time integration for the steady state problems, an explicit formulation is chosen for the
current solver which utilizes a fourth-order Runge-Kutta method. Applying this method to the
generalized two-dimensional RANS equations provides the following result
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In order to save computing time; the viscous fluxes are only computed at the first stage of the
Runge-Kutta scheme and frozen for the remaining stages [23, 24].

The finite difference approximation of the turbulence model in Eq. (10) and (11) is
implemented in the following manners: the temporal term is discretized with a first-order forward
difference scheme; the convective terms are approximated by a first-order upwind scheme; and a
second-order central difference scheme, applied at cell interface is used for the remaining terms in
the closure model. For algorithm modularity in the turbulence modeling, the set of k-ε / k-ω SST
equations are lagged in time and solved separately from the RANS equations. To advance the
solutions of the closure model, an Euler forward method is adopted together with the finite
difference procedures as outlined previously.

4. Results and discussions

To validate the developed BGK turbulent flow solver, computations have been carried out for
several benchmark test cases: supersonic turbulent flow over flat plate, supersonic transitional flow
over flat plate, transonic turbulent flow over RAE2822 airfoil and Sajben transonic diffuser flow.
Thus, numerical results for these test cases are presented in this section along with its relevant
arguments against existing experimental or analytical data.
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4.1. Supersonic turbulent flow over flat plate

The aim of this test case is to provide a platform to validate the solutions obtained
from the developed BGK flow solver incorporated with a turbulence model (i.e. combined
k-ε / k-ω SST) against experimental data provided by Erm et al. [25] and existing analytical
solutions provided by Hoffmann and Chiang [21].

In this problem, an incoming fully turbulent supersonic flow is initiated in the free
stream. The following free stream conditions are specified: Mach number M∞ = 2.0, density
ρ∞ = 1.25 kg/m3, temperature T∞ = 300.0 K and Reynolds number Re∞ = 3.762x106. The
Reynolds number is based on a reference length taken as L∞ = 0.08 m. A structure grid is
created by an algebraic grid generation method with clustering near the surface and at the
inlet to resolve high flow gradient areas. The resulting mesh has a size of 100 by 50 grid
points and is shown in Fig. 1. As for the specification of conditions along the boundaries,
the following are enforced: at left boundary the inflow conditions are specified as free-
stream; at right and top boundaries, their conditions are determined by means of
extrapolation from the interior domain; and the bottom boundary which locates the flat plate
is set to assume adiabatic wall with no-slip conditions.

Figure 1. Computational domain for the flat plate

The flow quantities used as validation parameters consist of non-dimensional near
wall velocity profile, boundary layer thickness distribution and surface skin friction
coefficient along the plate. The computed velocity profile normal to the plate is shown in
Fig. 2. The values depicted in the figure are taken at location corresponding to x = 0.06 m
and normalized using the free stream conditions. As illustrated in the figure, the predicted
velocity profile agrees very well with the experimental data taken from Ref. [25]. Figure 3
shows the shape of the boundary layer produced by the BGK flow solver. By comparing the
computed boundary layer thickness with the analytical data, it can be deduced that the
agreement between both results is excellent. For any viscous flow computation, it is always
necessary to look at the resolution of the skin friction coefficient along the surface. Hence,
the computed skin friction coefficient is compared with the analytical result taken from Ref.
[21] and shown in Fig. 4. The computed result depicted in this figure shows that the BGK
scheme slightly under-predicted the skin friction coefficient, especially in region between x
= 0.01 m to x = 0.04 m but such prediction is considered satisfactory.
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Figure 2. Near wall normalized velocity profile, taken at x = 0.06 m

Figure 3. Boundary layer thickness distribution along the turbulent flat plate

Figure 4. Skin friction coefficient along the surface of turbulent flat plate

4.2. Supersonic transitional flow over flat plate

This problem served to test the capability of the BGK flow solver to compute flow
experiencing transitional in the flow domain. The computed results are validated with
analytical data provided by Spalding and Chi [26].
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An incoming supersonic laminar flow is initiated in the free stream. The transition to
turbulent flow along the flat plate is artificially triggered and placed at 50 % of the plate
length. The free stream conditions and mesh used for this test case are the same as given in
the previous test case i.e. supersonic turbulent over flat plate. As for the specification of
condition along the boundaries, the same set of conditions is applied.

The quantities computed via the numerical solvers that are presented for this test
case consist of skin friction coefficient, non-dimensional velocity profile (located at x =
0.06 m), and boundary layer thickness, shown in Fig. 5-7. Through these figures,
comparisons are made between the numerical results to the analytical data that will provide
a good ground to assess the computational behavior of the solver. Figure 5 compares the
skin friction coefficient distributions along the flat plate. The results depicted in this figure
showed that the BGK scheme is capable of resolving the skin friction coefficient accurately
prior to transition but with a slight over-prediction in the turbulent section of the flow
where such a small percentage of disagreement in the prediction of transitional flow has
been reported to be acceptable [21]. Next, the comparisons of non-dimensional velocity
profiles located at x = 0.06 m is presented in Fig. 6. The illustrated results in this figure
showed that a very good agreement can be seen between the numerical results and the
analytical data. This deduction can also be applied and seen in Fig. 7 which illustrates the
comparisons of boundary layer thicknesses.

Figure 5. Skin friction coefficient for the transitional flat plate

Figure 6. Velocity profiles for the transitional flat plate



A BGK-based Two-Equation Turbulence Model Algorithm for Solving Compressible Navier-Stokes Equations

55

Figure 7. Boundary layer thickness for the transitional flat plate

4.3. Transonic turbulent flow over RAE2822 airfoil

The transonic flow over RAE2822 airfoil test case is selected in order to test the
developed BGK flow solver incorporated with a turbulence model (i.e. combined k-ε / k-ω
SST) to predict complex flow domain involving shock-boundary layer interaction. Extensive
past tests and experimental data are available for this airfoil (i.e. [27-29]), thus making it an
ideal test case to validate the computed results.

In this test case, flow conditions corresponding to AGARD test case 9 are used, namely,
Mach number M∞ = 0.73, Reynolds number Re∞ = 6.5x106 and angle of attack α =  2.8o. The
free stream conditions used for initializing the flow domain are specified as: density ρ∞ = 1.486
kg/m3, temperature T∞ = 255.6 K and reference length L∞ = 0.3048 m. A structure C-grid with
dimensions of 369 by 65 is generated by an algebraic grid generation method and is shown in
Fig. 8 as zoom in view. As for the specification of conditions along the boundaries, the
following are enforced: viscous wall boundary condition is applied at the airfoil surface;
averaging boundary condition is used along the wake cut to provide continuous flow variables;
free stream condition is applied at the outer boundary; the boundaries located on the right are
applied with outflow condition where static pressure is fixed to the free stream pressure.

Figure 8. RAE2822 airfoil computational mesh, 369 x 65

The computed pressure contours are shown in Fig. 9, which predicts a shock-
boundary layer interaction occurring at location about 60% of chord length on the upper
surface of the airfoil. The computed pressure distribution is compared with the
experimental data extracted from [27] in Fig. 10. The results illustrated in the figure show



Ong et al. CFD Letters Vol. 6(2) 2013

56

that the rooftop pressure is accurately resolved and the pressure recovery which occurs after
the shock is well predicted with remarkable accuracy. However, the shock location is
slightly predicted downstream in comparison to the experimental data. The computed skin
friction coefficient distribution along the airfoil surface is compared with experimental data
from [27] and shown in Fig. 11. The resolution of the skin friction coefficient on the
upstream side of the shock location on the top side of the airfoil surface is predicted with
great accuracy. In addition, the skin friction coefficient is slightly over-predicted in the
region after the shock. No detailed comment can be made with regards to the skin friction
coefficient on the bottom side of the airfoil surface because there is just one experimental
data point available in that region.

Figure 9. Pressure contours near the RAE2822 transonic airfoil

Figure 10. Pressure coefficient distribution on the RAE2822 airfoil

Figure 11. Skin friction coefficient distribution on the RAE2822 airfoil
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4.4. Sajben transonic diffuser flow

The computation of transonic turbulent diffuser flows have been implemented in this
study using the developed BGK turbulent flow solver. This two-dimensional convergent-
divergent channel acts to simulate the types of flows that may exist in supersonic inlets of
aircraft engines. Extensive tests, both numerical and experimental have been conducted at a
variety of flow conditions for this geometry. Hence, validation data (i.e. Ref. [18, 19, 30-32]) are
plentiful and can be readily used to the advantage of current study to further test the
computational characteristic of the solver when dealing with this sort of complex flow. The flow
fields selected for the current study are the weak- and strong-shock diffuser cases of Sajben [32].

For this test case, fully turbulent subsonic flow is initiated in the free stream with the
following free stream conditions: Mach number M∞ = 0.46, density ρ∞ = 1.45 kg/m3, temperature
T∞ = 280.1 K and Reynolds number Re∞ = 0.5634x106. The Reynolds number is based on the
converging-diverging duct throat’s height which is measured as L∞ = 0.044 m. A structure
algebraic grid is generated with clustering enforced on both surfaces of the channel. The
resulting mesh has a size of 81 by 51 grid points and is shown in Fig. 12. As for the specification
of boundary conditions, the following are assumed: at left boundary, subsonic inflow condition
with extrapolated static pressure from the interior domain; at right boundary, subsonic outflow
condition with fixed static pressure; the top and bottom boundaries which locate the surface, are
set to assume adiabatic wall with no-slip condition. The fixed static pressure required at the
outflow boundary depends on the type of flow field needed to be modeled, i.e. weak-shock or
strong shock flow. The specified pressure ratio (Pratio = Pexit / Ptotal, inlet) is 0.82 and 0.72 for
weak-shock and strong-shock flows, respectively.

Figure 12. Sajben diffuser computational domain, 81 x 51

For both flow conditions, pressure distributions along the top and bottom walls of the
diffuser from the BGK solver computations are compared with the experimental pressures and
shown in Fig. 13-16. In general, all computed pressure distributions agree relatively well with
the experimental data. Figure 13 and 14 illustrate the pressure distribution produced from the
weak-shock simulation. As illustrated in the figures, the predicted pressure distributions agree
very well with the experimental data with the location of the shock resolve accurately. Next,
the computed results of the strong-shock case are considered. Similar to the weak-shock case,
the pressure distributions on both surfaces of the channel are compared against the
experimental pressure, i.e. Fig. 15 and 16. Again, the predicted results are comparable with the
experimental data. The shock location for the bottom wall is predicted with great accuracy, but
the top wall shock is slightly under-predicted and 1 grid point further downstream as seen in
Fig. 16. Nonetheless, this level of inaccuracy in the solutions can be considered satisfactory
considering the coarseness of the mesh used in the computation and also large separation that
occurred on the top wall.
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Figure 13. Bottom wall pressure distribution, weak-shock case (Pratio = 0.82)

Figure 14. Top wall pressure distribution, weak-shock case (Pratio = 0.82)

Figure 15. Bottom wall pressure distribution, strong-shock case (Pratio = 0.72)
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Figure 16. Top wall pressure distribution, strong-shock case (Pratio = 0.72)

5. Conclusion

In the present work, the k-ε / k-ω SST two-equation turbulence model has been successfully
incorporated into the existing BGK flow solver developed in the previous study. Validation test
cases conducted in this paper showed that the BGK turbulent flow solver is capable of simulating
turbulent flow that gives good results for a wide variety of flows, i.e. ranging from simple to
complex flow domain; from subsonic to supersonic flow; and flow fields involving shock-boundary
layer interaction. In some test cases (i.e. RAE2822 airfoil and Sajben diffuser), the computed results
clearly demonstrate that the BGK scheme is able to provide an accurate resolution of the flow, good
prediction of shock location and remarkable post shock recovery of flow variables. These claims are
justified by comparisons of the numerical findings of the BGK scheme with existing analytical and
experimental data via examining the relevant flow properties.

Nomenclature

Cf skin friction coefficient
F, G inviscid flux vector in Cartesian coordinates
Fv, Gv viscous flux vector in Cartesian coordinates
F, G inviscid flux vector in generalized coordinates
F , Gv v viscous flux vector in generalized coordinates
i, j grid point location in computational domain
k turbulent kinetic energy
M∞ free stream Mach number
n time level
PT inlet total pressure
Re∞ free stream Reynolds number
Uc, Vc contravariant velocity
W conservative variables in Cartesian coordinates
W conservative variables in generalized coordinates
γ specific heat ratio
δ boundary layer thickness
ε dissipation rate of turbulent kinetic energy
ω specific dissipation rate
∆t time step
∆ξ , ∆η spatial step in generalized coordinates
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