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Abstract 
 

A three-dimensional computational code has been developed for the investigation of 
unsteady laminar flow past single and two inline circular tubes cross-confined in a channel. 
The developed code is based on the SIMPLE algorithm using finite volume technique to 
solve the governing equations. A body-fitted, multi-block structured grid has been 
generated for discretization of the incompressible form of conservation equations of mass, 
momentum and energy. The computational results correspond to a fixed Reynolds number 
of 400 based on tube diameter. The instantaneous flow and heat transfer characteristics for 
single and two inline tubes have been compared using streamline plots, temperature 
contours, vorticity contours, span-averaged pressure and span-averaged Nusselt number. 
 
Keywords: Body-fitted grid; non-staggered variables; Channel confinement; unsteady 
channel flow; circular tubes. 

 
1. Introduction 
 

The circular cylinder is a common bluff body and forms a large separated stagnant wake. The 
characteristics of separated wakes cannot be predicted analytically and hence must be analyzed 
either numerically or experimentally. Unlike square or rectangular cylinders, where the flow 
separates from the leading edges, the flow separation may occur from any location of a circular 
cylinder, further complicating the analysis. The difficulties in predicting flow and heat transfer 
around circular cylinders get multiplied when two or more of these cylinders are placed in 
proximity to each other and confined between channel walls. The large separated wakes behind 
each of the cylinders interact with each other and with the horseshoe vortices to give rise to a flow 
that is characteristically much more different than the flow past a single cylinder. Tiwari et al. [1] 
studied unsteady flow past confined circular tube and observed that the onset of vortex shedding 
gets delayed due to the effect of channel confinement. Patil and Tiwari [2] have carried out two-
dimensional numerical investigations to study the behaviour of unsteady wake for flow past an 
inline arrangement of square cylinders confined in a channel. They studied the influence of the 
relative size and arrangement of the two inline cylinders on vortex shedding characteristics in their 
wakes. In engineering applications complex turbulent flows commonly occur. Wilson and 
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Bassiouny [3] predicted the pressure drop and heat transfer characteristics of laminar and turbulent 
flow of air across tube bundles (single and two rows), where the tube surfaces are maintained at 
constant temperature. Baker [4] studied the oscillatory behaviour of vortices formed at a single 
tube-plate junction in the transitional regime, between the steady laminar horseshoe vortices formed 
at low Re and the fully turbulent horseshoe vortices that occur at higher Re values. He reported that 
vortex oscillations begin at ReD = 1000, and break down into full turbulence at ReD = 1600. 
Roychowdhury et al. [5] studied numerically the effect of Re and tube spacing on flow and heat 
transfer over staggered tube banks. They observed that both the Re and tube spacing influence the 
vortex formation and growth in the region between the tubes. For sufficiently small spacing, eddy 
formation gets completely suppressed even at higher Reynolds number. Nishimura et al. [6] studied 
flow characteristics past tube banks in staggered as well as inline arrangement in the transitional 
flow regime at intermediate Reynolds numbers (50 ≤ ReD ≤ 1000), where the flow is steady at the 
entrance of the tube banks, but becomes oscillatory downstream beyond a location of onset of 
vortex shedding. They found that the location of onset of vortex shedding moves upstream with 
increasing Re, and the upstream development of flow transition are much faster for the staggered 
array of tubes than for the in-line array. Much work has been devoted to these kinds of flows with 
vortex shedding. Williamson [7] has given a review for unbounded flow past a circular cylinder, 
and Zdravkovich [8] provides a lot of information on flow past circular cylinders. 

In the present study, flow past single and two inline arrangement of tubes has been considered 
with wall confinement, which mimics the fin-tube heat exchanger geometry corresponding to tubes 
of finite length bounded by two fins as shown in Figure 1. A three-dimensional numerical study on 
the flow and heat transfer characteristics in a narrow confined flow with built-in inline circular 
tubes in cross-flow has been carried out to study the unsteady characteristics of the flow and heat 
transfer. The computations are carried out using finite volume based three-dimensional 
computational developed code corresponding to a ReD = 400 in presence of channel confinement 
where the flow is expected to be laminar as confirmed by [1]. Several reports on solution algorithm 
and analysis of finite volume method are available from studies of Ju and Du [9], Piller and Stalio 
[10], Lacor et al. [11] and Pereira et al. [12]. 

 
2. Problem definition 
 

The computational domain for flow past circular tubes, cross-confined and built-in with a 
rectangular channel is shown in Figure 1 with all dimensions shown in terms of channel height. All 
the length scales have been non-dimensionalized with respect to channel height, H. The channel is 
designed to mimic a passage formed by any two neighbouring fins in a fin-tube heat exchanger. 

 

 
Figure 1. Computational domain 
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3. Numerical details 

3.1. Governing equations 
The Navier-Stokes equations for the laminar flow in an arbitrary domain of volume 

V bounded by a closed surface S can be expressed in the following general convection-
diffusion-source integral form: 

d 0
V

dV
t

ρ ρ∂
+ ⋅ =

∂ ∫ ∫
S

u S       (1) 

[ ] d d
V V

dV S dV
t φρφ ρ φ φ∂ ⎡ ⎤+ ⋅ = Γ ∇ ⋅ +⎣ ⎦∂ ∫ ∫ ∫ ∫

S S

u S S φ    (2) 

where φ  is the general transport variable , by setting φ  equal to 1, u, v, w and T and 
selecting appropriate values for the diffusion coefficient Γ  and source terms, the equations 
for mass, momentum and energy conservation are obtained. The diffusion coefficient, φΓ  
for example, represents viscosity. In Eqn. (2) the first term on the left hand side signifies the 
rate of change of the total accumulation of transport property φ  in the control volume. The 
second term in left hand side, ρ φu  expresses the convection flux component of the 
transport property φ  due to the fluid flow along the outward face normal vector. Therefore, 
the net rate of change of fluid property φ  for the fluid element due to convection is 
indicated by the second term on the left hand side of Eqn. (2). The first term on the right 
hand side represents the net rate of increase of property φ  of the fluid element due to 
diffusion and the last term known as volumetric source term gives the rate of increase of 
property φ  due to sources present inside the fluid element. 

 
3.2. Discretization of Governing Equations: 

Finite volume method on a non-staggered grid has been employed in the present 
study. The method is implemented directly on complex physical domain, where all 
dependent variables are defined at the centroid of the finite volume. A representative 
hexahedral CV for the complex geometries, shown in Figure 2, is defined by the coordinates 
of the vertices which are assumed to be connected by straight lines. 

 

Figure 2. A representative CV 
The integral equation, having infinite continuum values throughout the flow domain 

is discretized so as to convert into set of algebraic equations for values at centroids of the 
control volumes (CVs). The rate of change and source terms are integrated over the cell 
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volume, whereas the convection and diffusion terms are represented in terms of fluxes 
through the CV faces. The integral conservation equations (Eqns. (1) and (2)) are also 
applicable to each CV. Moreover, in the present study with Reynolds number being 400, the 
air flow is assumed to be incompressible therefore, Eqns. (1) and (2) take the following 
form: 

dρ
Δ

⋅ =∫
S

u S 0         (3) 

d
P PV V

dV S dV
t φρφ ρ φ φ
Δ Δ Δ

∂ ⎡ ⎤+ −Γ ∇ ⋅ =⎣ ⎦∂ ∫ ∫ ∫
S

u S φ    (4) 

The surface integral in Eqn. (3) is discretized in the following way: 
( )

, , , , ,

.d u u f ff
f e w n s t b f

ρ ρ ρ
=Δ

≈ ⋅Δ = ⋅Δ∑ ∑∫
S

u S S S    (5) 

where fΔS  is the surface vector representing the area of the fth cell face and uf is the 
velocity defined at the face centre f. With the definition of outward mass flux through face f, 
as uf fF fρ≡ ⋅ΔS , the discretized form of continuity equation (Eqn. (3)) takes the 
following form. 

0f e w n s t b
f

F F F F F F F= + + + + + =∑     (6) 

The rate of change term in Eqn. (4) is a volume integral, which requires integration 
over the volume of the CV with approximation. The approximation is of second-order to 
replace for volume integral by the product of the mean value for the integrand and the 
volume, where the mean value for the integrand is approximated by the values at the CV 
centre. In general, for any value of Q over CV the approximation can be written as 

P

P P
V

Q dV Q V Q V
Δ

= Δ ≈ Δ∫ P       (7) 

where QP is the value of Q at CV centre. Eqn. (7) becomes exact if Q is either 
constant or varies linearly within CV; otherwise, it contains a second-order error. Using this 
approximation (Eqn. (7)), the rate of change term in Eqn. (4) can be discretized as follows: 

( ) ( )1 1

P

n n n n
P P P

P
V

dV dV
dV V

t t
ρφ ρφ

P

t
φ φρφ ρ

+ +

Δ

− −∂
≈ = Δ

∂ Δ∫ Δ
  (8) 

The convection flux component of variable φ  can be approximated in the following form: 

( )
, , , , ,

d c
f f f Pf

f f e w n s t b

Fρ φ ρφ φ
=Δ

⋅ ≈ ⋅Δ = ≡ F∑ ∑∫
S

u S u S   (9) 

where  represents the sum of convective fluxes (c
PF f fF φ≡ ) over all faces of the 

CV. QUICK (Quadratic Upwind Interpolation for Convective Kinematics) scheme of 
Leonard [13] which, involves one downstream and two upstream cell centre values is used 
to determine the value of the convective variable ( fφ ) at the centre of each CV face. This 
interpolation is dictated by the direction of mass flux at the interface Ff. If the mass flux is 
positive on the east face of the shaded CV shown in Figure 3 the cells with node E, P and W 
are the downstream, upstream and far-upstream neighbours, respectively. Otherwise if Ff < 
0, on the east face of the CV, the respective neighbours are the cells with node P, E and EE 
(the east cell of cell E). The neighbours can be similarly classified for the other faces of CV. 
QUICK scheme uses Dφ , Uφ  and UUφ  to find the face value fφ  as follows. 
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where DVΔ ,  and  are the volume of the downstream, upstream and far-upstream 
CVs respectively. 

UVΔ UUVΔ

 
Figure 3. Schematic of the geometric interpolation/ extrapolation employed by QUICK scheme 

 
The diffusive flux of the variable φ  through the faces of the CV can be evaluated using φ  as 
follows 

( )
, , , , ,

d d
Pf

f e w n s t b
Fφ φφ φ

=Δ

Γ ∇ ⋅ ≈ Γ ∇ ⋅Δ ≡∑∫
S

S S     (12) 

For any face it can be written as 
1 1 2 2 3 3f α α αΔ = + +S n n n       (13) 

where ,  and  are any three linearly independent unit vectors. Therefore, 1n 2n 3n
( )1 1 2 2 3 3

1 1 2 2 3

fφ φ α α α

α φ α φ α φ

∇ ⋅Δ = ∇ ⋅ + +

= ∇ ⋅ + ∇ ⋅ + ∇ ⋅

S n n n

n n 3n
    (14) 

If 1φΔ , 2φΔ  and 3φΔ  are the difference in φ  between the two ends of the line segments 1xΔ , 

2xΔ  a 3nd xΔ  th  en

31 1 2 2 3, ,φ φ φ φ φ φΔ = ∇ ⋅Δ Δ = ∇ ⋅Δ Δ = ∇ ⋅Δx x x    (15) 
where ,  and  are the vectors associated with 1Δx 2Δx 3Δx 1xΔ , 2xΔ  and 3xΔ , respectively. If 

,  and  are in the directions of ,  and  respectively, then it follows from 
Eqn. (15) that 

1Δx 2Δx 3Δx 1n 2n 3n

31 2
1 2

1 2 3

, ,
x x x 3

φφ φφ φ φΔΔ Δ
= ∇ ⋅ = ∇ ⋅ = ∇ ⋅

Δ Δ Δ
n n n    (16) 
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where 1xΔ , 2xΔ  and 3xΔ  are the magnitudes of 1Δx , 2Δx  and 3Δx . Consequently, using 
Eqns. (15) and (16) it can be written as 

31 2
1 2 3

1 2
f

3x x x
φφ φφ α α α ΔΔ Δ

∇ ⋅Δ = + +
Δ Δ Δ

S      (17) 

To get 1α , 2α  and 3α , the unit vectors are expressed as ( )1 11 12 13n n n=n ,  

and , where ,  and  are the Cartesian components of  and is 

determined by 

( )2 21 22 23n n n=n

( )3 31 32 33n n n=n 11n 12n 13n 1n

11

1

x
x

Δ
Δ

, 12

1

x
x

Δ
Δ

 and 13

1

x
x

Δ
Δ

, where 11xΔ , 12xΔ  and 13xΔ  are the three components 

of vector . The other values , …,  etc. can be similarly determined. Therefore 

Eqn. (13) can be written as 

1Δx 21n 22n 33n

111 12 13 1

21 22 23 2 2

331 32 33 3

T
f

f

f

Sn n n
n n n S
n n n S

α
α
α
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⎪ ⎪ ⎪ ⎪⎢ ⎥ Δ⎩ ⎭⎣ ⎦ ⎩ ⎭

, where 1 fS , 2 fS , 3 fS  are the 

Cartesian components of the surface vector fS . The values 1α , 2α  and 3α  are determined 

using Cramer’s rule, 1
1

D
D

α = , 2
2

D
D

α =  and 3
3

D
D

α = , where D is the determinant of the 

coefficient matrix, and D1 is obtained by replacing the first column of D by the column with 
elements 1 fS , 2 fS , 3 fS  and so on. 

The east face is taken to illustrate the diffusion model. It is shown in Figure 4. Given 
the edge centre values teφ , beφ , seφ , neφ , the diffusion flux is computed as follows. 

1 2 3
1 2x x x

d ne se te beE P
PF φ

3

φ φ φ φφ φα α α
⎛ ⎞− −−

= Γ + +⎜ ⎟Δ Δ Δ⎝ ⎠
   (18) 

 

 
Figure 4. East face representation 

 
To calculate the edge centre values appearing in cross-derivative diffusion flux, the 
following interpolation scheme is used. 
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where VTE is the volume of the top-east neighbouring cell to the cell P, and teφ is the edge 
centre value of the top-east edge. Other edge centres can be similarly interpolated. 
The source term is to be integrated over the cell volume. By applying the volume integral 
approximation (Eqn. (7)), i.e., assuming that the specific source at the CV centre represents 
the mean value over the whole control volume, it can be written as 

( )
P

PP
V

S dV S Vφ φ
Δ

≈ Δ∫      (20) 

The pressure term in the momentum equation is also included as a source term. Its 
discretizaion is analogous to that of the ordinary diffusion flux, i.e., for the momentum 
equation for the velocity component ui (= u, v, w, respectively), the pressure term is 

( )
P

i i P
V

p dV p V
Δ

− ∇ ⋅ ≈ − ∇ ⋅ Δ∫ n n P

f i f

    (21) 

where ni is the unit vector in the direction of the velocity component, ui. However, the 
Gauss divergence theorem can be used to convert the volume integral to a surface integral 
which can be discretized as 

, , , , ,
i

f e w n s t bS

p d p
=Δ

− ≈ − ΔS∑∫ n S     (22) 

where fp  is the pressure at the fth face centre and i fSΔ  is the ith direction component of the 
surface vector for face f. 

 
3.3. Boundary conditions: 

The boundaries of the computational domain fall under four categories, inlet, exit, 
symmetrical side-walls, and no-slip isothermal solid surfaces. The boundary conditions have 
been summarized in Table-1. 

 
TABLE1: BOUNDARY CONDITIONS 

• Top and bottom walls:  , 0 u v w= = = 0
p

z

∂
=

∂
 and T  Tw=

• Side walls:  0
u w

y y

∂ ∂
= =

∂ ∂
, 0v = , 0

p

y

∂
=

∂
 and 0

T

y

∂
=

∂
 

• Inlet  to the channel:  u U= ∞ , 0v w= = , 0
p

x

∂
=

∂
 and T T= ∞  

• Channel exit:  0Uavt x

φ φ∂ ∂
+

∂ ∂
= ; Orlanski, [14] 

• Obstacle surfaces (tube surface):  0u v w= = = , 0
p

n

∂
=

∂
 and ; where n denotes 

normal to the surface 

T Tw=
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3.4. Solution methodology: 
A pressure-based method on a collocated grid arrangement for steady and unsteady 

flows was developed by Darbandi and Vakilipour [15]. They estimated the advection terms 
on the cell faces using an inclusive pressure-weighted up-winding scheme extended on 
unstructured grids. However, to avoid a non-physical spurious pressure field pattern, two 
mass fluxes per volume expressions were employed at the cell interfaces. They compared 
their results based on finite-volume and finite-element methods. Semi-explicit method has 
been used in the present to solve the discretized equations. The discretized form of the 
momentum equation for the ith velocity component ui, viz. 

( )
1

1
n n nc d niP iP

P e e f i
f

u uV F F p
t

ρ
+

+−
Δ + + = −

Δ ∑ fSΔ     (23) 

has been solved with  
1 0n

f
f

F + =∑     (24) 

made satisfied for each finite volume cell. However, due to the non-staggered variable 
arrangement, if the variables (velocity and pressure) at the cell faces are calculated by linear 
interpolation between the adjacent cell centred quantities then the pressure velocity 
iterations do not converge and lead to a checker board pressure field. Therefore, it is 
important to use momentum interpolation (Rhie and Chow, [16]; Majumdar et al., [17]) in 
which the velocity at all the cell faces are computed by allowing linear interpolation of the 
convective and diffusive terms but not of the pressure term. The velocity and pressure fields 
are calculated using Gauss-Seidel type algorithm (Eswaran and Prakash, [18]). The 
discretization procedure and the solution methodology used in the present study is also 
documented in Muralidhar and Sundararajan [19]. 
 

4. Results and discussion 
 

Figures 5 and 6 present the instantaneous streamlines near the bottom wall of the channel and 
in the cross-stream plane located at a distance of 2D downstream from centre of the circular tube for 
the case of single and at the distance of 2D from downstream tube for the inline arrangement of two 
tubes respectively. Various time instants considered are with respect to separation of the shear layer 
from the lower surface of the tube. Apparently, the growth of the asymmetric vortex bubble formed 
due to wrapping of the lower shear layer is observed. The corresponding adjacent streamlines in the 
cross-stream plane indicate the evolution of the other alternating vortex pair. The streamlines in the 
cross-stream plane show asymmetry about the mid-vertical as well as mid-horizontal planes. This is 
obviously due to planar vortex shedding in the wake and also due to three-dimensional nature of the 
confined flow between channel walls.  

Figures 7(a) and 7(b) present the vorticity field at different time steps for the two cases 
considered. For the considered Reynolds number, even though the flow is laminar, the asymmetry 
in the wake is apparent from the vorticity contour. For the inline arrangement of tubes, the vorticity 
contour in the wake of the downstream tube shows qualitative differences with respect to that in the 
wake of the upstream tube mainly due to difference in the nature of the flow that impinges upon 
them. Moreover, the vertical structure in the wake of the upstream tube is similar to that in the wake 
for flow past single tube except that it gets obstructed due to presence of the downstream tube. 
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Figure 5.  Instantaneous streamline plots at different time steps for single tube 

 

 
Figure 6.  Instantaneous streamline plots at different time steps for two inline tubes 
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Figure 7.  Instantaneous vorticity field at different time steps (a) single tube (b) two inline tubes 

(a) (b)

 
The instantaneous temperature contours near the bottom wall of the channel are shown in 

Figures 9(a) and 9(b) for single and two inline arrangements of tube, respectively. A higher 
temperature in the wake region indicates zone of poor heat transfer. At certain instant of time, the 
wake may show poor transport characteristics and higher temperature while at other time the 
transport may improve and local temperature in the wake region may become smaller. Incidentally, 
for single tube case at t = 601, when the lower vortex bubble is smaller in size, the wake is almost 
under the influence of upper enveloping shear layer which has wrapped up to such an extent that the 
wake becomes nearly stagnant giving rise to higher local temperature in the region. At other instants 
of time, the mean wake temperature decreases due to improved fluid transport.  

Figures 8(a) and 8(b) show the variation of span-averaged pressure along length of the 
channel at different time instants. In fact, over one time period of vortex shedding, the pressure 
variation can be better represented by the span-averaged pressure of the time-averaged field. This 
temporal evolution of the pressure field indicates that even though due to oscillating shear layers, 
the wake pressure fluctuates with time, the overall pressure drop across the channel does not get 
affected. This nature has been confirmed for the inline arrangement of two tubes as well. 
 For flow past inline arrangement of two circular tubes, the front stagnation line of the 
downstream tube is 3H behind the rear stagnation line of the upstream tube. Such a small separation 
between the two tubes affects the unsteady wake zone behind the upstream tube that vortex 
shedding in its wake gets almost suppressed (flow field not being shown due to lack of space). This 
is apparent from the temperature contours in the wake region of the upstream tube. On the other 
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hand, the wake of the downstream tube demonstrates vortex shedding which differs in nature when 
compared to wake of single tube in free stream. However, the qualitatively nature of the unsteady 
flow in the wake of the downstream tube can be well interpreted from the asymmetric temperature 
contours. The temperature contours shown do not correspond to exactly same time instants shown 
in Figure 9(a) for flow past single circular tube. 

 

(a)   (b) 
Figure 8. Instantaneous pressure at different time steps (a) single tube (b) two inline tubes 

 
  

(a)      (b)  
Figure 9.  Instantaneous temperature distribution at different time steps  

(a) single tube (b) two inline tubes 
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Figure 10.  Instantaneous Span-averaged Nusselt number  

(a) single tube (b) two inline tubes 
 

Figures 10(a) and 10(b) show the variation of span-averaged Nusselt number near the bottom 
channel wall along length of the channel at the four time instants chosen for temperature contours in 
Figures 8(a) and 8(b). The Nusselt number is based on bulk-mean temperature of the fluid in the 
local cross-stream plane. It is seen that due to arrested wake of the upstream tube in presence of the 
downstream tube, the span-averaged Nusselt number in its wake remains almost constant. Even in 
the wake of the downstream tube, the temporal variation of span-averaged Nusselt number is not 
significant. However, the variation of local Nusselt number near channel walls, at a particular 
spanwise location, shows appreciable temporal dependence. 
 
5. Conclusion 
 

Three-dimensional computations have been carried out using finite volume-based developed 
computational code to study the flow and heat transfer characteristics in the unsteady wake of a 
channel confined single circular tube and an inline arrangement of two circular tubes. Temporal 
evolution of flow and temperature fields, span-averaged pressure and span-averaged Nusselt 
variation along length of the channel has been presented. The otherwise unsteady wake of a single 
circular tube shows nearly steady flow and thermal characteristics in presence of a downstream 
tube. Moreover, the unsteady flow and temperature fields in the wake of a circular tube placed in 
free stream differ significantly from those in the wake of a tube placed in the wake of another 
upstream tube. From this study it can be concluded that for comparison of overall flow and heat 
transfer characteristics of various tube arrangements, it is worthwhile to consider time-averaged 
flow and temperature fields over a fixed interval of time. Even though the time-averaged fields do 
not exactly correspond to any of the particular instantaneous filed, time-averaged fields display 
overall flow characteristics. 

 
Nomenclature 

 
A  area 
CV control volume 
D  diameter of circular tube 
F
r

 flux vector 
f  face of CV 
H  channel height (= l3) 
l  length 
Nu Nusselt number 
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Nu  average Nusselt number 
n  normal to surface 
p  pressure 
p  span-averaged and height-averaged pressure 
Sφ  volumetric source term 

ReD Reynolds number based on tube diameter ( )VD υ=  
S  surface vetor 
T  temperature 
t  time 
V  Volume of CV 
u  axial velocity component 
v  span-wise velocity component 
w  velocity component normal to channel wall 

 
Greek 

Δ  difference/ increment 
Γ  diffusion coefficient 
μ  dynamic viscosity 
ν  kinematic viscosity 
φ  transport property (u, v, w  or T) 
ρ  density 
θ  angle measured clockwise from forward stagnation point with respect to tube center 
 
Subscript 

1  span-wise direction 
2  transverse direction  
3  direction normal to channel wall 
c1 centre of upstream tube from the channel inlet 
e  east 
n  north 
s  south 
w  west 
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