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Abstract

An exact solution of the Navier–Stokes equations for a flow driven by motion of a flexible 
wall is developed. A simple two-dimensional channel with deforming walls is considered as 
the domain. The governing equations are linearized for low Reynolds and large Womersley 
number Newtonian flows. Appropriate boundary conditions for general deformation are 
decomposed into harmonic excitations in space by Fourier series decomposition. A model 
of harmonic boundary deformation is considered and the results are compared with 
computational fluid dynamics predictions. The results of velocity profiles across the 
channel and the centerline of the channel are in good agreement with CFD solution. The 
analytical model developed provides quantitative descriptions of the flow field for a wide 
spectrum of actuating frequency and boundary conditions. The presented model can be used 
as an effective framework for preliminary design and optimization of displacement 
micropumps and other miniature applications.

Keywords: Micropumps; Viscous flow; Computational fluid dynamics; Flexible wall; 
Boundary driven flow; Upper/lower wall deformation.

1. Introduction

There has been a tremendous interest in understanding the nature of flow in biological 
systems, such as flow in arteries [1, 2] and alternative pumping techniques for microfluidic flow 
requirements which are of the order of 1 cm3 or less [3–5]. Efforts have been made on both 
theoretical [1, 2, 6–8] and numerical [9–11] fronts to investigate the complicated physics behind 
pulsatile pumping which is important in pulmonary flows and displacement micropumps. In 
particular, peristaltic pumps, in which the motion of the fluid resembles the periodic motion of the 
esophagus, is of significant importance.

There have been extensive theoretical studies performed on peristaltic pumping which 
incorporates sinusoidal, infinitely long, two dimensional, and continuous models, for both small 
amplitudes and long wavelength peristaltic waves [7, 8, 12]. In earlier works, there is reference to 
some unique features of peristaltic flow, such as ‘reflux’ and ‘trapping’ in comparison to biological 
flows [8]. Reflux happens when the mean retrograde velocity of the fluid is opposite to the direction 
of wave propagation, while trapping occurs because of stationary recirculation and the fluid is 
unable to move within the mainstream [12]. Researchers have investigated modeling peristaltic 
motion for infinitely long geometries with long amplitudes and low Reynolds numbers, using 
asymptotic methods [6]. Also some studies have performed analysis on finite length tubes with 
continuous waves [13], but almost negligible efforts have been made to study flows in a finite 
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channel where walls are fixed at the ends. There have been some efforts to perform simulation on 
peristaltic pumps with fixed ends that are arranged in a cascade [14]. Also, the flows in these 
devices are driven by pulsating pressure where the deformation is subject to the pressure gradient 
imposed. Based on the literature, it appears that there is a need to develop a mathematical 
framework that is useful for providing a theoretical perspective of moving boundary driven flows.

The current study was motivated when the authors were developing a novel design for a 
MEMS device and optimizing it for targeting a particular flow rate [15, 16]. The device is a 
peristaltic action micropump, consisting of four pneumatically actuated nozzle/diffuser shaped 
moving actuators on the sidewalls. These actuators were used to create pressure difference in the 
four pump chambers, which in turn drove the fluid through the pump in one direction. Due to the 
uniqueness of the design, it was hard to validate the codes used for numerical study. Therefore, a 
simple design representing all the essential elements and described by the same physics was 
considered to represent analytical validation, which led to the motivation for the present study.

In this paper, we address the need for providing a mathematical model of high viscosity flow 
in a 2-D channel, driven by deformation of the surrounding walls. We start with the linearization 
and decoupling of fundamental equations of motion for an incompressible, Newtonian fluid and 
seek closure in the system by appropriate no-slip and deformation boundary conditions. We further 
validate the results obtained from the theoretical model with a CFD solution.

2. Analytical approach
2.1. Problem definition

We seek an exact solution of Stokes flow between two deforming boundaries in a 2-D 
channel of length L  as shown in Figure 1. The spatial variation of deformation is a function of the 
length x  which can be described by a pseudo-periodic function as

( , ) ( )sinx t f x t  (1)

where ( )f x  can be decomposed into Fourier series which sums up all the modes of vibration as 
explained in [17] as
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Figure 1. Schematic of model. Drawing not to scale.

In general, one can find the solution for harmonic deformation and sum all the modes to get 
the total solution. In this study, a solution for fundamental mode of vibration of the wall is 
presented. The fluid is assumed to be Newtonian, the flow is assumed to be isothermal and having a 
low Reynolds number, and unsteady in nature. The geometry is presented in Figure 2. The length of 
the channel is L  and the diameter is 2H , and the displacement at the walls y H   is given by

( , ) sin sinx t A kx t   (3)

where A  is the amplitude of displacement, k L  is the wave number, and   is the forcing 
frequency. The wall deformation can be decomposed into linear superposition of two transverse 
waves traveling in x  direction as

( ) ( )( , )
2

j kx t j kx tA
x t e e         (4)

Figure 2. Geometry of model. Drawing not to scale.

3. Governing Equations
3.1. Governing equations

Flow is described by set of fluid continuity and momentum conservation equations. Since 
the flow is highly viscous and laminar, we neglect the convective terms from the Navier–Stokes 
equations and write the equations for incompressible Newtonian, unsteady, laminar, highly viscous 
and isothermal flow represented as
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On comparing the order of terms in the above equations [18]; and by limiting the analysis to 
disturbances of long wavelengths and large Womersley number (>> 10); and by neglecting terms in 
y-momentum equation, we deduce that

0
p

y


 


(6a)
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so x-momentum equation reduces to

2
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(7)

At this point, it is reasonable to choose the following form of the pressure

( ) ( )
1 2ˆ ˆ( , ) . .j kx t j kx t

op x t p p e p e       (8)

The kernel of exponential ( )j kx te   represents a longitudinal pressure wave traveling in x  direction 
respectively. Subtracting them, we get a standing wave in pressure where the end value is op . 

Similarly, u  and v , being x  and y  velocities; have the form

( ) ( )
1 2ˆ ˆ( , , ) ( ). ( ).j kx t j kx tu x y t u y e u y e       (9a)

( ) ( )
1 2ˆ ˆ( , , ) ( ). ( ).j kx t j kx tv x y t v y e v y e       (9b)

where   denotes the real part of the complex form of primitive variables. Since the problem is 
linear, we can decompose the solution into two parts

1 2( , , ) ( , , ) ( , , )u x y t u x y t u x y t  (10)

where

( )
1 1ˆ( , , ) ( ). j kx tu x y t u y e     (11a)

( )
2 2ˆ( , , ) ( ). j kx tu x y t u y e     (11b)

and similar relationships for p  and v  can be derived.

3.2. Solution method

Substituting the values of 1u  and 1p  in equation (7), we have
2
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rearranging variables and comparing it to the standard form gives
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Since these equations have a forcing term Q  on the right, the solution is the sum of homogeneous 
and particular solutions. Homogeneous solution is given by

1 1 1ˆ ( ) cos sinhu y A y B y   (14)

We assume that the particular solution 1̂pu  will be a constant since the forcing function is a constant 

and hence the total solution is

1 1 1ˆ ˆ ˆ( ) ( )h pu y u y u  (15)

substituting the total solution back into the ODE given by equation (13a) we get
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boundary conditions are
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solving for 1A and 1B , we get

1
1

ˆ

cos

kp
A

H 
  (19a)

1 0B  (19b)

hence final solution is
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substitute this value into continuity equation (5a) to obtain
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integrate and get
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where 1C  is the integration constant. We have two variables to solve for, namely 1p̂  and 1C  and 

two boundary conditions for 1̂v
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solving for the two variables, we get
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substituting 1p̂  to solve for 1̂( )u y , we get
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where j   ;   is the kinematic viscosity. Similarly we can solve for 1̂( )v y .

Proceeding in the same way for 2ˆ ( )u y  and solving the second part of the linear problem, we 
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Therefore the total solution is given as
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Similarly, we can derive expressions for ( , , )v x y t  and ( , , )p x y t  as
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4. Results and discussion

A channel with dimensions L  = 12mm and H  = 150  m, and actuating frequency f  = 1Hz 
was studied. To avoid end effects on the solution, an entry and exit length of 20 hydraulic diameters 
was considered, which corresponds to 6mm of entry length. Pressure inlet boundary condition was 
applied on the two openings on either ends. These conditions are represented in Figure 3. A time 
dependent, first order implicit scheme was selected since it is unconditionally stable; however this 
scheme is lower in accuracy as compared to explicit schemes. Choosing the appropriate grid and 
time step resolutions circumvented this problem. The developed model was compared against 
simulations using a commercial CFD solver, FLUENT. For numerical simulations, three meshes of 
element size 52 10 , 53 10  and 54 10  were chosen which are displayed in Figure 4; and results 
for x-velocity are compared at time t T  = 0.25 at x L  = 0.25 in Figure 5. It can be seen from 
Figure 5 that mesh size of the coarse mesh is suitable enough for the simulations, as there is no 
significant change in the velocity results. However, the graph also shows that the results are highly 
dependent on the chosen time step size--reducing the time step by half brings a change in the values 
by 50%. Therefore a time step size independence study was conducted until the computed variables 
showed no further change in their values.

Figure 3. Boundary conditions for numerical computations. Drawing not to scale.
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Figure 4. Meshes used for computations.

Figure 5. Mesh independence test at Tt /  = 0.25 and x L  = 0.25

A mesh size of 54 10  was chosen and a time step size independence study was conducted 
until the numerical solution did not show any change with change in time step size. The final value 
of the time step size is of the order of 10 6  with 54 10  steps per cycle. At this resolution, the 
computed model over predicts analytical results by 18% as shown in Figure 6. This is quite 
reasonable because of the approximations involved while linearizing the Navier–Stokes equations. 
The velocity profile demonstrates the phenomenon of trapping with the presence of local 
recirculation zones. Figure 7 shows the velocity profile at x L  = 0.25 and t T  = 0.5. At the same 
location and time instant, y-velocities are plotted in Figure 8, which confirm that analytical and 
numerical solutions are in good agreement.
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Figure 6. Time step independence test at Tt /  = 0.25 and x L  = 0.25

Figure 7. Streamwise velocity at Tt /  = 0.5 and x L  = 0.25

Figure 8. Normal velocity at Tt /  = 0.5 and x L  = 0.25
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Figure 9 shows the centerline x-velocity across the length of the channel at t T  = 0.5 and  

t T  = 1.0, where a comparison is made between computational and analytical results. A correct 
prediction of zero z-velocity at the center of the channel is observed. Contours of x-velocity at    
t T  = 0.25 are shown in Figures 10(a) and 10(b) while Figures 11(a) and 11(b) show the same at 

t T  = 0.5. Excellent agreement between the two solutions is observed.

Figure 9. Centerline x-velocity at Tt /  = 0.5 and Tt /  = 1.0

(a)

(b)
Figure 10. (a) Analytical and (b) numerical contours of x-velocity at Tt /  = 0.25
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(a)

(b)
Figure 11. (a) Analytical and (b) numerical contours of x-velocity at Tt /  = 0.5

5. Conclusions

A 2-D analytical model is developed for highly viscous flow between two deforming parallel 
plates. The deformation profile is decomposed into mode shapes using Fourier series approach, 
which are then used as a boundary condition. The governing Navier–Stokes equation is linearized 
by an order of magnitude analysis which helps in providing the solution of the flow field in a closed 
form. The results of pressure and velocities show a pulsatile nature. The results are then validated 
using CFD analysis, which shows a maximum difference of 18% in the x-velocity solution. The 
analytical model developed in this study may serve as an effective framework for understanding the 
nature and physics of flow field and making preliminary predictions. This framework can be used 
effectively for design and optimization of microdevices such as peristaltic micropumps, in which 
the flow physics operate in the same way. The generalized model can also be used to simulate and 
predict the performance of blood pumps in the context of biological flows.
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